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Abstract: In the present paper we obtain a closed form expression for the squared H⊥2 norm
of a partial fraction expansion with repeated unstable poles. We also obtain a closed form
expression for the squared H2 norm of a partial fraction expansion with repeated stable poles.
As an application we use the H⊥2 result to extend the closed form solution of the discrete-
time linear time invariant (LTI) signal-to-noise ratio (SNR) constrained problem to the case of
repeated unstable poles in the plant model.

1. INTRODUCTION

Stabilisability in the area of Control over Networks has
been a growing topic of increased interest in recent years;
see for example Antsaklis et al. [2004], Nair et al. [2007]
and references therein. The most general results in the
area call for information theoretic arguments to obtain
necessary and sufficient lower bounds on the channel trans-
mission data rate [Nair and Evans, 2004, Nair et al., 2004,
Freudenberg et al., 2006, Nair et al., 2007, Charalambous
and Farhadi, 2007]. For linear plant models in [Nair and
Evans, 2004, Theorem 2.1] and [Freudenberg et al., 2006,
Proposition III.1] it is proved that if the unstable plant
is to be stabilised, then the transmission data rate has
to satisfy a lower bound that depends on the open loop
unstable eigenvalues of the plant. The result is extended
to nonlinear plant models in [Nair et al., 2004, Theorem
1].
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Fig. 1. General problem setting.

Another line of research introduced a framework to study
stabilisability of a feedback loop over channels that have
a signal to noise ratio (SNR) constraint [Braslavsky et al.,
2007, Rojas et al., 2006a,b], and work in Bassam and Voul-
garis [2005], Rantzer [2006]. A distinctive characteristic
of the SNR approach is that it is a linear formulation.
Braslavsky et al. [2007] obtained the infimal SNR required
to stabilise an unstable linear time invariant (LTI) plant
over a memoryless additive white Gaussian noise (AWGN)
channel, whilst in Rojas et al. [2006a,b] the infimal SNR

is computed for additive coloured Gaussian noise (ACGN)
channels with memory, see Figure 2.

In Rojas et al. [2006a] the authors make use of a Youla
parameterisation of all-stabilising LTI controllers to obtain
a closed form solution for the infimal SNR (that is, the
solution depends explicitly on the unstable plant poles,
NMP zeros, relative degree and channel model). On the
other hand, the result in Rojas et al. [2006b] make use
of a linear quadratic Gaussian (LQG) optimisation to
solve the discrete-time LTI SNR constrained problem in
a non-closed form (that is, the solution is characterised
by two Riccati equations). When discussing stabilisability,
the advantage of the solution in Rojas et al. [2006b] over
the solution in Rojas et al. [2006a] is that it can deal
with repeated poles in the plant model, the disadvantage
is that in doing so we do not obtain a closed form solution
anymore.

In the present paper we address the current limitation of
the closed form solution for the discrete-time LTI SNR
constrained problem as presented in Rojas et al. [2006a].
To do so we start by presenting a closed form expression
for the squared H⊥2 norm of a partial fraction expansion
that contains repeated unstable poles. For completeness,
we also obtain an expression for the squared H2 norm of a
partial fraction expansion with repeated stable poles. We
then apply the H⊥2 result to the discrete-time LTI SNR
constrained problem lifting the single pole assumption
originally considered in Rojas et al. [2006a].

The present paper is organised as follow: in Section 2
we present the main H⊥2 norm technical result and the
H2 counterpart. In Section 3 we apply the H⊥2 result
developed in the previous section to extend the closed form
discrete-time LTI SNR constrained solution developed in
Rojas et al. [2006a] to the case of repeated poles. Finally,
in Section 4 we give our conclusions and final remarks for
the present work.
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Fig. 2. LTI discrete-time control system with feedback over

an additive coloured Gaussian noise (ACGN) channel
with memory.

Terminology: let C denote the complex plane. Let D−,
D̄−, D+ and D̄+ denote respectively the open unit-disk,
closed unit-disk, open and closed unit disk complements
in the complex plane C, with ∂D the unit-disk itself. Let
R denote the set of real numbers, R+ the set of positive real
numbers, R+

o the set of non-negative real numbers and R−
the set of real negative numbers. Let Z+ denote the set of
positive integers. A discrete-time signal is denoted by x(k),
k = 0, 1, 2, · · · , and its Z-transform by X(z), z ∈ C. The
expectation operator is denoted by E . A rational transfer
function of a discrete-time system is minimum phase if
all its zeros lie in D̄−, and is non minimum phase if it
has zeros in D+. Given P (z), the transfer function of a
discrete-time system, we say that P (z) ∈ L2 if P (z) is
proper and bounded in C; P (z) ∈ H2 if P (z) is proper,
bounded in D− and stable (i.e, all its poles lie in D−) and
P (z) ∈ H⊥2 if P (z) is proper, bounded in D+ and unstable
(i.e, all its poles lie in D+). The L2 norm of P (z), denoted
by ‖P‖L2 , is given by ‖P‖2L2

= (1/2π)
∫ π
−π |P (ejθ)|2dθ,

where j =
√
−1. Since H2 and H⊥2 are subspaces of L2 we

have that, when appropriate, the ‖P‖H2 and the ‖P‖H⊥2
have the same definition as the ‖P‖L2 . The H∞ norm of
P (z) is given by ‖P‖H∞ = supθ∈[−π,π]

∣∣P (ej θ)
∣∣. If a is in

C, ā represents its complex conjugate and aH = āT the
hermitian (i.e. the transposed complex conjugate of a).
By general convention we have 0! = 1 and d0(f(z))/dz0 =
f(z). LHS and RHS denote respectively the left and right
hand side of an equation.

2. TECHNICAL RESULT

In the present section we develop a technical result that
express in closed form the squared H⊥2 norm of a par-
tial fraction expansion with repeated unstable poles. We
introduce first a fairly simple proposition for a partial
fraction expansion characterised by one pole with arbitrary
multiplicity.
Proposition 1. Consider zi ∈ D−, ni ∈ Z+ and f(z) a
transfer function such that f(zi) 6= ∞. Then a partial
fraction expansion of f(z)/(z − zi)ni is given by

f(z)
(z−zi)

ni
=

ri,1
(z−zi)

+···+
ri,ni

(z−zi)
ni
, (1)

where
ri,l=

1
(ni−l)!

dni−l

dzni−l
(f(z))|z=zi , (2)

are the residues.

Proof. The above proposition can be found for example
in [Oppenheim and Schafer, 1975, pp. 56–57]. The proof is
based on a repeated use of a L’Hôpital’s argument. 2

We address now the main technical result in the present
section which refers to obtain a closed form expression
for the squared H⊥2 norm of a partial fraction expansion
expression.
Theorem 2. Assume ρi ∈ D+ to be unstable poles each
with multiplicity ni ∈ Z+, for i = 1, · · · ,m. Assume also
that each related residue ri,l ∈ C, for i = 1, · · · ,m and
l = 1, · · · , ni is known. Then∥∥∥∑m

i=1

∑ni

l=1

ri,l

(z−ρi)
l

∥∥∥2

H⊥
2

=∑m

i=1

∑ni

l=1

ri,l
(l−1)!

dl−1

dzl−1

(∑m

j=1

∑nj

p=1

r̄j,p(−z)p−1

(zρ̄j−1)p

)∣∣∣
z=ρi

, (3)

is the closed form expression for the squared H⊥2 norm of
the partial fraction expansion

∑m
i=1

∑ni
l=1

ri,l
(z−ρi)l

.

Proof. Start from the LHS of (3)∥∥∥∑m

i=1

∑ni

l=1

ri,l

(z−ρi)
l

∥∥∥2

H⊥
2

=

1
2π

∫ π
−π

(∑m

i=1

∑ni

l=1

ri,l

(ejθ−ρi)
l

)H(∑m

i=1

∑ni

l=1

ri,l

(ejθ−ρi)
l

)
dθ=

1
2π

∫ π
−π

(∑m

i=1

∑ni

l=1

r̄i,l

(e−jθ−ρ̄i)
l

)(∑m

i=1

∑ni

l=1

ri,l

(ejθ−ρi)
l

)
dθ=

− 1
2πj

∮
∂D

(∑m

i=1

∑ni

l=1

r̄i,lz
l

(1−zρ̄i)
l

)(∑m

i=1

∑ni

l=1

ri,l

(z−ρi)
l

)
dz
z =

1
2πj

∮
∂D

(∑m

i=1

∑ni

l=1

r̄i,l(−z)
l−1

(zρ̄i−1)l

)(∑m

i=1

∑ni

l=1

ri,l

(z−ρi)
l

)
dz.

The minus sign in the contour integral is due to the
fact that in order to enclose the complement of the unit
disk to obtain the H⊥2 norm, we have to maintain such
region to the left throughout our contour evaluation by
means of a clockwise motion. This in term implies that the
original integral between −π and π needs to be evaluated
between π and −π, that is

∫ π
−π(·) = −

∫ −π
π

(·) and thus the
introduction of a minus sign. For a better understanding
consider expanding the notation in the last line of the
equation above into∥∥∥∑m

i=1

∑ni

l=1

ri,l

(z−ρi)
l

∥∥∥2

H⊥
2

=

1
2πj

∮
∂D

r̄1,1
zρ̄1−1

r1,1
z−ρ1

dz+···+ 1
2πj

∮
∂D

r̄1,n1 (−z)n1−1

(zρ̄1−1)n1

r1,n1
(z−ρ1)n1 dz+

···

1
2πj

∮
∂D

r̄m,1
zρ̄m−1

rm,1
z−ρm dz+···+ 1

2πj

∮
∂D

r̄m,nm (−z)nm−1

(zρ̄m−1)nm
rm,nm

(z−ρm)nm dz.

By application of the Residue Theorem (see for example
[Churchill and Brown, 1990, pp. 169–172]) and Proposi-
tion 1 (notice that Proposition 1 is also valid if zi ∈ D− is
replaced by ρi ∈ D+) on each contour integral we have∥∥∥∑m

i=1

∑ni

l=1

ri,l

(z−ρi)
l

∥∥∥2

H⊥
2

=

r1,1r̄1,1
ρ1ρ̄1−1 +···+

r1,n1
(n1−1)!

dn1−1

dzn1−1

(
r̄1,n1 (−z)n1−1

(zρ̄1−1)n1

)∣∣∣
z=ρ1

+

···

rm,1r̄m,1
ρmρ̄m−1 +···+ rm,nm

(nm−1)!
dnm−1

dznm−1

(
r̄m,nm (−z)nm−1

(zρ̄m−1)nm

)∣∣∣
z=ρm

,

which can be seen to be the c−1 coefficients of each
integrand Laurent series expansion (see for example [Seron
et al., 1997, pp. 315-316]). We finish by introducing a
compact notation
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∥∥∥∑m

i=1

∑ni

l=1

ri,l

(z−ρi)
l

∥∥∥2

H⊥
2

=∑m

i=1

∑ni

l=1

ri,l
(l−1)!

dl−1

dzl−1

(∑m

j=1

∑nj

p=1

r̄j,p(−z)p−1

(zρ̄j−1)p

)∣∣∣
z=ρi

,

concluding the proof. 2

Example 3. In the present example we make use of the
result from Theorem 2 to obtain the closed form expression
for the squared H⊥2 norm when we have a pole ρ1 with
double multiplicity∥∥∥ r1

z−ρ1
+

r2
(z−ρ1)2

∥∥∥2

H⊥
2

=

r1

(
r̄1

ρ1ρ̄1−1 +
−r̄2ρ1

(ρ1ρ̄1−1)2

)
+
r2
1!

d
dz

(
r̄1

zρ̄1−1 +
−r̄2z

(zρ̄1−1)2

)∣∣∣
z=ρ1

=

r1r̄1
ρ1ρ̄1−1−

r1r̄2ρ1
(ρ1ρ̄1−1)2

− r̄1r2ρ̄1
(ρ1ρ̄1−1)2

+
r̄2r2(ρ1ρ̄1+1)

(ρ1ρ̄1−1)3
,

where we have considered here r1 = r1,1 and r2 = r1,2 to
simplify the notation.
Remark 4. If ρi ∈ R and ri,l ∈ R for all i and l, the squared
H⊥2 result of Theorem 2 can be equivalently expressed
in terms of a squared H2 norm. If we consider a generic
transfer function Ψ(z) with real coefficients to be in H⊥2 ,
it is well known that ‖Ψ(z)‖2

H⊥2
= ‖Ψ(z−1)‖2H2

(see for
example [Zhou et al., 1996, p. 114] for the continuous-time
counterpart of this argument). If we define now Ψ(z) to
be the partial fraction expansion in H⊥2 from Theorem 2,
then∥∥∥∑m

i=1

∑ni

l=1

ri,l

(z−ρi)
l

∥∥∥2

H⊥
2

=

∥∥∥∑m

i=1

∑ni

l=1

ri,lz
l

(1−ρiz)
l

∥∥∥2

H2

(4)

Notice, however, the squared H2 expression in (4) does not
represent a partial fraction expansion.

The result in Theorem 2 provides a closed form expression
for the squared H⊥2 norm of a partial fraction expansion
with repeated unstable poles. In a similar way, a closed
form expression can be obtained for a partial fraction
expansion that is defined in H2. Notice that such result
can not be inferred directly from Theorem 2, since Ψ(z−1)
does not represent a partial fraction expansion in H2, as
noted in Remark 4. We include the squaredH2 norm closed
form result next for completeness.
Theorem 5. Assume zi ∈ D− to be stable poles each with
multiplicity ni ∈ Z+, for i = 1, · · · ,m. Assume also
that each related residue ri,l ∈ C, for i = 1, · · · ,m and
l = 1, · · · , ni is known. Then

∥∥∥∑m

i=1

∑ni

l=1

ri,l

(z−zi)
l

∥∥∥2

H2

=∑m

i=1

∑ni

l=1

ri,l
(l−1)!

dl−1

dzl−1

(∑m

j=1

∑nj

p=1

r̄j,pz
p−1

(1−zz̄j)p

)∣∣∣
z=zi

, (5)

is the closed form expression for the squared H2 norm of
the partial fraction expansion

∑m
i=1

∑ni
l=1

ri,l
(z−zi)l

.

Proof. The proof of this theorem follows the same steps
of Theorem 2, with some minor differences. Start from the
LHS of (5)

∥∥∥∑m

i=1

∑ni

l=1

ri,l

(z−zi)
l

∥∥∥2

H2

=

1
2π

∫ π
−π

(∑m

i=1

∑ni

l=1

ri,l

(ejθ−zi)
l

)H(∑m

i=1

∑ni

l=1

ri,l

(ejθ−zi)
l

)
dθ=

1
2π

∫ π
−π

(∑m

i=1

∑ni

l=1

r̄i,l

(e−jθ−z̄i)
l

)(∑m

i=1

∑ni

l=1

ri,l

(ejθ−zi)
l

)
dθ=

1
2πj

∮
∂D

(∑m

i=1

∑ni

l=1

r̄i,lz
l

(1−zz̄i)
l

)(∑m

i=1

∑ni

l=1

ri,l

(z−zi)
l

)
dz
z =

1
2πj

∮
∂D

(∑m

i=1

∑ni

l=1

r̄i,lz
l−1

(1−zz̄i)
l

)(∑m

i=1

∑ni

l=1

ri,l

(z−zi)
l

)
dz.

For a better understanding consider expanding the nota-
tion in the last line above∥∥∥∑m

i=1

∑ni

l=1

ri,l

(z−zi)
l

∥∥∥2

H2

=

1
2πj

∮
∂D

r̄1,1
1−zz̄1

r1,1
z−z1

dz+···+ 1
2πj

∮
∂D

r̄1,n1z
n1−1

(1−zz̄1)n1

r1,n1
(z−z1)n1 dz+

···

1
2πj

∮
∂D

r̄m,1
1−zz̄m

rm,1
z−zm dz+···+ 1

2πj

∮
∂D

r̄m,nmznm−1

(1−zz̄m)nm
rm,nm

(z−zm)nm dz.

By application of the Residue Theorem (see for example
[Churchill and Brown, 1990, pp. 169–172]) and Proposi-
tion 1 on each contour integral we have∥∥∥∑m

i=1

∑ni

l=1

ri,l

(z−zi)
l

∥∥∥2

H2

=

r1,1r̄1,1
1−z1z̄1

+···+
r1,n1

(n1−1)!
dn1−1

dzn1−1

(
r̄1,n1z

n1−1

(1−zz̄1)n1

)∣∣∣
z=z1

+

···

rm,1r̄m,1
1−zmz̄m +···+ rm,nm

(nm−1)!
dnm−1

dznm−1

(
r̄m,nmznm−1

(1−zz̄m)nm

)∣∣∣
z=zm

,

which can be seen to be the c−1 coefficients of each
integrand Laurent series expansion ([pp. 315-316]Seron
et al. [1997]). We finish by introducing a compact notation∥∥∥∑m

i=1

∑ni

l=1

ri,l

(z−zi)
l

∥∥∥2

H2

=∑m

i=1

∑ni

l=1

ri,l
(l−1)!

dl−1

dzl−1

(∑m

j=1

∑nj

p=1

r̄j,pz
p−1

(1−zz̄j)p

)∣∣∣
z=zi

,

concluding the proof. 2

Example 6. In the present example we make use of the
result from Theorem 5 to obtain the closed form expression
for the squared H2 norm in the case of a pole z1 with
double multiplicity∥∥∥ r1

z−z1
+

r2
(z−z1)2

∥∥∥2

H2

=

r1

(
r̄1

1−z1z̄1
+

r̄2z1
(1−z1z̄1)2

)
+
r2
1!

d
dz

(
r̄1

1−zz̄1
+

r̄2z
(1−zz̄1)2

)∣∣∣
z=z1

=

r1r̄1
1−z1z̄1

+
r1r̄2z1

(1−z1z̄1)2
+

r̄1r2z̄1
(1−z1z̄1)2

+
r̄2r2(1+z1z̄1)

(1−z1z̄1)3
,

where we have considered r1 = r1,1 and r2 = r1,2 to
simplify the notation. Notice that the case of complex
conjugate poles is not represented by the above result,
since in that case each pole would have multiplicity one
and therefore the correct expression would be∥∥ r1

z−z1
+

r2
z−z̄1

∥∥2

H2
=

r1r̄1
1−z1z̄1

+
r1r̄2
1−z2

1
+
r̄1r2
1−z̄2

1
+

r̄2r2
1−z1z̄1

.

The previous example shows the use of Theorem 5 for the
simple case of one pole with double multiplicity. We clarify
that Theorem 2 and Theorem 5 can deal with poles in the
complex plane, not just in the real line, although in general
we focus on the case of zi ∈ R, |zi| < 1, i = 1, · · · ,m or
ρi ∈ R,|ρi| > 1 i = 1, · · · ,m.

The results in the present section are technical. In the
next section we propose their application, in particular of
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Proposition 1 and Theorem 2, to the discrete-time LTI
SNR constrained problem defined in Rojas et al. [2006a].

3. APPLICATION TO THE DISCRETE-TIME LTI
SNR CONSTRAINED PROBLEM

We start the present section by listing the general assump-
tions for the LTI filters in Figure 2:

Plant model: through the present work, if not stated
otherwise, it is assumed that the plant modelG(z) has
m unstable poles, |ρi| > 1,∀i = 1, · · · ,m, each with
multiplicity ni; q NMP zeros, |aj | > 1,∀j = 1, · · · , q
(no NMP zeros match any of the m unstable poles),
and overall relative degree ng ≥ 1.
Channel model: the channel model F (z) is a stable,
biproper transfer function with f NMP zeros, |wj | >
1,∀j = 1, · · · , f (no NMP zeros match any of the m
unstable poles).
Channel additive noise process: the channel addi-
tive noise process is labelled n(k) and it is a zero-mean
i.i.d. Gaussian white noise process with variance σ2.
Noise model: the system H(z) colouring the channel
additive white noise n(k) is assumed to be a stable,
biproper and minimum phase transfer function.

We assume that C(z) is such that the closed-loop system
is stable in the sense that, for any distribution of initial
conditions, the distribution of all signals in the loop will
converge exponentially rapidly to a stationary distribu-
tion. The channel input power, defined by ‖s‖Pow ,
limk→∞ E

{
y2(k)

}
is required to satisfy an imposed power

constraint
P>E{y2}, (6)

for some predetermined power level P, where E
{
y2
}

stands for limk→∞ E
{
y2(k)

}
and it is introduced to sim-

plify the notation. Under reasonable stationarity assump-
tions [Åström, 1970, §4.4], the power in the channel input
may be computed as

E{y2}= 1
2π

∫ π
−π
|Tyn(ejω)|2σ2dω,

where
Tyn(z)=− C(z)G(z)

1+C(z)G(z)F (z)H(z), (7)
is the transfer functions that relate y(k) with n(k). Since
the feedback control system is stable, we have

E{y2}=‖Tyn(z)‖2H2
σ2.

Thus, the power constraint (6) at the input of the channel,
translates into a SNR bound defined by the squared H2

norm of Tyn(z)
P
σ2>‖Tyn(z)‖2H2

. (8)

Remark 7. It can be seen from (7) that the biproper
assumption for F (z) and H(z) is without loss of generality.
Indeed, if the transfer function F (z) has relative degree
nf , with nf ≥ 1, then the case of F (z) strictly proper
would be equivalent to consider Fbip(z) = znfF (z) and
G̃(z) = G(z)

znf
, since the factor z−nf would not modify

the squared H2 norm of Tyn(z). Similarly, if the transfer
function H(z) has relative degree nh, with nh ≥ 1, we can
observe from equation (7) that this would be equivalent to
Hbip(z) = znhH(z), since the factor znh will not modify
the squared H2 norm of Tyn(z).

From (8) we observe that a fundamental limitation in the
SNR of the ACGN channel will be given by the infimum
of ‖Tyn(z)‖2H2

, which indeed is at the core of the infimal
SNR problem definition that follows.
Problem 8. (Infimal SNR for LTI Stabilisability
Problem). Find a proper rational stabilising LTI con-
troller C(z) such that the feedback control loop is stable and
the transfer function in (7) achieves the infimum possible
constraint (8) imposed on the admissible channel SNR.

The problem stated here of characterising a lower bound
for the SNR required for stabilisability of a discrete-time
LTI output feedback, as in Figure 2, has been previously
addressed in Rojas et al. [2006a] for ni = 1, ∀i = 1, · · · ,m.
In the present paper by means of the technical result from
the previous section we consider the more general case of
ni 6= 1 for some i, i = 1, · · · ,m.

Denote the Blaschke product containing the unstable poles
of G(z) (that is the poles in D+) by

Bρ(z)=
∏m

i=1

(
z−ρi
1−zρ̄i

)ni
. (9)

The use of such a definition for the Blaschke product when
dealing with unstable poles with multiplicity greater than
one can also be found, for example, in [Toker et al., 2002,
§III] where it was applied to solve a unit-step tracking
problem. Define

βk, 1
k!

dk

dzk
Bρ(z)

∣∣
z=0

. (10)

Denote, also, the Blaschke product containing the D̄+

zeros of G(z) and F (z) by
BζG(z)=

∏q

j=1

z−aj
1−zāj

, BζF (z)=
∏f

j=1

z−wj
1−zw̄j

. (11)

In general, if it is not necessary to stress the different
sources of the NMP zeros we will use Bζ(z) as notation,
with Bζ(z) = BζG(z)BζF (z) and {ζj |j = 1, · · · , q + f} =
{a1, · · · , aq, w1, · · · , wf}.
Theorem 9. Consider the discrete-time output LTI feed-
back represented in Figure 2 and that G(z), F (z) and H(z)
satisfy the assumptions listed in the present section, then

P
σ2>
∑m

i=1

∑ni

l=1

ri,l
(l−1)!

dl−1

dzl−1

(∑m

j=1

∑nj

p=1

r̄j,p(−z)p−1

(zρ̄j−1)p

)∣∣∣
z=ρi

+δ,

(12)
in which we have

ri,l=
1

(ni−l)!
dni−l

dzni−l
((z−ρi)niB−1

ρ (z)B−1
ζ

(z)F̃−1(z)H(z))|
z=ρi

,

(13)

δ=

{
0, if ng=1∑ng−1

k=1
|µk|2, if ng>1

, (14)

and
µk=
∑m

i=1

∑min{k,ni}
l=1

(
k−1

l−1

)
ri,lρ

k−l
i

. (15)

Proof. We proceed by considering the function spaces
L2, H2, H⊥2 , and RH∞ defined in the Introduction,
with the stability region given by the open unit disk
in the complex plane. Introduce a coprime factorisation
F (z)G(z) = N(z)/M(z), and the parameterisation of all
stabilising controllers (see Doyle et al. [1992, pp. 64-65])

C(z)=(X(z)+M(z)Q(z))/(Y (z)−N(z)Q(z)),
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whereX(z) and Y (z) satisfy the Bezout identity,N(z)X(z)
+M(z)Y (z) = 1. It follows that Tyn(z) = − (N(z)X(z)+
N(z)M(z)Q(z))F−1(z)H(z). Further factorise M(z) =
Bρ(z)M0(z), where Bρ(z) is the Blaschke product in
(9) and N(z) = BζG(z)BζF (z)N0(z), where BζG(z) and
BζF (z) are the Blaschke products in (11) and Mo(z) and
No(z) are in H2. It follows from the Bezout identity that
B−1
ρ (z) and M0(z)Y (z) have power series expansions at

infinity of the form
B−1
ρ (z)=

∑∞
k=0

βkz
−k,

M0(z)Y (z)=
∑ng−1

k=0
βkz
−k+

∑∞
k=ng

αkz
−k,

(16)

where βk is defined as in (10). Since Bρ(z) is biproper,
N(z) and N0(z) have relative degrees ng, and the set{
z−k; k = 0, · · · ,∞

}
forms an orthonormal basis for H2.

It follows that
infQ(z)∈RH∞‖Tyn‖

2
H2

=infQ(z)∈RH∞‖(B−1
ρ B−1

ζ
−M0Y B

−1
ζ

+M0N0Q)F̃−1H‖2
L2
,

=infQ(z)∈RH∞‖B−1
ρ B−1

ζ
F̃−1H−B−1

ζ
F̃−1H

∑ng−1

k=0
βkz
−k

−B−1
ζ
F̃−1H

∑∞
k=ng

αkz
−k+M0N0QF̃

−1H‖2
L2
,

(17)

where F̃−1(z) = Bzζ(z)F−1(z). Consider also a partial
fraction expansion of B−1

ρ (z)B−1
ζ (z)F̃−1(z)H(z) which

permits the decomposition
B−1
ρ B−1

ζ
F̃−1H=Γ⊥+Γ, (18)

where
Γ⊥=

∑m

i=1

∑ni

l=1

ri,l

(z−ρi)l
+
∑q+f

j=1

tj
z−ζj

, (19)
and

ri,l=
1

(ni−l)!
dni−l

dzni−l
((z−ρi)niB−1

ρ (z)B−1
ζ

(z)F̃−1(z)H(z))|
z=ρi

,

tj=(1−|ζj |2)B−1
ρ (ζj)F̃

−1(ζj)H(ζj)
∏q+f

l=1
l 6=j

1−ζj ζ̄l
ζj−ζl

.

(20)
The expression for ri,l comes from direct application
of Proposition 1 recognising f(z) = (z − ρi)niB−1

ρ (z)
B−1
ζ (z) F̃−1 (z)H (z).

Consider now
(∑ng−1

k=0 βkz
−k
)
B−1
ζ (z)F̃−1(z)H(z) in (17)

and use a partial fraction expansion to isolate the terms
in Bζ(z) due to NMP zeros(∑ng−1

k=0
βkz
−k
)
B−1
ζ
F̃−1H=

∑q+f

j=1

(∑ng−1

k=0

βk

ζk
j

)
mj
z−ζj

+Θ, (21)

where

mj=(1−|ζj |2)

(∏q+f
l=1
l 6=j

1−ζj ζ̄l
ζj−ζl

)
F̃−1(ζj)H(ζj), (22)

and Θ(z) is in H2. Consider now the third term in (17)
defined by(∑∞

k=ng
αkz

−k
)
B−1
ζ
F̃−1H=

∑q+f

j=1

qj
z−ζj

+Ω, (23)

in which the RHS is obtained using again partial fraction
expansion and Ω is in H2, where

qj=(1−|ζj |2)

(∏q+f
l=1
l 6=j

1−ζj ζ̄l
ζj−ζl

)
F̃−1(ζj)H(ζj)

(
B−1
ρ (ζj)−

∑ng−1

k=0

βk

ζk
j

)
,

=tj−
(∑ng−1

k=0

βk

ζk
j

)
mj .

(24)

Finally, this allow us to redefine the expression in (17) as

=infQ(z)∈RH∞ ‖
∑m

i=1

∑ni

l=1

ri,l

(z−ρi)l
+∑q+f

j=1

tj
z−ζj

−
∑q+f

j=1

(∑ng−1

k=0

βk

ζk
j

)
mj
z−ζj

−
∑q+f

j=1

qj
z−ζj

−

Ω−Θ+Γ+M0N0QF̃
−1H‖2L2

. (25)
A close analysis of the zeros related residue coefficients
reveals that

tj−
(∑ng−1

k=0

βk

ζk
j

)
mj−qj=0, ∀j=1,··· ,q+f, (26)

due to the result on qj from (24). This noticeable simplify
expression (25) into

infQ(z)∈RH∞‖Tyn‖
2
H2

=

infQ(z)∈RH∞

∥∥∥∑m

i=1

∑ni

l=1

ri,l

(z−ρi)l
−Ω−Θ+Γ+M0N0QF̃

−1H

∥∥∥2

L2

.

(27)
At this point we are only faced with the relative degree
difference of Γ(z) and Θ(z) (biproper, since filters F (z)
and H(z) have been selected to be biproper too 1 ), on one
side, and Ω(z) and No(z)Mo(z)Q(z)F̃−1(z)H(z) of degree
ng, on the other.

The term Γ(z) can be defined, from (18), as
Γ(z)=B−1

ρ B−1
ζ
F̃−1H−

∑m

i=1

∑ni

l=1

ri,l

(z−ρi)l
−
∑q+f

j=1

tj
z−ζj

. (28)

Similarly for Θ(z), from (21) we have

Θ(z)=
(∑ng−1

k=0
βkz
−k
)
B−1
ζ
F̃−1H−

∑q+f

j=1

(∑ng−1

k=0

βk

ζk
j

)
mj
z−ζj

.

(29)
At this point we are interested in the impulse response of
Γ(z)−Θ(z) and since by definition

B−1
ρ =
∑ng−1

k=0
βkz
−k, (30)

making explicit the first ng − 1 sampling times, we have
that

Γ(z)−Θ(z)=−
∑m

i=1

∑ni

l=1

(∑ng−1

k=l

(
k−1

l−1

)
ri,lρ

k−l
i

z−k

)
−
∑q+f

j=1

(∑ng−1

k=1
tjζ

k−1
j

z−k
)

+∑q+f

j=1

[∑ng−1

k=1

(∑ng−1

i=0

βi

ζi
j

)
mjζ

k−1
j

z−k
]

+Ξ(z), (31)

where from explicitly considering the impulse response of∑m
i=1

∑ni
l=1

ri,l
(z−ρi)l , we observe that the coefficients ri,lρk−l

show an arrangement according to Pascal’s triangle (de-

fined by the binomial coefficient
(
k−1

l−1

)
). The Ξ(z) term

in (31) is in H2 with relative degree ng. From (30) we also
have the fact thatB−1

ρ (ζj) =
∑ng−1
k=0 βkζ

−k
j . Together with

the definition for tj and mj , this effectively cancels out the
second and third term on the RHS of (31), leaving us with

Γ(z)−Θ(z)=−
∑ng−1

k=1

(∑m

i=1

∑min{k,ni}
l=1

(
k−1

l−1

)
ri,lρ

k−l
i

)
︸ ︷︷ ︸

µk

z−k+Ξ(z).

(32)
The final result is then

=‖
∑m

i=1

∑ni

l=1

ri,l

(z−ρi)l
‖2
H⊥

2
+‖−

∑ng−1

k=1
µkz
−k‖2L2

+

infQ(z)∈RH∞‖Ξ−Ω+M0N0QF̃
−1H‖2

H2
. (33)

1 Notice that since F (z) = BζF (z)F̃ (z) then also F̃ (z) will be
biproper.
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By taking Q = −(Ξ−Ω)M−1
o N−1

o F̃H−1, the last term in
(33) is zero, therefore equation (33) becomes

infQ(z)∈RH∞‖Tyn‖
2
H2

=∑m

i=1

∑ni

l=1

ri,l
(l−1)!

dl−1

dzl−1

(∑m

j=1

∑nj

p=1

r̄j,p(−z)p−1

(zρ̄j−1)p

)∣∣∣
z=ρi

+∑ng−1

k=1
|µk|2, (34)

with
ri,l=

1
(ni−l)!

dni−l

dzni−l
((z−ρi)niB−1

ρ (z)B−1
ζ

(z)F̃−1(z)H(z))|
z=ρi

,

µk=
∑m

i=1

∑min{k,ni}
l=1

(
k−1

l−1

)
ri,lρ

k−l
i

,

(35)
which completes the proof. 2

Remark 10. Notice from Theorem 9 that we regain the
result of Theorem 2 in Rojas et al. [2006a] whenever
ni = 1, i = 1, · · · ,m, that is

P
σ2>
∑m

i=1

∑m

j=1

rir̄j
ρiρ̄j−1 +δ, (36)

where ri = ri,1 in order to simplify the notation, and in
which

ri=(1−|ρi|2)B−1
ζ

(ρi)F̃
−1(ρi)H(ρi)

∏m
j=1
j 6=i

1−ρiρ̄j
ρi−ρj

, (37)

δ=

{
0, if ng=1∑ng−1

k=1
|µk|2, if ng>1

, (38)

where
µk=
∑m

i=1
riρ

k−1
i

. (39)
Remark 11. In the application of the technical result de-
veloped in Section 2 to the proof of Theorem 9, we have
not considered the case of repeated NMP zeros (either
from the plant or channel model). Such choice was made to
avoid increasing unnecessarily the complexity of the proof
of Theorem 9. Nonetheless, we are of the opinion that such
extension should be feasible.

4. CONCLUSION AND REMARKS

In the present paper we have developed closed form
expressions for the squared H⊥2 and H2 norms of a partial
fraction expansion that explicitly considers repeated poles.
The result for the squared H⊥2 case is then applied to the
infimal discrete-time LTI SNR for stabilisability problem,
where we observe that the obtained solution agrees with
the earlier result in Rojas et al. [2006a] when dealing with
single unstable poles. Further directions of research should
consider application of the technical results developed here
to other suitable problems such as the one addressed in
Rojas et al. [2008].
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