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Abstract: This paper introduces a new robust-control-oriented system identification method,
which consists of the following three steps: 1. High-order ARX model identification; 2. Loop
shaping weighting functions design based on the high-order ARX model; 3. Control-oriented
model reduction by minimizing the weighted L2-gap between the high-order ARX model and
the low-order model. This method truly integrates the control objective into the identification
step. A robust controller can be readily designed as a result of the identification. Simulation
examples are given to show that smaller weighted ν-gap can be achieved by using the proposed
method.

1. INTRODUCTION

A typical goal of system identification is to obtain a model
Gid, from the testing data u and y, based on which an
advanced model-based controller can be designed for the
true plant G0. Over the past two decades, the robust
control theory has established practical design methods for
this purpose, see McFarlane and Glover (1990); Zhou and
Doyle (1998). Invariably, these methods use the nominal
model Gid as well as some model uncertainty information
∆G for robust controller design.

Traditional way of describing model uncertainty is by us-
ing additive and multiplicative model uncertainty bounds,
or parametric uncertainty regions. On the other hand, a
different and more general model uncertainty is the co-
prime factor uncertainty, see Vidyasagar (1985); Georgiou
(1988), which turns out to be appropriate for controller
design, see McFarlane and Glover (1990), and optimal for
continuity of loop properties, see Vinnicombe (2001). A
method to estimate coprime uncertainty factors directly
from experimental data was proposed in Tsakalis et al.
(2002), based on the uncertainty model unfalsification
philosophy in Kosut (1995). Worst case ν-gap between
the nominal model and the parametric PEM uncertainty
region is estimated in Bombois et al. (2001); Gevers et al.
(2003). In Date and Vinnicombe (2004), an algorithm is
proposed to minimize the ν-gap between the identified
model and the true system, assuming frequency testing
data is available.

For most of the existing identification methods, the model
uncertainty is only estimated after the nominal model
is obtained. In Zhan and Tsakalis (2007), we proposed
a system identification method aiming to minimize the
weighted NCF model uncertainty directly. The control
performance requirements were explicitly considered at the
identification step with the use of the weighting functions.
Motivated by these results, in this paper we consider an
alternative robust-control-oriented system identification

procedure to address issues that were unresolved in Zhan
and Tsakalis (2007). These issues concerned the selection
of the weighting functions and the contamination of the
data by relatively large exogenous stochastic disturbances.
To alleviate the problems caused by such disturbances,
we use an intermediate high-order-ARX identification step
(as in Zhu and Backx (1993)) and then perform a model
order reduction to minimize the NCF uncertainty, using
the techniques of Zhan and Tsakalis (2007). Only single
input single output (SISO) systems are considered in this
paper.

The rest of the paper is organized as follows: The system
identification for robust control problem is reviewed in Sec-
tion 2. The proposed identification procedure is described
in Section 3. Simulation examples are given in Section 4.

2. SYSTEM IDENTIFICATION FOR ROBUST
CONTROL

The uncertainty description arising in coprime factor mod-
els has been proven to be a convenient way of describing
the model uncertainty for robust controller design. For a
system in a left coprime factorization (CF), the uncer-
tainty G∆ has the following expression:

G∆ = (M + ∆M )−1(N + ∆N ) (1)

where G = M−1N is the nominal model, (N, M) is the
left coprime factorization of G, and (∆N ,∆M ) is the
coprime factor uncertainty. The controller K stabilizes
the uncertainty system G∆ provided that K stabilizes the
nominal system G and:

∥

∥

∥

∥

[

K(I − GK)−1M−1

(I − GK)−1M−1

]
∥

∥

∥

∥

∞

‖ [∆N ∆M ] ‖∞ ≤ 1 (2)

Normalized coprime factorizations (NCF) of the model
have been particularly useful in robust controller design.
Assuming (N,M) is an NCF of the nominal system G
and (∆N ,∆M ) is the corresponding NCF uncertainty,
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an optimal controller K can be calculated directly to
maximize the stability margin:

ǫmax =

(

inf
K

∥

∥

∥

∥

[

K(I − GK)−1M−1

(I − GK)−1M−1

]
∥

∥

∥

∥

∞

)−1

(3)

With optimal controller, maximum NCF uncertainty can
be tolerated.

The loop shaping optimal controller design method intro-
duced in McFarlane and Glover (1990) has been shown to
be both a simple and powerful approach to incorporate
frequency weighted performance objectives in the NCF
controller design. It consists of three steps. First a pre-
weighting function W1 and a post-weighting function W2

are used to shape the nominal plant so that the open
loop shape Gs = W2GW1 meets the control performance
objectives. Then the optimal controller Ks is calculated for
the shaped plant Gs. The final controller K is calculated
as W1KsW2 for the original plant.

After introducing the weights, the weighted NCF uncer-
tainty system becomes:

G∆s = W2G∆W1 = (Ms + ∆Ms
)−1(Ns + ∆Ns

) (4)

The relationships between the weighted NCF uncer-
tainty (∆Ns

, ∆Ms
) and the unweighted CF uncertainty

(∆N ,∆M ) are: (Zhan and Tsakalis (2007))

∆Ns
= MsW2M

−1∆NW1

∆Ms
= MsW2M

−1∆MW−1
2 (5)

It is apparent that weighted NCF uncertainty ‖[∆Ns
∆Ms

]‖∞
determines how much robust stability margin the con-
troller must have to guarantee in addition to nominal per-
formance. Using a model unfalsification philosophy (e.g.,
Kosut (1995)), a system identification method was formu-
lated in Zhan and Tsakalis (2007) by directly minimizing
the NCF uncertainty of the weighted system, under the
constraint that the model and the model uncertainty can
fully explain the experiment data:

min
θ

‖[ ∆Ns
∆Ms ]‖∞ (6)

s.t. : M(θ)y − N(θ)u = ∆Nu − ∆My

where θ is the vector of unknown model parameters to
be identified. The difference from the traditional system
identification methods like PEM is in shifting the focus
from minimizing an open loop prediction error to maxi-
mizing the predictability of closed loop behavior. For this
formulation, the unfalsification framework is necessary (in
some form) because there is never a guarantee that the
data contain information about the worst-case uncertainty.
The key concept here is to recognize that the first term of
the stability condition (2), or its weighted versions, can be
made all-pass by the optimal controller. It is then up to the
identification to minimize the uncertainty, as uniformly as
possible in the frequency domain. If the product is larger
than unity, the model is inadequate to ensure that the
control objective is met. (In the unfalsification framework,
this means that there exists a system that fits the data and
yields an unstable closed loop.) Of course, the potential
remedies for this problem are to improve the model and/or
change the control objectives. If feasible, the former is

achieved by an increase in the number of parameters so
as to reduce the error spectral peaks. The latter involves
a change of the weighting functions to reduce the norm of
the closed loop sensitivities.

A detailed algorithm to solve (6) using an iterative LMI
optimization procedure is presented in Zhan and Tsakalis
(2007), using a bank of band-pass filters to approximate
‖[∆Ns

∆Ms
]‖∞ from time-domain data. In the absence of

exogenous disturbances in the data, it was shown that,
by solving (6), the identified model G has the minimum
weighted L2-gap to true system G0 among all the models in
the specified model structure S. So identification problem
(6) is equivalent to:

min
G∈S

δL2(W2GW1,W2G0W1) (7)

with the L2-gap of two plants G1, G2 being defined as
(e.g., see Vinnicombe (2001)):

δL2(G1, G2) = ‖M̃2(G1 − G2)M1‖∞ (8)

where (Ñ , M̃), (N,M) denote the normalized left coprime
factorization (NLCF) and the normalized right coprime
factorization (NRCF) respectively. For the SISO case
considered in this paper, there is no difference between
the two and we simply use (N,M) to represent both. The
L2-gap is closely related to the ν-gap as:

δν(G1, G2) =

{

δL2
(G1, G2) W (G1, G2) = 0

1 otherwise
(9)

where W (G1, G2) = 0 is the winding number (wno) con-
dition. Detailed discussions of L2-gap, ν-gap, and winding
number can be referred to Vinnicombe (2001).

Define closed loop transfer function H(G,K) as:

H(G,K) =

[

K
I

]

(I − GK)−1 [I −G] (10)

Apply controller K to two systems G1 and G2, the differ-
ence in the closed loop transfer function is bounded by,
(see Vinnicombe (2001)):

δν(G1, G2) ≤ ‖H(G1,K) − H(G2,K)‖∞ ≤
δν(G1, G2)

bG1,K sinφ
(11)

where φ = arcsin bG1,K − arcsin δν(G1, G2). Assuming
the wno condition is satisfied, smaller δL2

(G1, G2) means
smaller closed loop distance between models and thus more
consistent and predictable closed loop behavior.

3. ROBUST SYSTEM IDENTIFICATION THROUGH
HIGH-ORDER MODEL REDUCTION

A key issue in the application of the procedure of Zhan
and Tsakalis (2007) in practical problems is its difficulty
in handling exogenous disturbances. For example, in the
presence of additive disturbance d, the model G identified
from (6) minimizes the following (assuming the weighting
functions are equal to identity for simplicity, see Zhan and
Tsakalis (2007)):

min
G∈S

max
ω

|M(jw)|2(|G0(jw) − G(jw)|2 + Φd(w)
Φu(w) )

1
|M0(jw)|2 + Φd(w)

Φu(w)

(12)
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where Φd and Φu are the power spectrum of the distur-
bance d and the input signal u, respectively. It is clear
that the identification is biased in the existence of additive
disturbance and the perturbation Φd(w)

Φu(w) is not attenuated

with increasing number of experiment data. The solution
of (12) will approach the solution of (7) only when Φd

Φu
goes

to zero.

In the sequel, we present an approach to alleviate this
problem by using high-order ARX identification to reduce
the size of the effective Φd. In addition to this, a lesser issue
is the assumed knowledge of the performance weighting
functions, which often requires a preliminary model. The
automated design of weighting function is important to
make the identification truly control-oriented.

To address these issues, the following robust-control-
oriented system identification procedure is proposed:

(1) Identify a high-order ARX model Gh from the input
and output data.

(2) Design the weighting functions W1,W2 based on Gh.
(3) Identify a low-order model G through robust-control-

oriented high-order model reduction.

It goes without saying that the feasibility of the controller
design problem may introduce the need to iterate some of
these steps.

3.1 High-order ARX identification

The most appealing property of the ARX model structure
is simplicity. However, the low-order ARX is known to be
a biased model structure, generally leading to inconsistent
model results. On the other hand, ARX models are capable
of representing any linear system arbitrarily well, provided
that the model order is high enough, see Ljung (1987); Zhu
and Backx (1993).

Since the high-order ARX model is effectively an unbiased
model structure, its model error only comes from variance.
The asymptotic variance of the high-order model Gh is
given in Ljung (1985):

var(Gh(jw)) ≈
n

N

Φd(w)

Φu(w)
(13)

where n is the model order, N is the length of the
experiment data. Based on this expression, Zhu and Backx
(1993) define a 3σ upper bound for the error of Gh:

|Gh(jw) − G0(jw)| ≤ 3

√

n

N

Φd(w)

Φu(w)
w.p. ≥ 99% (14)

While this approach can yield a system identification
procedure in L2, our interest in it is in the ability to
discriminate between exogenous (stochastic) disturbances
and unmodeled dynamics.

3.2 Weighting Functions Design

The general guidelines of choosing the weighting functions
can be referred to Vinnicombe (2001). In this paper, the
weighting functions are to be designed based on Gh to
meet the following requirements:

• Performance requirement: The gain of the weighted
plant W2GhW1 should be large at frequencies where
significant noise attenuation is required.

• Robustness requirement: δL2
(W2GhW1,W2G0W1) is

sufficiently small.

Since the weighted high-order model Ghs = W2GhW1

can be readily calculated, a check of the performance re-
quirement is straightforward. For robustness requirement,
notice that

δL2(Ghs, G0s) = ‖MhsW2(Gh − G0)W1M0s‖∞ (15)

where (Nhs,Mhs) is the NCF of Ghs and (N0s, M0s) is
the NCF of G0s. Without knowing the true system, (15)
can only be evaluated approximately. It is noted that the
asymptotic result (14) can be used to get an upper bound
of |Gh − G0|.

The remaining problem is to estimate M0s, for which we
have

M∗
0sM0s = (I + G0sG

∗
0s)

−1 (16)

We then have the following power spectrum relationship
of the weighted system G0s:

Φys(w) = |G0s(jw)|2Φus(w) + Φds(w) (17)

From (16) and (17), it follows that |M0s(jw)| can be

simply estimated as
√

Φus(w)
Φus(w)+Φys(w) . Assuming the signal

to noise ratio is large, the error in this estimate will be
small.

The design of weighting functions is itself a topic that
attracts a lot of research activity, and it can involve
very complicated algorithms. In the paper, we assume
the basic format of the weighing functions is known with
a few tunable parameters. The appropriate value of the
parameters can be determined by validating through the
performance and robustness requirements as discussed. In
the example in Section 4, we simply use W = wc/s as the
weighting function, with wc being a tunable parameter
affecting the closed-loop bandwidth. The objective of the
weighting function design is to find the desired bandwidth
that the controller can push to with sufficient robust
stability margin.

3.3 High-order model reduction

The standard weighted l2-norm model reduction problem
is posed as:

min
G∈S

π
∫

−π

|[G(jw) − Gh(jw)]W (ω)|2dω (18)

Essentially, (18) tries to find a low-order model G by
minimizing the frequency-weighted open-loop distance be-
tween G and Gh. However, systems with similar open-
loop behavior in l2 sense, may have very different closed-
loop behavior. In the proposed method, G is obtained by
minimizing the weighted L2-gap to the high-order model:

min
G∈S

δL2
(W2GhW1, W2GW1) (19)

While the ν-gap is a more rigorous choice for model order
reduction (19), to keep the problem tractable the wno
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condition is not enforced for the high-order model iden-
tification (Gh). There is no additional benefit to enforce
it between W2GhW1 and W2GW1 in the model reduction
step.

No results have been reported on the analytical solution of
(19). Based on Hankel norm model reduction, upper and
lower bound of the ν-gap model approximation is given
in Vinnicombe (2001). A numerical approach is taken to
solve (19) in this paper. A white noise input sequence uh

is generated, the high-order model output yh is simulated
using Gh and uh. A low-order model is identified with the
regenerated data uh, yh and weighting functions W1,W2,
by solving (6), using the procedure developed in Zhan and
Tsakalis (2007). Since there is no additive disturbance in
the regenerated data, the identification procedure will find
a low-order model that minimizes (19).

3.4 Error Analysis

The model G is identified by minimizing δL2
(Gs, Ghs)

in the model reduction step. What we really would like
to minimize is δL2

(Gs, G0s). Since Gh approaches G0

asymptotically, it is obvious that G from (19) is an
unbiased estimate of the true optimal solution (7). A
bound on the additional error incurred due to the use of
the high-order ARX step is obtained by using (14)

|δL2
(Gs, G0s) − δL2

(Gs, Ghs)| ≤ δL2
(Ghs, G0s)

≤ 3

√

n

N

∥

∥

∥

∥

∥

MhsW2

√

Φd(w)

Φu(w)
W1M0s

∥

∥

∥

∥

∥

∞

w.p. ≥ 99%(20)

From (20), it is expected that |δL2
(Gs, G0s)−δL2

(Gs, Ghs)|
approaches zero with the experiment data length N in the

rate of
√

1
N

. It should also be noted that the weighting

functions are explicitly chosen to make the estimated
δL2

(Ghs, G0s) small, as stated in Section 3.2. This analysis
indicates that for high enough order, the δL2

distance
between low and high order estimates is approximately the
same as the distance between low order and true system.
The advantage over a single-step estimation of the low-
order system is that these estimates are unbiased.

4. SIMULATION RESULTS

Let us consider the following system to be identified:

G0(s) =
0.0001 · (0.001875s6 − 0.002946s5 + 0.01265s4

s7 + 3.47s6 + 4.044s5 + 1.8895s4

−0.03552s3 + 0.03498s2 − 0.2259s + 0.7685)

0.4251s3 + 0.0496s2 + 0.0029s + 0.0000677
The step response and bode plot of G0(s) are shown in
Fig. 3. The system identification objective is to identify a
2nd-order model, based on which, a robust controller is ob-
tained using the loop shaping controller design procedure
in McFarlane and Glover (1990).

Denoting our method as robust control identification
method (RCID), the results are compared to other stan-
dard methods: output error (OE), box-jenkins (BJ), and
asymptotic method (ASYM). OE and BJ are PEM meth-
ods that use the output error model structure and Box-
Jenkins model structure respectively, see Ljung (1987).
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Clean output signal yc
Output disturbance signal yd

Input signal u
Disturbance signal d

Fig. 1. Input and output signal. Upper figure: solid,input
signal u; dashed, unknown disturbance d. Lower fig-
ure: solid, clean output signal y; dashed, output dis-
turbance Gdd.

The ASYM method can be referred to (Zhu and Backx
(1993)).

4.1 Simulation Setup

The generalized binary noise (GBN) (Tulleken (1990)) is
used as the input testing signal u to the process, with a
switching time of 10 seconds and the probability of switch
0.2. A disturbance is added to the output as:

y = G0(s)u + Gd(s)d (21)

where Gd(s) = 50
1000s+1 . The energy of random disturbance

d is bounded by WI(jω) = 10jω+0.2
5jω+1 to the input signal u:

|d(ω)| ≤ |WI(jw)||u(ω)|. A total of 1000 experiment data
points are collected with the sampling rate 1 sample per
second. An example of the input signal u and disturbance
signal d, the corresponding clean output signal yc =
G0(s)u and output disturbance signal yd = Gd(s)d are
shown in Fig. 1.

4.2 Model Identification Example

We identify a 30th-order ARX model in the first step. The
step response and bode plot are included in the subsequent
model responses for comparison (Fig. 3).

In a typical application, a feasible estimate of the desired
closed-loop bandwidth is known a priori. Following the
optimal loop shaping controller design approach, the initial
weighting functions W1 and W2 are designed to shape Gh

so that the control performance requirements can be met.
For example, suppose the bandwidth requirement is that
ωB > 0.03 and the simple weighting function W = wc/s
is used. We need to find the ωc so that the gain crossover
frequency of WGh satisfies the bandwidth requirement.
The bode plots of WGh with W = 0.2/s, 0.1/s, 0.05/s
are shown in Fig. 2(a), from which wc ≥ 0.05 satisfies the
performance requirement. For the robustness requirement,
the weighted NCF uncertainty is estimated with W and Gh

using the approach described in Section 3.2. The estimated
weighted NCF uncertainty of Gh with wc = 0.2, 0.1, 0.05
are plotted in Fig. 2(b). In this case, wc = 0.1 can
be comfortably chosen since it gives a smaller estimated
uncertainty.

It should be pointed out that increasing the order of the
weighting function provides a possible avenue to maxi-
mize bandwidth but it should be treated as a last resort
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Fig. 2. Comparison of weighting functions. dotted: no
weighting; solid: W = 0.05/s; thick solid: W = 0.1/s;
dashed: W = 0.2/s.

and only for cases where long data records are available,
because the exact shape of the uncertainty estimates is
data dependent. Furthermore, uncertainty constraints may
enter both in terms of a maximum and a minimum band-
width. Intuitively, increasing the loop gain will be con-
strained by the ever-present high frequency uncertainty.
Its low frequency counterpart is observed in unstable or
marginally stable systems (integrators) where the low fre-
quency information is uncertain and a minimum controller
bandwidth is required to achieve the stabilization of the
nominal system.

Next, the model reduction problem (19) is solved to get
a 2nd-order model, denoted as Grcid. As a comparison,
models are also identified using OE and ASYM meth-
ods, denoted as Goe and Gasym, respectively. The step
responses and bode plots of all the identified models are
shown in Fig. 3.

For these low order model candidates, it is instructive to
observe how the modeling error is addressed using our
knowledge of the actual system. Looking at the output
disturbance first, the norm of the actual disturbance
signal is 6.7439. The open loop prediction error residue
is calculated as e = y−Gidu. The norms of the prediction
error residue of the identified models are: norm(ercid) =
8.4497, norm(eoe) = 7.0228, norm(easym) = 8.5853.
Obviously, the output error method gives the smallest
output prediction error, which is precisely the optimization
objective of this method.

On the other hand, the actual ν-gap can also be calcu-
lated between the weighted identified model and weighted
real system. The results are: δν(WG0,WGrcid) = 0.0999,
δν(WG0,WGoe) = 0.14, and δν(WG0,WGasym) =
0.3089. Here, the RCID method yields the smallest
weighted ν-gap of all the three methods for this example. It
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(a) Step responses of identified models
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(b) Bode plots of identified models

Fig. 3. Comparison of model responses. solid: true system;
thick solid: RCID, dashed: ASYM; o: OE; +: high
order model.

is also interesting to see that although the prediction error
norms of the Grcid and Gasym are similar, Grcid gives a
significantly smaller weighted ν-gap to the true system.

The significance of the ν-gap results becomes apparent
when the closed-loop responses are considered. We design
a loop shaping optimal controller in (3) for each low-order
model with the weighting W = 0.1/s. We denote the
controllers as: Koe, Krcid, and Kasym, corresponding to
the identified models Goe, Grcid, and Gasym. An “ideal”
controller is also calculated based on the true system
and the weighting, denoted as K0, and the corresponding
closed loop system is referred to as the “ideal” closed-loop
system. All the designed controllers are first applied to
the corresponding identified nominal models. The setpoint
tracking responses of the different nominal closed-loop
systems are shown in Fig. 4(a). Notice that all nominal
systems exhibit similar behavior since they are designed
for the same loop shaping weight, with the small variations
being due to the model differences.

The remaining question now is how close these responses
will be to the true system. That is, we now use each
controller to compute the closed-loop response with the
original (true) system G0(s). The setpoint tracking of
the different closed-loop systems is shown in Fig. 4(b).
Comparing to Fig. 4(a), we notice that the controller
Krcid gives the most consistent performance when applied
to G0. The advantage of the proposed approach to do
identification by minimizing the weighted coprime factor
uncertainty, is best illustrated by this comparison. The
closed-loop systems with controller Krcid matches the ideal
closed-loop system very well, while there are significant
deviations for the systems with controllers Koe and Kasym.
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Table 1. Monte carlo simulation results

Method δν(WGid, WG0) ǫmax − δν

Mean Std Mean Std

RCID 0.1129 0.02536 0.2107 0.02977

ASYM 0.2161 0.03502 0.1188 0.04112

BJ 0.2334 0.06915 0.1146 0.06409

OE 0.1522 0.05657 0.1588 0.05722

4.3 Monte Carlo Simulation Results

We run 100 simulations with different realizations of out-
put disturbances. In each simulation, the excitation input
signal u and disturbance signal d are generated randomly
as described in Section 4.1. The weighting function is fixed
as W (s) = 0.1/s and 2nd-order models are identified by
using the four methods: OE, ASYM, BJ, and the proposed
RCID. In the BJ method, a 4th-order noise model struc-
ture is used so that it has enough flexibility to model the
noise.

The ν-gap between the weighted identified low-order
model (denoted by Gid) and weighted true process model
is calculated for each simulation. The adjusted stabil-
ity margin, defined as ǫmax(WGid) − δν(WG0, WGid), is
also calculated. Obviously ǫmax(WGid) should be greater
than δν(WG0,WGid) to guarantee controller stability
in the presence of model mismatch. Larger values of
ǫmax(WGid) − δν(WG0,WGid) yield smaller values for φ
in (11), implying in turn smaller values for the closed-
loop deviation from the ideal case ‖H(WGid,Kopt) −
H(WG0,Kopt)‖∞. The average and standard deviation of
the weighted ν-gap and the adjusted stability margin of
all the simulations are summarized in Table 1.

Our general observation from this limited Monte Carlo
study is that the RCID method gives the smallest average
ν-gap and the biggest adjusted stability margin. The RCID

method also gives the smallest variance in both values,
indicating more consistent estimation results.

In this simulation study, 2nd-order models are identified
by different methods to approximate the true 7th-order
dynamics. It is demonstrated that the RCID method
can find the most control-relevant low-order model, with
smallest weighted ν-gap and thus most consistent closed-
loop control behavior. The advantage may be smaller when
a higher order model structure is used, assuming all the
methods can converge to their global minimum.

5. CONCLUSIONS

In this paper, we presented a new method for robust-
control-oriented system identification, based on a high-
order model reduction approach with an objective of min-
imizing weighted coprime factor uncertainty. Simulation
examples for SISO systems illustrate the application of
the method and yield very encouraging results in terms of
the closed-loop behavior.
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