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Abstract: One of the most important issues in control system design is to obtain an accurate
model of the plant to be controlled. Though most of the existing identification methods are
described in discrete-time, it would be more appropriate to have continuous-time models
directly from the sampled I/O data. From this viewpoint, the authors have developed such
a direct identification method based on ILC (Iterative Learning Control) approach. This is a
new application area of ILC. The method often yields accurate models even in the presence
of heavy measurement noise. The robustness against noise is achieved through (i) projection
of continuous-time I/O signals onto a finite dimensional parameter space, (ii) initial models
through preparatory experiment and (iii) noise tolerant learning laws. This paper examines
the accuracy of the initial models and convergence property of ILC in the presence of heavy
colored noise through detailed simulations, which demonstrates the robustness of the ILC based
identification method.
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1. INTRODUCTION

One of the most important issues in control system design
is to obtain an accurate model of the plant to be controlled.
Though most of the existing identification methods are
described in discrete-time, it would be convenient to have
continuous-time models directly from the I/O data. In
fact, it is often easier for us to capture the plant dynamics
intuitively in continuous-time rather than in discrete-time.
So far a lot of researchers try to obtain the continuous-time
models directly (namely, without recourse to the discrete-
time models) from the I/O data. Comprehensive surveys
on this topic have been given by Young [1981], Unbehauen
and Rao [1990] and Sinha and Rao [1991]. Furthermore,
the CONtinuous-Time System IDentification (CONTSID)
tool-box has been developed on the basis of these direct
methods [Garnier and Mensler, 1999, 2000, Garnier et al.,
2003]. A basic difficulty is that standard approaches re-
quire the time-derivatives of I/O data in the presence of
measurement noise.

On the other hand, iterative learning control (ILC) has
attracted much attention over the last two decades as a
powerful model-free control methodology [Arimoto et al.,
1984, Kawamura et al., 1988, Moore, 1993, Bein and
Xu, 1998, Chen and Wen, 1999]. ILC yields the input
which achieves perfect output tracking by iteration of
trials for uncertain systems. Though ILC can deal with
plants having large uncertainty, most ILC approaches need
time-derivatives of I/O data in the continuous-time case

[Sugie and Ono, 1991], and therefore it is quite sensitive to
measurement noise. Recently, Hamamoto and Sugie [2001,
2002] proposed an ILC where the learning law works in a
certain finite-dimensional subspace and showed that any
time-derivative of the tracking error is not required to
achieve perfect tracking in the their scheme. Based on this
work, Sugie and Sakai [2005] and Sakai and Sugie [2006],
proposed an ILC which works in the presence of heavy
measurement noise, and, moreover, the method was shown
to be applicable to the identification of continuous-time
systems as well. This identification method has several
advantages such as: (i) no time-derivatives of I/O data
are required, (ii) it gives unbiased estimations. This work
was followed by Campi et al. [2006]. They show a way
how to deal with plant zeros and provide more noise
tolerant learning laws which guarantee zero convergence
of the parameter estimation errors as the number of trials
increases. Further, Sakai and Sugie [2007] extend this
result to the closed loop system identification.

The purpose of this paper is to evaluate the robustness
of this type of ILC based identification method against
the heavy measurement noise through simulation study. In
particular, (a) the accuracy of the initial models obtained
through the preliminary experiments and (b) convergence
of iterative learning against errors in initial models are ex-
amined subject to colored measurement noise extensively.

The following notations will be used. Superscript denotes
the trial number and subscript denotes the element of a
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set or a matrix. For instance, input u at the k-th trial is
written as uk while xi is the i-th element of the vector x.

2. SYSTEM DESCRIPTION

Consider the continuous-time SISO system described by

y(t) =
B◦(p)

A◦(p)
u(t) �

1 + β◦
1p + · · · + β◦

mpm

α◦
0 + α◦

1p + · · · + α◦
npn

u(t) (1)

where u(t) and y(t), t ∈ [0, T ], are the input and the
output, respectively, α◦

i ∈ R (i = 0, 1, · · · , n) and β◦
i ∈ R

(i = 1, · · · ,m) are coefficient parameters, while p is the
differential operator, i.e., pu(t) = du(t)/dt. We assume
the following:

• Many experiments on the system can be repeated
with zero initial state on the time interval [0, T ].

• Though the true parameters α◦
i and β◦

i are unknown,
A◦(p) and B◦(p) are coprime and their order n and
m are known.

• We can measure ỹ(t), the output contaminated with
noise,

ỹ(t) = y(t) + w(t)

where w(t) is zero-mean measurement noise.

The goal is to determine a model in the class

M =

{

B(p)

A(p)
=

1 + β1p + · · · + βmpm

α0 + α1p + · · ·αnpn

}

based on I/O measurements u(t) and ỹ(t).

3. IDENTIFICATION PROCEDURE

This section describes a basic idea of how to identify
the system through iteration of trials. For conceptual
simplicity, we discuss the case where the system has no
finite zeros, i.e., B◦(p) = 1 in this section. The general
case will be discussed later.

3.1 Iterative identification scheme via projection

First, choose a smooth signal r(t), t ∈ [0, T ] satisfying

r(0) = 0, ṙ(0) = 0, · · · , r(n−1)(0) = 0.

At the k-th trial, perform the following experiment on
[0, T ] which produces the signal εk(t) when the parameter
estimates αk

0 , · · · , αk
n are given.

(i) Define Ak(p) � αk
0 + αk

1p + · · · + αk
npn

(ii) Inject uk(t) = Ak(p)r(t) into the system.

(iii) Observe the corresponding output ỹk(t).

(iv) Compute the tracking error signal εk(t) by

εk(t) = ỹk(t) − r(t).

Note that εk(t) is obtained without taking any deriva-
tive of noisy measurements, only derivatives of r(t) are
required. Note also that εk(t) can also be written as

εk(t) =
Ak(p) − A◦(p)

A◦(p)
r(t) + wk(t). (2)

Now, we introduce the finite-dimensional subspace de-
scribed by

F � span{f1(t), f2(t), · · · , fn+1(t)}

where {f1(t), . . . , fn+1(t)} is an appropriate basis chosen
by the designer. Then project εk(t) onto F . The projection
is written as

εk(t)|F = δk
1f1(t) + · · · + δk

n+1fn+1(t)

and δk � [δk
1 , · · · , δk

n+1]
T is its vector representation. Let

for brevity

γ◦ = [α◦

0, α
◦

1, · · · , α◦

n]T , γk = [αk
0 , αk

1 , · · · , αk
n]T ,

then the iterative identification procedure is described as
follows:

(Step 0) Given γ0, set k = 0.
(Step 1) Generate δk from γk.
(Step 2) Update γk by

γk+1 = γk + Hkδk, (3)

where Hk ∈ R
(n+1)×(n+1) is the learning gain. If the

designer satisfies the model accuracy, stop the iteration.
Otherwise, set k = k + 1 and go to Step 1.

3.2 Update law

The choice of Hk is discussed in this subsection.

Suppose, for the time being, wk(t) = 0 holds. It is easy
to see that the tracking error δk ∈ R

n+1 depends on the
parameter estimate γk ∈ R

n+1 linearly. So there exist a
matrix M ∈ R

(n+1)×(n+1) and an offset term δ̄ ∈ R
n+1

such that
δk = Mγk + δ̄ (4)

holds. Suppose that fi(t)’s are chosen so that M is non-
singular. Due to wk(t) = 0, γk = γ◦ implies δk = 0 from
(2). Therefore, δ̄ = −Mγ◦ must hold. Thus, (4) can be
re-written as

δk = M(γk − γ◦)

with M non-singular. When noise wk(t) is taken into
account, δk becomes

δk = M(γk − γ◦) + νk (5)

where νk accounts for the projection of wk(t) onto F . This
is the basic equation to determine the learning gain.

Eqns. (5) and (3) yields

γk+1 = γk + HkM(γk − γ◦) + Hkνk

Thus, defining γ̃k � γk − γ◦ we have

γ̃k+1 = (I + HkM)γ̃k + Hkνk (6)

which describes how the error γ̃k propagates through
trials. Now, let

Φ � E[νk(νk)T ], P k � E[γ̃k(γ̃k)T ],

and show how to select Hk so as to reduce P k optimally
under the assumption that M and Φ are known. Noise is
assumed to be independent in different experiments. From
(6), we have:

P k+1 = (I + HkM)P k(I + HkM)T + HkΦ(Hk)T

Therefore, P k+1 is minimized by the choice

Hk = −P kMT (MP kMT + Φ)−1 (7)

With this choice, we obtain

P k+1 = P k − P kMT (MP kMT + Φ)−1MP k (8)

Eqns. (7) and (8), where (8) is initialized with

P 0 = E[γ̃0(γ̃0)T ]. (9)
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Based on the above idea, the following result has been
obtained.

Theorem 1:[Campi et al., 2006] Suppose we adopt the
updating law (3) with (7), (8) and (9). Then it holds that

E[(γk − γ◦)(γk − γ◦)T ] → 0, as k → ∞. (10)

�

It implies that the method gives us the true parameter γ◦

in the presence of measurement noise through iteration of
trials. Further, an alternative version is given as follows.

Theorem 2:[Campi et al., 2006] If the updating law (3)
is adopted where Hk is given by

Hk = −
1

k + 1
M−1, (11)

then (10) holds. �

4. DIGITAL IMPLEMENTATION

Now we discuss how to implement the iterative identifi-
cation method when the I/O data are available only at
the sampled times. Namely, we suppose that the I/O data
are {u(iTs), ỹ(iTs)} (i = 0, 1, · · · , q), where Ts is sampling
time satisfying qTs = T , and the input is injected to the
plant via the zero-order holder (ZOH).

4.1 Representation in the projected space

Suppose that the reference signal r(t) is chosen. Define

Vr(t) =

[

r(t),
dr(t)

dt
, . . . ,

dnr(t)

dtn

]

,

then, we have

u(t)k = Ak(p)r(t) = Vr(t)γ
k.

Since the data are available only at sampled times, we
define

uk � [uk(0), uk(Ts), · · · , uk(qTs)]
T ∈ R

q+1

ỹk � [ỹk(0), ỹk(Ts), · · · , ỹk(qTs)]
T ∈ R

q+1.

The vectors rk ∈ R
q+1, yk ∈ R

q+1, εk ∈ R
q+1 and

wk ∈ R
q+1 are defined in the same way. Similarly, let

Vdr ∈ R
(q+1)×(n+1) be

Vdr �











r(0) ṙ(0) · · · r(n)(0)

r(Ts) ṙ(Ts) · · · r(n)(Ts)
...

... · · ·
...

r(qTs) ṙ(qTs) · · · r(n)(qTs)











.

Then, we have

uk = Vdrγ
k. (12)

While, let {f1(t), f2(t), · · · , fn+1(t)} are given functions,
and define Vdf ∈ R

(q+1)×(n+1) by

Vdf �









f1(0) f2(0) · · · fn+1(0)
f1(Ts) f2(Ts) · · · fn+1(Ts)

...
... · · ·

...
f1(qTs) f2(qTs) · · · fn+1(qTs)









.

Let the QR decomposition of Vdf be

Vdf = UR, UT U = In+1,

where U � [f1,f2, . . . ,fn+1] ∈ R
(q+1)×(n+1) and R ∈

R
(n+1)×(n+1) is a nonsingular upper triangular matrix.

These fi’s constitute an orthogonal basis for projection
in the digital implementation. Therefore, for example, the
vector representation of εk and wk are given by

δk = UT εk, νk = UT wk,

4.2 Estimate of M

If we inject the input sequence uk with the ZOH, the
corresponding output yk is given by

yk = Guk

irrespective of k, where G is specified by

G =













g0 0 0 · · · 0
g1 g0 0 · · · 0
g2 g1 g0 · · · 0
...

...
... · · ·

...
gN gN−1 gN−2 · · · g0













∈ R
(q+1)×(q+1). (13)

The first column of G is the output y when we inject the
input u = [1, 0, 0, · · · , 0]T . The tracking error is obtained
by

εk = Guk + wk − r.

Through the projection, we have

δk = UT GVdr(γ
k − γ◦) + νk

with the aid of uk = Vdrγ
k and r = GVdrγ

◦. This implies
that

M = UT GVdr (14)

γ◦ = M−1UT r. (15)

Note that we can obtain an estimate Ĝ of G through
simple experiments. For example, observe the unit step
responses twice (with independent measurement noises),
say, ỹstep1(t) and ỹstep2(t). Then, we obtain ĝ0 = 0 and

ĝi = ỹstep1(iTs) − ỹstep2((i − 1)Ts) for i ≥ 1.

Once we have Ĝ, we obtain an estimate of M by computing
M̂ = UT ĜVdr.

4.3 Identification steps

The total identification steps are summarized as follows:

(Step a) Choose the reference signal r(t).
(Step b) Obtain {gi} in (13) through experiments,

and estimate M .
(Step c) Perform the iterative identification.

If the estimate M̂ is so poor, the iterative procedure
may not converge. Therefore the quality of M̂ is very
important. Also, it is useful to know how robust the leaning
law against the modeling error in M̂ . Therefore, these two
points will be evaluated through simulations under heavy
measurement noise. In particular, the performance of the
proposed method against the colored noise will be studied
extensively, because the robustness against the colored
noise is one of the distinguished merits of the proposed
method.
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5. EXTENSION TO GENERAL CASE

So far, we have discussed the case where the system has no
finite zeros. This section briefly shows how to extend the
identification procedure to the general case [Campi et al.,
2006] before proceeding to the simulation stage,

Consider the plant B◦(p)/A◦(p) described in (1). The
procedure is almost the same except we compute the
following error signal

εk(t) = ỹk(t) − Bk(p)r(t) (16)

Bk(p) � 1 + βk
1p + · · · + βk

mpm

in stead of εk(t) = ỹk(t) − r(t), where {βk
1 , · · · , βk

m} are
the parameter estimates of {β◦

1 , · · · , β◦
m}.

Using the projection onto

F � span{f1(t), f2(t), · · · , fn+m+1(t)},

we have (5) with

γ◦ = [α◦

0, · · · , α◦

n, β◦

1 , · · · , β◦

m]T ,

γk = [αk
0 , · · · , αk

n, βk
1 , · · · , βk

m]T

Therefore, the update laws given in section 3 can be used.

Concerning to digital implementation, M should be re-
placed by

M = UT [GVdr,−Vdr[2 : m + 1]] ,

according to (16). Here Vdr[2 : m + 1] means the matrix
[v2, v3, · · · , vm+1] where vi denotes the i-th column of Vdr.

6. SIMULATION

Consider the non-minimum phase system described by

P (s) =
−T1s + 1

(

s2

ω2

n,1

+ 2ζ1s
ωn,1

+ 1
) (

s2

ω2

n,2

+ 2ζ2s
ωn,2

+ 1
) ,

where T1 = 4[s], ωn,1 = 20[rad/s], ζ1 = 0.1, ωn,2 =
2[rad/s], and ζ2 = 0.25. The time interval of each trial
is T = 10 [s] and the sampling period is Ts = 0.01 [s].

The signal r(t) is chosen to be the output of the following
system

F (s) =
1

(0.1s + 1)5

when a square wave is injected. We also choose the basis
functions as fi(t) = r(i−1)(t) for i = 1 ∼ 5.

6.1 Accuracy of M̂

First, we examine the accuracy of the estimate M̂ when the
measurement data {gi} in (13) are corrupted with colored
noise. An example of the data {gi} are shown in Fig.1. The
thick line shows the true {gi}, which corresponds to the
impulse response of the discretized target system, and the
dotted line is the measured value subject to the colored
noise which is the output of the filter

W (s) =
ω2

n

s2 + 2ζωns + ω2
n

with white noise input, ζ = 0.1 and ωn = 25[rad/s]. The
NSR (noise to signal ratio) is around 50 %. We obtain

the data under various NSR and ωn, then calculate M̂ for

each case. In order to evaluate the accuracy, we use the
Hankel norm of the error system, i.e., ‖P (s) − P̂ (s)‖H ,

where P̂ (s) is the estimate of P (s) obtained from M̂ . Note
that the estimate of the true system parameter γ◦ can
determined from M̂ via (15) and that ‖P (s)‖H = 8.6465.

Fig. 2 shows ‖P (s) − P̂ (s)‖H for NSR = 0 ∼ 50 %
with various colored/white noise. We run the simulation
50 times for each NSR and ωn, and each line shows the
average of 50 runs. From this figure, we can see the
following: Even if the noise-free case, the estimation error
occurs. As NSR grows, the error becomes bigger, and the
effect (or contribution to the modeling error) of white
noise is relatively small compared to colored ones. The
effect of noise with ωn = 25[rad/s] is bigger than the other
colored noises. The reason would be that ωn = 25[rad/s]
is closer to one of the system poles (i.e., ωn,1 = 20[rad/s])
than any others. In this figure, the case of (NSR=50%,
ωn = 25[rad/s]) looks terrible. However it is not so bad

if we take a closer look. Fig. 3 shows ‖P (s) − P̂ (s)‖H for
each run in this case, which tells us that most of them
are good and one (or two) out of 50 runs behaves bad.
Therefore, we may say that we can obtain a relatively good
model for most cases even if we have heavy colored noise
in measurement. Fig. 4 shows the Bode plots of P̂ (s) for 50
runs in case of (NSR=50%, ωn = 25[rad/s]). The bundle

shows 50 plot lines of P̂ (s) and the thick line corresponds
to the true system P (s). This figure gives an idea of the
accuracy of the obtained initial model.

0 2 4 6 8 10
−0.3

−0.2

−0.1

0

0.1

0.2

Time [s]

O
u

tp
u

t

Fig. 1. An example of {gi} subject to colored noise.
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Fig. 2. ‖P (s) − P̂ (s)‖H for various NSR (0 ∼ 50%)
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Fig. 3. ‖P (s) − P̂ (s)‖H for 50 runs
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Fig. 4. Bode plots of initial estimate P̂ (s)

6.2 Convergence of iterative procedure

Next, we evaluate the convergence property for given M̂ .
We add the colored measurement noise (ωn = 25[rad/s]
with NSR 50% ) during the whole iteration as well. An
example of the output ỹk(t) and its tracking reference
Bk(p)r(t) at k = 10 is shown in Fig. 5. The dotted
line represents the output with noise and the thick line
is the tracking reference. Since the measurement noise is
so big, it is difficult to see the real tracking performance.
Therefore, the true output (without noise) is shown in Fig.
6 with its tracking reference. These figures tell us that
the tracking is almost achieved at 10-th iteration in spite
of the heavy noise shown in Fig. 5. Since the tracking
error information plays a crucial role in most ILC, this
robustness (against the measurement noise) is outstanding
from the viewpoint of ILC. Fig. 7 shows the behavior of the
estimated parameters along the iteration number k. From
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Fig. 5. Measured output ỹ10(t) and its target B10(p)r(t)
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Fig. 6. True output y10(t) and its target B10(p)r(t)

this figure, we see that each parameter approaches its true
value quite quickly and smoothly. Within a few trial, the
accuracy of the estimated model becomes satisfactory. We
run the simulation 50 times (with different random noises),
and Bode plots of the estimated models at k = 10 are
shown in Fig. 8. Though it includes 50 lines, the deviation
is so small. This figure also ensures us that we can obtain
accurate models in the presence of both heavy colored
noise and initial modeling errors.

Furthermore, we have run the simulation at NSR 100%
with different types of colored noises. In total, we have
1,000 initial models, among which there exist 28 unstable
models. However, the iterative identification procedure
converges in all cases. This fact exhibits the robustness
of the ILC based identification clearly.

7. CONCLUSION

This paper described a novel approach for identification
of continuous-time systems based on ILC concepts. The
method enable us to obtain an accurate model in the
presence of heavy measurement noise through iterative
learning control concepts. The robustness against noise
is achieved through (i) projection of continuous-time I/O
signals onto an appropriate finite dimensional parameter
space, and (ii) noise tolerant learning laws. The robustness
of the method against the heavy and colored measurement
noise has been evaluated through extensive simulation
study. In particular, (a) the accuracy of the initial models
obtained through the preliminary experiments and (b)
convergence property of the iterative learning against
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Fig. 8. Bode plots of 50 identified systems (k = 10)

errors in initial models are examined in the presence of
various colored measurement noise. The effectiveness of
the method has been demonstrated through numerical
examples for a non-minimum phase system.
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