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Abstract: This paper is concerned with the linear quadratic regulation (LQR) problem for
linear discrete-time systems with multiple delays in a single input channel. Although the LQR
problem for discrete-time systems with single delay in each of the multiple input channels has
been studied in existing literature, the problem to be addressed in this paper is known to be
very difficult and has not been well investigated. In this paper, we address the LQR problem for
systems with multiple delays in a single input channel by first establishing a duality between
the LQR problem and a smoothing problem for an associated stochastic backward system. An
analytical solution to the LQR control is then derived by solving the smoothing problem and
is given in terms of the solutions of Riccati difference equations of the same dimension as the
plant (ignoring the delays). The infinite horizon LQR problem is also considered in this paper
and the convergence and stability analysis of the LQR controller is provided.

1. INTRODUCTION

The research on delay systems has gained momentum since
the 1960s due to their practical significance in various
engineering systems such as industrial processes, com-
munication systems and more recently networked control
systems. A lot of studies have been focused on analysis
and control problems of delay systems; see, e.g., Chyung
[1969], Zhang et al. [2006] and the references therein.

For continuous-time delay systems, the control problem
can be treated by the infinite-dimensional system theory
Delfour and Karrakchou [1987]. An elegant solution to
the H∞ control of systems with single input delay has
been presented in Tadmor [2000]. By converting the delay
problem into a nested sequence of elementary problems,
Meinsma and Mirkin [2005] gives a complete solution to
the H∞ control problem for systems with multiple I/O
delays. On the other hand, there have been increasing
interests in discrete-time delay systems due to applications
in the fields of networked control and network congestion
control. Delay problems associated with discrete-time sys-
tems can in principle be treated by a state augmentation
approach. However, the augmentation leads to a higher
state dimension and thus a higher computational cost.
As such, there have been attempts in dealing with dis-
crete delay problems via non-augmentation approaches.
For example, the optimal tracking problem for discrete-
time systems with single input delay has been studied in
Pindyck [1972]. Zhang and Xie [2007] and Zhang et al.
[2007] solve the LQR and H∞ control problems for systems
with a single delay in each of the multiple input channels
by establishing a duality between the control problems
and some smoothing problems for associated stochastic
systems. The duality allows one to address the compli-

cated multiple input delay problems via some elementary
tools such as projection. It is, however, noted that control
problems for systems with single input but multiple delays
which contain the systems studied Zhang and Xie [2007]
as a special case are very challenging as it becomes a
constrained optimization problem if the approach of Zhang
and Xie [2007] is applied directly. There have been few
studies on such systems. Furthermore, we note that in
Zhang and Xie [2007] only finite horizon control problems
have been investigated.

In this paper, we investigate the LQR problem for discrete-
time systems with multiple delays in a single input chan-
nel. Using a re-organized output approach, we first de-
couple the input signals at various delayed time instants
and establish a duality between the LQR problem and a
smoothing problem for an associated backward stochastic
system. An analytical solution to the LQR problem is then
derived and is given in terms of Riccati recursions of the
same order of the plant (ignoring the delays). Compared
with the augmentation approach, our result is computa-
tionally much more efficient. The infinite horizon LQR
problem is also investigated. We show that under very mild
conditions, the solution to the finite horizon LQR problem
converges and the stability of the closed-loop system is
guaranteed.

The contributions of the paper in relation to the work
in Zhang et al. [2006] are two fold. First, we present a
new and much simpler controller derivation approach as
compared to Zhang et al. [2006]. This approach enables us
to derive an analytical solution to the LQR problem for
systems with single input multiple delays which cannot
be addressed using the controller derivation method in
Zhang et al. [2006] since it will involve a constrained
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optimization problem. Our approach, when specialized to
the systems considered in Zhang et al. [2006], gives a much
simpler controller derivation. Secondly, the new control
design approach enables us to analyze the stability of the
closed-loop system and thus solve the infinite horizon LQR
problem for the delay system which has not been addressed
in Zhang et al. [2006]. Our derivation in discrete-time
can be extended to solve the even more challenging LQR
problem for continuous-time systems with single input
multiple delays.

Before closing the section, some remarks on the notation
will be given. Rn denotes the n dimensional Euclidean
space. Φ′ is the transpose of the matrix Φ. 〈a, b〉 is the cross
covariance between a and b, i.e., E {(a− Ea)(b− Eb)′},
where E is the mathematical expectation. In denotes the
identity matrix with dimension n. δi,j is the Kronecker
delta function. We use bold letters to denote stochastic
variables. χΩ(t) is indicator function, i.e.

χΩ(t) =
{

0, t /∈ Ω,
1, t ∈ Ω.

x̂(i|j) represents the projection of x(i) onto the linear
space L{ȳ(j), · · · , ȳ(N)}.

2. PROBLEM STATEMENT

We consider the following discrete linear system with
multiple delays in a single input channel

x(k + 1) = Φ(k)x(k) +
l∑

i=0

Γ(i)(k)u(k − di), x(0) = x0, (1)

where x ∈ Rn is the state, u(k) ∈ Rm is the control input
with initial values u(k) = µk when k < 0, Φ(k) and Γ(i)(k)
are time varying matrices with appropriate dimension.
Without loss of generality, the delays are assumed to be of
an increasing order: 0 = d0 < d1 < · · · < dl. We consider
the following quadratic performance index for the system
(1):

JN =
N∑

i=0

[u′(i)Riu(i) + x′(i)Qix(i)] + x′N+1PN+1xN+1,

(2)

where N > dl is an integer, xN+1 is the terminal state,
i.e., xN+1 = x(N + 1), PN+1 > 0 is the penalty weighting
matrix on the terminal state, Ri > 0, Qi ≥ 0, i = 0, . . . , N
are weighting matrices on the input signal u(i) and state
x(i), respectively.

The finite horizon LQR problem is to find the state
feedback control {u?(s), 0 ≤ s ≤ N} such that the cost
function JN is minimized. We also deal with the infinite
horizon case, i.e. when N →∞.
Remark 1. It should be noted that the aforementioned
LQR problem can be addressed by a state augmentation
method together with the standard LQR solution for sys-
tems without delay. However, for large delays and/or high
dimensional inputs, the augmented system will have a very
high dimension, resulting in a high computational cost.
More importantly, we aim to find a non-augmentation
method that can be extended to continuous-time delay

systems for which the augmentation approach is not ap-
plicable.

In the following, we shall present a non-augmentation
approach to the LQR problem for the system (1) for both
the finite and infinite horizon cases. We shall also establish
stability and convergence properties of the LQR control.

3. PRELIMINARIES

In this section we shall convert the LQR problem into the
optimal smoothing problem for an associated stochastic
backward system.

First, we shall introduce some notation. ∀k ≥ s, denote

us(k) ∆=





col{u(k), u(k − d1), · · · , u(k − di)},
di ≤ k − s < di+1,

col{u(k), u(k − d1), · · · , u(k − dl)},
k − s ≥ dl,

(3)

ũs(k) ∆=
l∑

j=0

Γ(j)(k)u(k − dj)χ[−dl,s)(k − dj), (4)

Γs(k) ∆=





[
Γ(0)(k) Γ(1)(k) · · · Γ(i)(k)

]
,

di ≤ k − s < di+1,[
Γ(0)(k) Γ(1)(k) · · · Γ(l)(k)

]
,

k − s ≥ dl,

(5)

Rs(k) ∆=
{

diag{R0,k, · · · , Ri,k}, di ≤ k − s < di+1,

diag{R0,k, · · · , Rl,k}, k − s ≥ dl,
(6)

Ri,k
∆=





Rk−di

l + 1
, k − di ≤ N − dl,

Rk−di

j + 1
, N − dj+1 < k − di ≤ N − dj ,

(7)

where χ[a,b](t) is indicator function defined in the intro-
duction. Using the above notation, ∀k ≥ s, the system (1)
can be rewritten as

x(k + 1) = Φ(k)x(k) + Γs(k)us(k) + ũs(k). (8)

The cost function (2) can be splitted into two terms,

JN = Js
N + J̄s

N , (9)

where

Js
N =

N∑

i=s

u′(i)Riu(i) +
N∑

i=s

x′(i)Qix(i) + x′N+1PN+1xN+1

=
N∑

i=s

u′s(i)Rs(i)us(i) +
N∑

i=s

x′(i)Qix(i)

+ x′N+1PN+1xN+1, (10)

J̄s
N =

s−1∑

i=0

u′(i)Riu(i) +
s−1∑

i=0

x′(i)Qix(i). (11)

Note that {u(k), k ≥ s} has no effect on J̄s
N , so we

can only design {u(k), k ≥ s} to minimize Js
N . Now, we

introduce the following backward stochastic state-space
system associated with (8) and performance index (10):
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x(k) = Φ′(k)x(k + 1) + q(k), (12)

y(k) = Γ′s(k)x(k + 1) + v(k), s ≤ k ≤ N, (13)

where x(N + 1), q(k) and v(k) are uncorrelated white
noises with zero means and covariances

〈xN+1,xN+1〉 = PN+1, 〈q(i),q(j)〉 = Qiδi,j ,

〈v(i),v(j)〉 = Rs(i)δi,j .

By introducing the notation,

us
∆= col{us(s), · · · , us(N)}, (14)

ys
∆= col{y(s), · · · ,y(N)}, (15)

hs = min{dl − 1, N − s}, (16)

we have the following result.
Lemma 1. By making use of the stochastic state-space
model (12)-(13), Js

N can be put in the following quadratic
form

Js
N =

[
ξs

us

]′
Πs

[
ξs

us

]
, (17)

where

ξs =
[
x′(s) ũ′s(s) · · · ũ′s(s + hs)

]′
, (18)

Πs =
〈[

x0
s

ys

]
,

[
x0

s
ys

]〉
∆=

[
Rx0

s
Rx0

sys

Rysx0
s

Rys

]
, (19)

x0
s = col{x(s),x(s + 1), · · · ,x(s + hs + 1)}, (20)

with ũs(s + i), i = 0, . . . , hs as defined in (4),
〈
x0

s,x
0
s

〉
=

Rx0
s
,
〈
x0

s,ys

〉
= Rx0

sys
and 〈ys,ys〉 = Rys

.

Proof. The proof is similar to that in Zhang et al. [2006]
and is omitted.

Due to the coupling of us(k) at different delayed time
instants, we apply a re-organization of measured output
to decouple the us. First, decompose y(k) and v(k) of
(13) as follows:

y(k) =
{

col {y0(k), · · · ,yi(k)} , di ≤ k − s < di+1,

col {y0(k), · · · ,yl(k)} , k − s ≥ dl,
(21)

v(k) =
{

col {v0(k), · · · ,vi(k)} , di ≤ k − s < di+1,

col {v0(k), · · · ,vl(k)} , k − s ≥ dl,
(22)

where yi(k) and vi(k), i = 0, . . . , l satisfy

yi(k) = Γ′(i)(k)x(k + 1) + vi(k), (23)

with 〈vi(k1),vj(k2)〉 = Ri,k1δi,jδk1,k2 . We can re-organize
the outputs as follows:

yf (k) ∆=
{

col{y0(k), · · · ,yl(k + dl)}, dl ≤ N − k,

col{y0(k), · · · ,yi(k + di)}, di ≤ N − k < di+1,

(24)

and vf (k) has the same form as

vf (k) ∆=
{

col{v0(k), · · · ,vl(k + dl)}, dl ≤ N − k,

col{v0(k), · · · ,vi(k + di)}, di ≤ N − k < di+1.

(25)

Now, we shall simplify the cost function Js
N of (17). To

this end, we denote, for s ≤ k ≤ N − dl,

T (k) =




Im Im · · · Im

0 −Im · · · 0
...

...
. . .

...
0 0 · · · −Im




︸ ︷︷ ︸
l+1

, (26)

and for N − di+1 < k ≤ N − di,

T (k) =




Im Im · · · Im

0 −Im · · · 0
...

...
. . .

...
0 0 · · · −Im




︸ ︷︷ ︸
i+1

. (27)

It is easy to write

T (k)yf (k) =





col{ȳ(k),−y1(k + d1), · · · ,−yl(k + dl)},
dl ≤ N − k,

col{ȳ(k),−y1(k + d1), · · · ,−yi(k + di)},
di ≤ N − k < di+1,

(28)

where

ȳ(k) =
l∑

j=0

yj(k + dj)χ[k,N ](k + dj). (29)

In view of (23), ȳ(k) can be rewritten as

ȳ(k) =
l∑

j=0

Γ′(j)(k + dj)x(k + dj + 1)χ[k,N ](k + dj)

+ v̄(k), (30)
where

v̄(k) =
l∑

j=0

vj(k + dj)χ[k,N ](k + dj). (31)

It is easy to verify that v̄(k), k = s, . . . , N are uncor-
related white noises with zero means and covariances
〈v̄(i), v̄(k)〉 = Riδi,k. Then we have the following result.
Lemma 2. Let

ȳs = col{ȳ(s), · · · , ȳ(N)}, (32)
Us = col{u(s), · · · , u(N)}, (33)

where ȳ(k) is as in (30) and u(k) in (1). Then Js
N of (10)

can be further rewritten in the following quadratic form

Js
N =

[
ξs

Us

]′
Π̄s

[
ξs

Us

]
, (34)

where

Π̄s =
〈[

x0
s

ȳs

]
,

[
x0

s
ȳs

]〉
∆=

[
Rx0

s
Rx0

sȳs

Rȳsx0
s

Rȳs

]
. (35)

Furthermore, Js
N can be simplified as

Js
N = ξ′sPsξs + (Us − U?

s )′Rȳs
(Us − U?

s ), (36)
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where
U?

s = −R−1
ȳs

Rȳsx0
s
ξs, (37)

Ps =
〈
x0

s − x̂0
s,x

0
s − x̂0

s

〉
, (38)

and x̂0
s is the projection of x0

s onto the linear space L{ȳs}.
Therefore, by considering (33), the minimizing solution of
Js

N with respect to control input u(k) is the (k− s + 1)-th
block of U?

s .

Proof. It can be proved similarly to Zhang and Xie [2007].
The detail is thus omitted.
Remark 2. As noted in Zhang et al. [2006], Lemma 2 re-
veals a duality between the LQR and the optimal smooth-
ing problem for the stochastic backward system (12)-(13)
in view of the fact that R−1

ȳs
Rȳsx0

s
is in fact the transpose

of the optimal smoothing gain of the backward system
(12)-(13). The duality allows us to solve the LQR problem
by some elementary tools such as projection.

4. SOLUTION TO THE FINITE HORIZON LQR
PROBLEM

In view of the duality between the LQR problem and the
smoothing problem, the controller gain matrix−R−1

ȳs
Rȳsxs

0

in (37) can be obtained from the following projection
problem:

x̂0
s = Rx0

sȳs
R−1
ȳs

ȳs. (39)

So, we will derive the smoothing (filtering) gain matrix
first.
Theorem 3. For system (12) and (30), the recursive opti-
mal filter and smoother are given by

x̂(k|k) = Φ′(k)x̂(k + 1|k), (40)

x̂(k + i|k) = x̂(k + i|k + 1) + K(k + i, k)e(k),

i = 1, . . . , hk + 1, (41)

e(k) = ȳ(k)−
l∑

j=0

[
Γ′(j)(k + dj)x̂(k + dj + 1|k + 1)

× χ[k,N ](k + dj)
]
, (42)

K(k + i, k) =
l∑

j=0

[
P (k + i, k + dj + 1, k + 1)Γ(j)(k + dj)

× R−1
e (k)χ[k,N ](k + dj)

]
, (43)

K(k, k) = Φ′(k)K(k + 1, k), (44)

Re(k) =
l∑

i,j=0

[
Γ′(i)(k + di)P (k + di + 1, k + dj + 1, k + 1)

× Γ(j)(k + dj)χ[k,N ](k + di)χ[k,N ](k + dj)
]
+ Rk,

(45)

P (k + i, k + j, k) = P (k + i, k + j, k + 1)−K(k + i, k)

×Re(k)K ′(k + j, k), i, j = 1, · · · , hk + 1,

(46)

where P (k + i, k + j, k) = 〈x(k + i), x̃(k + j|k)〉 satisfies

P (k, k + j, k) = Φ′(k)P (k + 1, k + j, k),

j = 1, · · · , hk + 1, (47)
P (k, k, k) = Φ′(k)P (k + 1, k + 1, k)Φ(k) + Qk, (48)

while hk is defined in (16) with s replaced by k and e(k)
is the innovation sequence with covariance Re(k). P (k +
i, k + j, k), satisfying

P (k + i, k + j, k) = P ′(k + j, k + i, k),
is the cross covariance matrix between x̃(k + i|k) and
x̃(k + j|k), where x̃(·|k) = x(·)− x̂(·|k).
The initial condition is:

x̂(N + 1|N + 1) = 0, (49)
P (N + 1, N + 1, N + 1) = PN+1. (50)

Proof. The proof is straightforward by applying projec-
tion theory.

Theorem 3 provides a way to calculate x̂0
s, based on which

we can obtain our main result of the finite horizon LQR
as follows.
Theorem 4. Consider system (1) and cost function (2).
The optimal LQR controller u?(s) that minimizes (2) is
calculated by

u?(s) = −K ′(s, s)x(s)−
hs∑

i=0

K ′(s + i + 1, s)ũ?
s(s + i),

(51)
where hs is as defined in (16). ũ?

s(k) is given in (4) with
u(k−di) replaced by u?(k−di). K(s+i, s), i = 0, . . . , hs+1
can be calculated by Theorem 3.

Proof. From Theorem 3 we can write



x̂(s|s)
x̂(s + 1|s)

...
x̂(s + hs + 1|s)


 =




Φ′(s) 0 · · · 0
In 0 · · · 0
...

. . .
...

...
0 · · · In 0




×




x̂(s + 1|s + 1)
x̂(s + 2|s + 1)

...
x̂(s + hs + 2|s + 1)


 +




K(s, s)
K(s + 1, s)

...
K(s + hs + 1, s)


 e(s),

(52)
where e(s) = ȳ(s) − ˆ̄y(s|s + 1); x̂(s + hs + 2|s + 1) = 0
when s + hs + 2 ≥ N + 1. Denote

Ks =




K(s, s)
K(s + 1, s)

...
K(s + hs + 1, s)


 , (53)

K̄sȳs+1 =




Φ′(s) 0 · · · 0
In 0 · · · 0
...

. . .
...

...
0 · · · In 0







x̂(s + 1|s + 1)
x̂(s + 2|s + 1)

...
x̂(s + hs + 2|s + 1)




−Ks ˆ̄y(s|s + 1). (54)
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In the light of (39), the filter gain matrix Rx0
sȳs

R−1
ȳs

can
be derived as

Rx0
sȳs

R−1
ȳs

=
〈
x̂0

s, ȳs

〉
R−1
ȳs

=
〈[

Ks K̄s

] [
ȳ(s)
ȳs+1

]
,

[
ȳ(s)
ȳs+1

]〉
R−1
ȳs

=
[
Ks K̄s

]
. (55)

In view of (37), the optimal controller can be given by



u?(s)
...

u?(N)


 = −

[
K ′

s

K̄ ′
s

]



x(s)
ũs(s)

...
ũs(s + hs)


 . (56)

The first row block of (56) gives the optimal state feedback
control law.

From Theorem 4, u?(k) can be calculated step by step as
follows:

Step 1: Calculate Ks in (53).

(1) set s = N ;
(2) calculate Re(s) using (45);
(3) calculate K(s+ i, s), i = 0, . . . , hs +1 using (43), (44);
(4) update P (s + i + 1, s + j + 1, s + 1), i, j = 0, . . . , dl to

P (s+ i, s+ j, s), i, j = 0, . . . , dl using (46), (47), (48);
(5) s = s− 1;
(6) if s 6= 0, goto (1); otherwise, end Step 1.

Step 2: Calculate u?(k).

(1) set s = 0;
(2) calculate ũ(s + i), i = 0, . . . , hs using (4);
(3) calculate u(s) using (65);
(4) s = s + 1;
(5) if s 6= N , goto (1); otherwise, end Step 2.
Remark 3. Theorem 4 provides a solution to the finite
horizon LQR problem of the delay system (1) via a non-
augmentation approach. The computation of the optimal
control law involves a two-dimensional recursion of a Ric-
cati difference equation of the same dimension of the plant
(ignoring the delays). This approach is of a significant com-
putational advantage as compared with the augmentation
method which is demonstrated below.

We now give a comparison of computational complexity
between the augmentation method and the proposed one.
Because the multiplications and divisions cost much more
in computation than additions, we can use the number
of multiplications and divisions as the operation count.
Denote Caug and Cnew the the number of the multiplica-
tions and divisions for the augmentation method and the
proposed one in one step, respectively. Caug and Cnew can
be given as follows:

Caug = 2(n + dlm)3 + 4(n + dlm)2m + 3(n + dlm)m2

+ m3, (57)

Cnew = (dl + 1)n3 +
1
2

[(dl + l + 1)(dl + l + 2) + 2]n2m

+
1
2

[dl(dl + 3) + (l + 1)(l + 2)]nm2 + m3 + lnm.

(58)
From (57) and (58), it is clear that the order of dl in Caug

is 3, while the order of dl in Cnew is 2. So if dl is large
enough, Caug À Cnew.

5. SOLUTION TO THE INFINITE HORIZON LQR
CONTROL PROBLEM

In this section, we shall study the LQR control problem
for linear time-invariant systems in the infinite-horizon,
i.e., we consider the system

x(k + 1) = Φx(k) +
l∑

i=0

Γiu(k − di), x(0) = x0, (59)

and the following quadratic performance index:

J∞ = lim
N→∞

N∑

i=0

[u′(i)Ru(i) + x′(i)Qx(i)], (60)

where R > 0, Q ≥ 0 are weighting matrices on input signal
u and state x, respectively.

The infinite horizon LQR problem is to find a state
feedback control {u?(s), s ≥ 0} such that the closed-loop
system is asymptotically stable and the cost function J∞
is minimized.

Different from the finite horizon case, for the infinite
horizon case, we need to guarantee the asymptotic stability
of the closed-loop system. So, before extending the above
result to the infinite horizon case, the analysis of the
stability of the closed-loop system should be provided. To
this end, we first denote

Φ̄ =




Φ In · · · 0
...

...
. . .

...
0 0 · · · In

0 0 · · · 0


 , H̄ =




In

0
...
0




′

, Γ̄ =




Γ0

...
Γ1

...
Γl




,

P̄ (k) =




P (k, k, k) · · · P (k, k + dl, k)
...

. . .
...

P (k + dl, k, k) · · · P (k + dl, k + dl, k)


 .

Using the above notation, we can write the Riccati recur-
sions (46)-(48) in a compact form:

P̄ (k) = Φ̄′P̄ (k + 1)Φ̄ + H̄ ′QH̄ −K(k)Re(k)K ′(k), (61)

where
K(k) = Φ̄′P̄ (k + 1)Γ̄R−1

e (k), Re(k) = Γ̄′P̄ (k + 1)Γ̄ + R.

So we can analyze the standard Riccati difference equation
(61) instead of (46)-(48).

We recall the following lemma, see Anderson and Moore
[1979] and Chan et al. [1984].
Lemma 5. Consider the following algebraic Riccati equa-
tion (ARE):

P = F ′PF − F ′PG(G′PG + R)−1G′PF + Q, (62)

where Q ≥ 0 and R > 0. If (F, G) is stabilizable and
(Q

1
2 , F ) is detectable, then there exists a non-negative
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definite stabilizing solution P̄ to the ARE (62), i.e. there
exists a non-negative definite solution P̄ such that the
matrix F − G(G′P̄G + R)−1G′P̄F has all its eigenvalues
inside the unit disk. Furthermore, for any given P (0) ≥ 0,
the solution of the Riccati difference equation

P (k + 1) = F ′P (k)F + Q

− F ′P (k)G[G′P (k)G + R]−1G′P (k)F (63)
exists and converges to the stabilizing solution P̄ , i.e.
lim

k→∞
P (k) = P̄ .

Now, we are in the position to give the conditions guaran-
teeing the convergence of the Riccati recursions (46)-(48)
and the stability of the closed-loop system.
Theorem 6. For system (1) and cost function (2), if Φ is
invertible, (Φ,

∑l
i=0 Φ−diΓi) is stabilizable and (Q

1
2 ,Φ) is

detectable, then the solutions of Riccati recursions (46)-
(48) converge and the closed-loop system of (1) with the
converged control law given in Theorem 4 is asymptotically
stable.

Proof. Due to the space limitation, the proof is omitted.

From Theorem 6 we know that the closed-loop system
is stable, so we can design the optimal control using the
result of finite horizon. The steady-state solutions of the
Riccati difference equations (46)-(48) are denoted as

lim
k→∞

P (k + i, k + j, k) = P (i, j), i, j = 0, . . . , dl, (64)

and the corresponding K(k + i, k), i = 0, . . . , dl and Re(k)
can be denoted as K(i), i = 0, . . . , dl and Re, respectively.
Then, we have the following result.
Theorem 7. Consider system (59) and cost function (60).
If Φ is invertible, (Φ,

∑l
i=0 Φ−diΓi) is stabilizable and

(Q
1
2 ,Φ) is detectable, the infinite horizon LQR controller

u?(s) exists and is given by

u?(s) = −K ′(0)x(s)−
dl−1∑

i=0

K ′(i + 1)ũ?
s(s + i), (65)

where ũ?
s(k) is obtained from (4) with u(k − di) replaced

by u?(k − di) and K(i), i = 0, . . . , dl can be calculated by

K(i) =
l∑

j=0

P (i− 1, dj)ΓjR
−1
e , i = 1, . . . , dl (66)

K(0) = Φ′K(1), (67)

with

Re =
l∑

i,j=0

Γ′iP (di, dj)Γj + R, (68)

and P (i, j) satisfying the following Riccati recursions,

P (i, j) = P (i− 1, j − 1)−K(i)ReK
′(j),

i, j = 1, · · · , dl, (69)
P (0, j) = Φ′P (1, j), j = 1, · · · , dl, (70)

P (0, 0) = Φ′P (1, 1)Φ + Q. (71)

Proof. The proof is straightforward by extending the
finite horizon results and considering Theorem 6.
Remark 4. We note from Theorem 6 that under the stan-
dard stabilizability and detectability assumptions, the so-
lutions to (69)-(71) can be computed by recursions.

6. CONCLUSIONS

We have investigated both the finite horizon and infinite
horizon LQR control problems for discrete-time systems
with multiple delays in single input channel. An explicit
optimal controller is given in terms of the solutions of Ric-
cati recursions or algebraic Riccati equations. The stability
analysis has also been provided for the infinite horizon
case. Our approach has an advantage in computation
compared with the augmentation approach. It is worthy
mentioning that the result in this paper has been extended
to solve the control problem for continuous-time systems
with the same type of input delays.
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