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Abstract: In this paper, we use the mutual information between error/input as the cost
function for adaptive filtering. For the finite-impulse response (FIR) filter, the connections
between the minimum error/input information (MEII) criterion and traditional mean-square
error (MSE) criterion are investigated. We show that, for Gaussian case, the MEII criterion is
equivalent to the well-known orthogonality condition. Based on the MEII criterion and kernel
density estimation, we derive a stochastic gradient algorithm. Simulation results emphasize the
effectiveness of this new algorithm.

1. INTRODUCTION

In traditional estimation and filtering theory, for reasons of
mathematic convenience, the minimum mean square error
(MMSE) criterion is widely used (Kailath [2000], Haykin
[1996]). However, in most situations, the system would
be nonlinear and non-Gaussian, thus the MMSE criterion
fails to extract all the information in the error signals.
Recently, a novel criterion has been proposed to solve the
optimal filtering problems, in which the entropy of the
error is minimized (Erdogmus [2003], Wolsztynski [2005],
Guo [2006]). The entropy, which measures the average
information contained in a random variable, is related to
various statistical behaviors (Cover [1991], Ihara [1993]).
Numerical examples suggest that the minimum error en-
tropy (MEE) criterion could be able to achieve a better
error distribution (Erdogmus [2000]). However, in the case
of continuous random variable, the differential entropy is
just a relative quantity (Ihara [1993]). This leads to the
fact that the differential entropy is not always positive
and its minima may approach to −∞ . Unlike the entropy
measure, the mutual information between two continuous
random variables is identical to the limit of the mutual
information between their quantized versions. This makes
mutual information positive definite and reach its global
minima (zero) if and only if the two random variables
are independent (Cover [1991], Ihara [1993]). Further, the
mutual information is invariant under monotonous distor-
tion of random variables. Thus, the application of mutual
information shall yield a more robust performance. In the
present paper, we use the mutual information between
error/input as the cost function for the adaptive filtering.
First, we give a brief introduction to the entropy and mu-
tual information (see section 2). And then, we investigate
the connections between the minimum error/input infor-
mation (MEII) criterion and traditional mean-square error
(MSE) criterion, some interesting results are obtained (see
section 3). Further, under the MEII criterion, we derive a
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novel adaptation algorithm (see section 4). And finally,
the performance of this new algorithm is demonstrated
by Monte Carlo simulations, in comparison with the well-
known LMS algorithm (see section 5).

Notation: The superscript (.)T denotes the transpose.
det (.) denotes the determinant of a matrix. ‖X‖ denotes

the Euclidean norm of vector X , i.e. ‖X‖ =
√

XT X . E (.)
denotes the expectation operator. Throughout this paper
nats are used as the information units and log denotes the
natural logarithm.

2. ENTROPY AND MUTUAL INFORMATION

Consider a d-dimensional continuous random variable X ∈
Rd with probability density function (PDF) pX (x) , the
differential entropy is defined by (Cover [1991])

h (X) = −
∫

Rd

pX (x) log pX (x) dx (1)

The differential entropy h (X) measures the dispersion of
the random vector X . The smaller the entropy h (X)
, the more concentrated the density function pX (x) .
If X is a Gaussian random vector with PDF pX (x) =
(

(2π)d/2 |Σ|1/2
)

−1

exp
(

− 1

2
× (x − µ)T Σ−1(x − µ)

)

, where µ is
the mean and Σ is the covariance matrix, the differential
entropy is

h (X) =
1

2
log
(

(2πe)
d |Σ|

)

(2)

For random variables X and Y , with joint probability
density function pXY (x, y) , the conditional differential
entropy is given by

h (X |Y ) = −
∫

pXY (x, y) log pX|Y (x |y ) dxdy (3)

Here the quantity h (X |Y ) can be explained as the re-
mained uncertainty of X after we are informed of the
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output of Y . Based on the entropy measures, the mutual
information between X and Y is then defined by

I (X ; Y ) = h (X) − h (X |Y ) (4)

The mutual information I (X ; Y ) describes the amount of
information about X contained in Y . It is a general mea-
sure of statistical dependence between random variables.
In addition, the conditional mutual information between
X and Y given Z is

I (X ; Y |Z ) =

∫

p(x, y, z) log

(

p(x, y |z )

p(x |z )p(y |z )

)

dxdydz

Some important properties of mutual information are
listed as follows (Ihara [1993]).

Lemma 1. I (X ; Y ) ≥ 0, with equality if and only if X and
Y are independent.

Lemma 2. If f (.) and g (.) are continuous and strictly
monotonic function, then I (X ; Y ) = I (f(X); g(Y )) .

Lemma 3. I (X ; Y1, · · · , Yn) =
∑n

i=1 I (X ; Yi |Y1, · · · , Yi−1).

Lemma 4. Let X , Y and (X, Y ) be respectively m, n, m+
n dimensional Gaussian vectors, with covariance matrices
A,B, C , then

I (X ; Y ) =
1

2
log

detAdet B

detC
(5)

3. MINIMUM ERROR/INPUT INFORMATION
CRITERION

For an adaptive finite-impulse response (FIR) filter (Kailath
[2000], Haykin [1996]), we can define the input data vector
X (k) and the filter parameter (or weight) vector W (k) as
{

X(k) = [x(k), x(k − 1), · · · , x(k − m + 1)]
T ∈ Rm

W (k) = [w1(k), w2(k), · · · , wm(k)]
T ∈ Rm

(6)

where m − 1 is called the number of order. The output of
the filter is given by

y(k) = WT (k)X(k) (7)

Denote d(k) the desired signal, the error signal e(k) is

e(k) = d(k) − y(k) = d(k) − WT (k)X(k) (8)

Conventional filtering algorithm is usually designed to
minimize the following mean-square error (MSE)

Jmse = E
[

e2 (k)
]

(9)

If the input and the desired response are stationary signals,
Jmse is a quadratic function of the weight W :

Jmse = WT RXW − 2PT W + σ2
d (10)

where correlation matrix RX = E
(

X(k)XT (k)
)

, cross-

correlation vector P = E (X(k)d(k)), and σ2
d = E

(

d2(k)
)

.
Then we get the following gradient vector

∇mse
∆
=

∂

∂W
Jmse = 2RXW − 2P (11)

Let ∇mse = 0 , the unique optimum weight vector is

W ∗
mse = R−1

X P (12)

Under MSE criterion, the well-known LMS (least mean
square) algorithm is developed (see Kailath [2000]), which
is expressed as

W (k + 1) = W (k) + 2µe(k)X(k) (13)

In this paper, the filter parameters are adjusted to min-
imize the following error/input information (EII) instead
of the MSE criterion.

Jmeii = I (e(k); X(k)) (14)

Remark 1: The above cost function is very natural, and
shall provide us a more profound interpretation of the
filtering problems. The filter makes the mutual informa-
tion I (e(k); X(k)) minimized, hence the error signal e(k)
contains little ”information” about the input data X(k) ,
and we can hardly learn anything from e(k) . This criterion
is similar to the minimum error/observation information
criterion, which is proposed for the state estimation (see
Feng [1997] for details).

Theorem 1. Under the minimum error/input information
(MEII) criterion, the optimum FIR filter minimizes the
error’s entropy H (e(k)).

Proof. By information theory, we have

I (e(k); X(k)) = H (e(k)) − H (e(k) |X(k) )
= H (e(k)) − H

(

d(k) − WT (k)X(k) |X(k)
)

= H (e(k)) − H (d(k) |X(k))

It follows that

argmin
W∈Rm

Jmeii = argmin
W∈Rm

I (e(k); X(k))

= argmin
W∈Rm

{H (e(k)) − H (d(k) |X(k) )}
(a)
= argmin

W∈Rm

{H (e(k))}

where (a) follows from the fact that W has no effects on
the conditional entropy H (d(k) |X(k) ).

Theorem 2. Assume d(k) , X(k) are zero-mean and jointly
Gaussian, det RX 6= 0, then the optimum weight vector
W ∗

meii under MEII criterion is equal to that under MSE
criterion, and I (e(k); X(k) |W = W ∗

meii ) = 0 .

Proof.

∇meii
∆
=

∂

∂W
I (e(k); X(k))

(a)
=

∂

∂W
{H (e(k))}

(b)
=

∂

∂W

{

1

2
log
(

(2πe) E
[

e2(k)
])

}

=
1

2

∂

∂W
log
{

WT RXW − 2PT W + σ2
d

}

=
RXW − P

WT RXW − 2PT W + σ2
d

where (a) follows from the fact that W has no effects on
the conditional entropy H (d(k) |X(k) ) , and (b) follows
from (2). Let ∇meii = 0 , we get the optimum weight
vector

W ∗
meii = R−1

X P

From (12), we get W ∗
meii = W ∗

mse . Further, in this case,
we have

E
(

e(k)XT (k)
)

= E

{(

d(k) −
(

R−1

X
P
)T

X(k)

)

XT (k)

}

= 0

By Lemma 4, the mutual information I (e(k); X(k)) is
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I (e(k); X(k) |W = W ∗
meii )

=
1

2
log















E
(

e2(k)
)

det E
(

X(k)XT (k)
)

det

(

E
(

e2(k)
)

E
(

e(k)XT (k)
)

E (e(k)X(k)) E
(

X(k)XT (k)
)

)















=
1

2
log















E
(

e2(k)
)

detE
(
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det

(

E
(

e2(k)
)

0
0 E

(

X(k)XT (k)
)

)















= 0

Remark 2: Above derivation suggests that, for zero-mean
Gaussian case, I (e(k); X(k)) = 0 is equivalent to the
well-known orthogonality condition (E [e(k)X(k)] = 0
) (Kailath [2000]). However, it should be noted that,
for most situations, such as the non-Gaussian cases,
min

W∈Rm

I (e(k); X(k)) = 0 does not always hold. In fact,

the mutual information I (e(k); X(k)) between error/input
takes into accounts both the second and higher order
dependencies, while the orthogonality conditions only con-
sider the second order dependencies.

Now, we consider the case in which the desired response
d(k) is expressed as

d(k) = WT
0 X(k) + n(k) (15)

where the disturbance noise {n(k)} is independent with
{x(k)} . In this case, the error signal e (k) is formed as

e (k) = d (k) − y (k)
= WT

0 X (k) + n (k) − WT (k)X (k)
= V T (k)X (k) + n (k)

(16)

where V (k) = W0 − W (k) is the weight error vector.
Theorem 3. For the desired response (15), we have W ∗

meii =
W0 .

Proof. By Lemma 1, we have I (n(k); X(k)) = 0 , and
hence

I (e(k); X(k) |W = W0 )
= I (e(k); X(k) |V = 0) = I (n(k); X(k)) = 0

It follows that

I (e(k); X(k) |W = W0 ) = min
W∈Rm

I (e(k); X(k))

which means W ∗
meii = W0 .

Denote X̂ the conditional mean estimation of X based on
the error signal e (k) , that is

X̂(k) = E {X(k) |e(k); V (k)} (17)

Let MMSE (‖V (k)‖) ∆
= E

{

∥

∥

∥
V T

0 (k)
(

X(k) − X̂(k)
)∥

∥

∥

2
}

,

where V0 (k) = V (k)
‖V (k)‖ ,then the following theorem holds.

Theorem 4. For the desired response (15), assume {x (k)}
and {n (k)} are both unit-power white Gaussian noise
(WGN), then we have

I (e(k); X(k) |V (k) ) = −1

2
log (MMSE (‖V (k)‖)) (18)

Proof. Clearly, we have ‖V0(k)‖ = 1 , and

e (k) = ‖V (k)‖V T
0 (k)X (k) + n (k)

According to the minimum mean-square error (MMSE)
estimation theory (Kailath [2000], see pp. 95-96), we have

E

[

(

X(k) − X̂(k)
)(

X(k) − X̂(k)
)T
]

= I − ‖V (k)‖2
V0

[

1 + ‖V (k)‖2
V T

0 V0

]−1

V T
0

= I − ‖V (k)‖2

1 + ‖V (k)‖2 V0V
T
0

where I is the identity matrix. And hence

MMSE (‖V (k)‖) = E

{

∥

∥

∥
V T

0 (k)
(

X(k) − X̂(k)
)∥

∥

∥

2
}

= V T
0 (k)E

[

(

X(k) − X̂(k)
)(

X(k) − X̂(k)
)T
]

V0(k)

= V T
0 (k)

{

I − ‖V (k)‖2

1 + ‖V (k)‖2 V0V
T
0

}

V0(k)

=
1

1 + ‖V (k)‖2

(19)

On the other hand, by Lemma 4, we can calculate the
mutual information I (e(k); X(k) |V (k) ) as follows

I (e(k); X(k) |V (k) )

=
1

2
log

{

(

1 + ‖V (k)‖2
)

det

[

I V (k)

V T (k) ‖V (k)‖2 + 1

]

−1
}

=
1

2
log
(

1 + ‖V (k)‖2
)

(20)

Combining (19) and (20), we arrive the result.

Remark 3: The MMSE and the mutual information (in
nats) are plotted in Fig. 1. It is evident that, as the
weight vector W (k) approaches to the optimum so-
lution W0 (‖V (k)‖ → 0 ), the mutual information
I (e(k); X(k) |V (k) ) → 0 , and MMSE (‖V (k)‖) →
max

V
MMSE (‖V (k)‖) . This implies that, if the er-

ror/input information is minimized, we can hardly esti-
mate the input data X(k) by using the error signal e(k) , or
in other word, the input data X(k) are utilized completely,
such that the error signal e(k) becomes ”useless” (all the
information contained in e(k) is extracted).
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Fig. 1. The MMSE and the mutual information (m=5)
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4. STOCHASTIC GRADIENT ALGORITHM

Under the minimum error/input information (MEII) cri-
terion, the weights of the filter are adjusted to minimize
the following mutual information.

I (e(k); X(k)) = E

{

log

(

pXe (X(k), e(k))

pX (X(k)) pe (e(k))

)}

(21)

where pX (.) , pe (.) and pXe (.) denote the PDF of X(k),
e(k), and (X(k), e(k)), respectively. In practical situations,
these PDFs are usually unknown; hence we have to es-
timate them from sample data. However, if m ≫ 1 ,
X(k) ∈ Rm will be a high-dimensional random variable.
In this case, it is impossible to estimate the PDF with
finite sample data. In the following, we derive an approxi-
mate expression for the mutual information I (e(k); X(k)),
which contains only low dimensional random variables.

By the chain rule(see Lemma 3), we have

I (e(k); X(k))

= I
(

e(k); [ x(k) x(k − 1) · · · x(k − m + 1) ]
T
)

=
∑m

i=1
I (e(k); x(k − i + 1) |x(k)x(k − 1) · · ·x(k − i + 2))

Assume the input signal {x(k)} is an independent stochas-
tic process, i.e. I (xi; xj) = 0 , ∀i 6= j , then (∀i, 2 ≤ i ≤ m)

I (e(k); x(k − i + 1))
−I (e(k); x(k − i + 1) |x(k)x(k − 1) · · ·x(k − i + 2))

= I (x(k)x(k − 1) · · ·x(k − i + 2); x(k − i + 1))
−I (x(k)x(k − 1) · · ·x(k − i + 2); x(k − i + 1) |e(k) )

= −I (x(k)x(k − 1) · · ·x(k − i + 2); x(k − i + 1) |e(k) )

Under the independent assumption, we have

I (x(k)x(k − 1) · · ·x(k − i + 2); x(k − i + 1) |e(k) ) ≈ 0

It follows that

I (e(k); x(k − i + 1) |x(k)x(k − 1) · · ·x(k − i + 2))
≈ I (e(k); x(k − i + 1))

and hence

I (e(k); X(k)) ≈
∑m

i=1
I (x(k − i + 1); e(k)) (22)

Now, we design the adaptive algorithm to minimize the
following cost function

J =

m
∑

i=1

I (x(k − i + 1); e(k))

=
m−1
∑

i=0

E

{

log

(

pxe (x(k − i), e(k))

px (x(k − i)) pe (e(k))

)}
(23)

We adopt the following popular form

W (k + 1) = W (k) + η∇̂W {J} (24)

where η is the adaptation gain (or step-size), ∇̂W {J} is the
instantaneous estimate of the gradient of J evaluated as
the current value of the parameter vector W (k). Obviously,
the key problem of the recursive equation (24) is how

to calculate the instantaneous gradient ∇̂w {J}. We start
with the calculation of the gradient (not the instantaneous
gradient) of J .

∇W {J} =
∂

∂W

{

∑m

i=1

E

{

log

(

pxe (x(k − i), e(k))

px (x(k − i)) pe (e(k))

)}}

=
∑m

i=1

E

{

∂

∂W
(log {pxe (x(k − i), e(k))} − log {pe (e(k))})

}

=
∑m

i=1

E

{

∂
∂W

pxe (x(k − i), e(k))

pxe (x(k − i), e(k))
−

∂
∂W

pe (e(k))

pe (e(k))

}

By dropping the expectation operator and estimating the
PDFs, we obtain the instantaneous gradient ∇̂w {J}.

∇̂w {J} =
∑m

i=1

{

∂p̂xe(x(k−i),e(k))
∂W

p̂xe (x(k − i), e(k))
−

∂p̂e(e(k))
∂W

p̂e (e(k))

}

(25)

We choose the kernel based approach (Silverman [1986])
for the estimation of PDFs. By kernel method, the es-
timated PDFs are differentiable. This is very important
for the calculation of the gradient. The d-dimensional
Gaussian kernel is defined as

K (x) = (2π)
−d

exp

(

−1

2
xT x

)

, x ∈ Rd (26)

With Gaussian kernel, the nonparametric estimation of
pe (e(k)) and pxe (x(k − i), e(k)) can be expressed as































p̂e (e(k)) =
1√

2πLh1

L
∑

j=1

exp

(

− (εj(k))
2

2h2
1

)

p̂xe (x(k − i), e(k))

=
1

2πLh2
2

L
∑

j=1

exp

(

− (ξij(k))
2
+ (εj(k))

2

2h2
2

)

(27)

where εj(k) = e(k)−e(k−j), ξij(k) = x(k−i)−x(k−i−j),
L is the length of sample data, h1 and h2 are the kernel
widths. Then it follows that


































∂

∂W
p̂e (e(k)) =

1√
2πLh3

1

L
∑

j=1

{

exp

(

− (εj(k))2

2h2

1

)

πkj

}

∂

∂W
p̂xe (x(k − i), e(k))

=
1

2πLh4

2

L
∑

j=1

{

exp

(

− (ξij(k))2 + (εj(k))2

2h2

2

)

πkj

}

(28)

where πkj = (e(k) − e(k − j)) (X(k) − X(k − j)). Com-
bine (24), (25), (27) and (28), we obtain the adaptation
algorithm under MEII criterion.

5. SIMULATION RESULTS

We now perform Monte-Carlo simulations for system iden-
tification to demonstrate the performance of the MEII

( )x k
0

W z ( )d k

( )y k
W z

( )e k
( ); ( )I X k e k

( )n k

Fig. 2. Scheme of FIR identification under the minimum
error/input information (MEII) criterion
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algorithm, in comparison with the well-known LMS algo-
rithm. Consider the system identification scheme of Fig.
2, in which the transfer functions of the plant and the
adaptive filter are both represented in the FIR form by
W (z) =

∑m

i=1 w(i)z−i+1 . Let m = 5, and the parameter

vector of plant be W0 = [0.1, 0.3, 0.5, 0.3, 0.1]
T
. The input

signal x(k) is chosen as unity-power white Gaussian noise
(WGN), and the initial parameters of the adaptive filter
are set to be zero. Further, the Gaussian kernels are used,
and the kernel sizes h1 and h2 are kept fixed at 0.5 and 1.0,
respectively. For the disturbance noise n(k), we consider
two cases, one for which n(k) is of uniform distribution
(n(k) ∼ U [−2, 2]) and the other for which n(k) is of
exponent distribution (n(k) ∼ exp(1)). For each case,
100 Monte-Carlo simulations were run and the results
averaged.

The average convergence curves of MEII algorithm and
LMS algorithm for each case are shown in Fig. 3 and
Fig. 4, respectively. In the experiments, the step-sizes are
chosen so that the initial convergence rates of the two
algorithms were visually identical. From Fig. 3, the MEII
algorithm achieves a faster convergence speed during the
transient stage. And from Fig. 4, it is evident that, the
MEII algorithm achieves a smaller residual error. Both
simulation results confirm that, the MEII algorithm may
outperform the conventional LMS algorithm.

6. CONCLUSION

The minimum error/input information (MEII) criterion
is proposed for the optimal estimation and filtering. For
the finite-impulse response (FIR) filter, relationships be-
tween the MEII criterion and conventional MSE criterion
are studied, and a new adaptation algorithm is derived.
Simulation examples illustrate the effectiveness and the
better performances of this new algorithm. There are some
related problems that need to be studied in the future. Ex-
amples include the convergence analysis and the extension
to the infinite-impulse response (IIR) or nonlinear filtering.
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Fig. 3. Average convergence curves of MEII algorithm and
LMS algorithm (n(k) ∼ U [−2, 2])
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Fig. 4. Average convergence curves of MEII algorithm and
LMS algorithm (n(k) ∼ exp(1))
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