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Abstract: In this paper, we consider design of interconnected H∞ feedback control systems with
quantized signals. We first assume that a decentralized state feedback has been designed for an
interconnected continuous-time LTI system so that the closed-loop system is stable and a desired
H∞ disturbance attenuation level is achieved, and that the subsystems’ states are quantized
before they are passed to the local controller. We propose a local-state-dependent strategy for
updating the quantizers’ parameters, so that the overall closed-loop system is asymptotically
stable and achieves the same H∞ disturbance attenuation level. We then extend the result to
the case of decentralized static output feedback where the measurement outputs are quantized,
and propose a local-output-dependent strategy for updating the quantizers’ parameters. Both
the pre-designed controllers and the quantizers’ parameters are constructed in a decentralized
manner, depending on local information. Copyright c© 2008 IFAC

Keywords: interconnected continuous-time LTI system, decentralized H∞ control, quantizer,
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1. INTRODUCTION

In classical feedback control theory, various signals or
data in the control loop have been assumed to be passed
directly without data loss, except in saturated systems.
However, this is not true in many real applications. For
example, in networked control systems Bushnell [2001],
Ishii & Francis [2002] where all signals are transferred
through network, package dropouts or data transfer rate
limitations always happen. Another important aspect,
which is well known in signal processing area, is signal
quantization. Since quantization always exists in computer
based control systems, many researchers have begun to
study the analysis and design problems for control systems
involving various quantization methods. Delchamps [1990]
addressed the problem of stabilizing an unstable linear
system by means of quantized state feedback, i.e., state
feedback where the measurements of the system state
are quantized. The quantizer in Delchamps [1990] takes
value in a countable set. Brockett and Liberzon [2000]
defined a quantizer taking value in a finite set and consid-
ered quantized feedback stabilization for linear systems.
It has been shown there that if it is possible to change
the sensitivity of the quantizer on the basis of available
quantized measurements, then a hybrid control strategy,
for both continuous- and discrete-time systems, can be
designed to guarantee global asymptotic stability. While
the approach in Brockett and Liberzon [2000] relies on the
possibility of making discrete online adjustments of quan-
tizer parameters, Liberzon [2003] extended the approach

for more general nonlinear systems with general types of
quantizers involving the states of the system, the measured
outputs, and the control inputs. The idea and results in
Liberzon [2003] are applied for stabilization of discrete-
time LTI systems with quantized measurement outputs in
Matsumoto et al. [2003].

Later, Zhai et al. [2004] considered the stabilization prob-
lem for a discrete-time LTI system via state feedback
involving both quantized states and control inputs. As
assumed in Liberzon [2003], the system considered in Zhai
et al. [2004] is supposed to be stabilizable and a stabi-
lizing state feedback has been designed without taking
quantization into account. However, the system’s states
are quantized before they are passed to the controller, and
the control inputs are quantized before they are passed to
the system. This is a natural setting in networked control
systems, where all informations (reference inputs, plant
outputs, control inputs, etc.) are exchanged through a
network among control system components (sensors, con-
trollers, actuators, etc.). Due to the quantization effects,
the desired system stability can not be guaranteed. For
this reason, Zhai et al. [2004] defined the two quantizers
with general forms as in Liberzon [2003] and then pro-
posed a hybrid quantized state feedback strategy where
the values of the quantizer parameters are updated at
discrete instants of time. Further, they extended the re-
sults to H∞ feedback control systems in Zhai et al. [2005],
dealing with both state feedback and dynamic output
feedback. The key point is to propose a state-dependent (or
output-dependent) strategy for updating the quantizer’s
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parameter, so that the system is asymptotically stable and
achieves the same H∞ disturbance attenuation level. It
was also noted in Zhai et al. [2005] that the control strate-
gies of updating the quantizer’s parameter are dependent
on time in the existing works (Brockett and Liberzon
[2000], Liberzon [2003], Matsumoto et al. [2003], Zhai et
al. [2004]), and such control strategies can not be applied
for the case of H∞ control systems since the value of the
disturbance inputs is not available and thus we can not
drive the state into an invariant region, as done in Liberzon
[2003], Matsumoto et al. [2003], Zhai et al. [2004]. As a
great contrast, the control strategy in Zhai et al. [2005] is
state or output dependent, which is usually regarded to
have more robustness.
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Fig.1 Interconnected Feedback System with Quantized State

or Quantized Measurement Output

In this paper, we extend the discussion in Zhai et al. [2005]
to interconnected feedback control systems, as described in
Fig. 1. As also noted later, although the discussion and
the result are valid for the case where there are more
than three subsystems involved, we assume for notation
simplicity that the number of subsystems is two. The
two subsystems have their own state, control input, mea-
surement output, disturbance input, controlled output,
and they interconnect each other through their states.
In decentralized control, the two controllers in Fig. 1 are
designed in a decentralized manner, depending on each
subsystem’s local state (or measurement output).

Now, as in our previous work, we assume that for each sub-
system, a local state feedback (or static output feedback)
has been designed such that the overall system is stable
and some H∞ disturbance attenuation level is achieved.
However, the subsystems’ local states (or outputs) are
quantized before they are passed to the controller, and due
to the quantization effects, the desired system stability and
H∞ disturbance attenuation level can not be guaranteed.
Here, we suppose that the quantizers are in a generalized
form and there is a zoom parameter which can adjusted.
Then, we propose to update the quantizers’ parameters in
a reasonable decentralized online manner, i.e., to change
the parameter’s value depending on each subsystem’s state

(or output) information. We show that under some flexible
sufficient condition, there exists a decentralized control
strategy for updating each quantizer’s zoom parameter,
such that the overall closed-loop system is asymptotically
stable and the same H∞ disturbance attenuation level is
achieved.

The rest of this paper is organized as follows. Section 2
gives the definition and the property of generalized quan-
tizer. Section 3 describes the control problem formulation
and how to predesign the controller in the case of decen-
tralized state feedback. Section 4 proposes a local-state-
dependent strategy for updating the quantizers’ parame-
ters, so that the overall closed-loop system is asymptoti-
cally stable and achieves the same H∞ disturbance attenu-
ation level. Section 5 extends the consideration to the case
of decentralized static output feedback, and obtain parallel
result. Finally, Section 6 gives some concluding remarks.

2. QUANTIZER DESCRIPTION

First, we give the definition of a quantizer with general
form as introduced in Liberzon [2003]. Let z ∈ �l be
the variable being quantized. A quantizer is defined as
a piecewise constant function q : �l → D, where D
is a finite subset of �l. This leads to a partition of �l

into a finite number of quantization regions of the form
{z ∈ �l : q(z) = i}, i ∈ D. These quantization regions are
not assumed to have any particular shapes. We assume
that there exist positive real numbers M and Δ such that
the following conditions hold:

(1) If
|z| ≤ M (1)

then
|q(z) − z| ≤ Δ . (2)

(2) If
|z| > M

then
|q(z)| > M − Δ .

Throughout this paper, we denote by | · | the standard
Euclidean norm in the n-dimensional vector space �n, and
denote by ‖ · ‖ the corresponding induced matrix norm
in �n×n. Condition 1 gives a bound on the quantization
error when the quantizer does not saturate. Condition 2
provides a way to detect the possibility of saturation. We
will refer to M and Δ as the range of q and the quantization
error, respectively. We also assume that q(x) = 0 for x in
some neighborhood of the origin. The example of satisfying
the above requirements is given by the quantizer with
rectangular quantization regions in Brockett and Liberzon
[2000], Liberzon [2000].

In the control strategy to be developed below, we will use
quantized measurements of the form

qμ(z)
�
= μq(

z

μ
) , (3)

where μ > 0 is the parameter. The extreme case of μ = 0 is
regarded as setting the output of the quantizer as zero. The
range of this quantizer is Mμ and the quantization error
is Δμ. We can view μ as a “zoom” variable: increasing
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μ corresponds to zooming out and essentially obtaining a
new quantizer with larger range and larger quantization
error, while decreasing μ corresponds to zooming in and
obtaining a quantizer with smaller range but also smaller
quantization error. We will update μ later depending on
the system local state (or the local measurement output).
In this sense, it can be considered as another state of the
resultant closed-loop system.

3. PROBLEM FORMULATION

Although the discussion in this paper can be easily ex-
tended to the case where more than two subsystems are
interconnected, we focus our attention on the case of two
subsystems (as in Fig. 1) which are described by{

ẋ1 = A11x1 + A12x2 + B11w1 + B21u1

z1 = C1x1 + D1w1

(4)

and {
ẋ2 = A21x1 + A22x2 + B12w2 + B22u2

z2 = C2x2 + D2w2

(5)

where x1 ∈ �n1 and x2 ∈ �n2 are the subsystems’
states, u1 ∈ �m1 and u2 ∈ �m2 are the control inputs,
w1 ∈ �h1 and w2 ∈ �h2 are the disturbance inputs,
z1 ∈ �p1 and z2 ∈ �p2 are the controlled outputs. The
matrices Aij ,Bij ,Ci and Di (i, j = 1, 2) are constant and of
appropriate dimension, and A12x2 in (4) and A21x1 in (5)
are the interconnection terms between the two subsystems.
We assume that the pairs (A11, B21) and (A22, B22) are
stabilizable.

Suppose that for the system (4) and (5), we have designed
a decentralized controller composed of two local state
feedbacks

u1 = K1x1 , u2 = K2x2 (6)
so that the closed-loop system, composed of (4), (5) and
(6), is stable and the H∞ norm of the transfer function
from w = [wT

1 wT
2 ]T to z = [zT

1 zT
2 ]T is less than a specified

level γ. More precisely, the closed-loop system is writen as{
ẋ = Ax + B1w

z = Cx + Dw
(7)

where x = [xT
1 xT

2 ]T , and

A =
[

A11 + B21K1 A12

A21 A22 + B22K2

]
,

B1 =
[

B11

B12

]
, C = [ C1 C2 ] , D =

[
D1 0
0 D2

]
.

(8)

Then, the hypothesis is that, without taking quantization
into consideration, the gains K1 and K2 in (6) are designed
so that A is stable and ‖D + C(sI − A)−1B1‖∞ < γ .
Therefore, according to the well known Bounded Real
Lemma Iwasaki et al. [1998], there exists a positive definite
matrix P satisfying the matrix inequality⎡

⎢⎣
AT P + PA PB1 CT

BT
1 P −γI DT

C D −γI

⎤
⎥⎦ < 0 . (9)

Furthermore, as in typical decentralized controller design
settings, we consider block-diagonal matrix P as P =
diag{P1, P2}. In this case, Pre- and post-multiplying (9)
by diag{P−1 , I , I}, and setting P−1

1 = Q1, P
−1
2 = Q2,

K1Q1 = M1, K2Q2 = M2, results in

⎡
⎢⎢⎢⎢⎢⎢⎣

A11Q1 + B21M1+

(A11Q1 + B21M1)
T A12Q2 + Q1AT

21 Q1CT
1 B11

A21Q1 + Q2AT
12

A22Q2 + B22M2+

(A22Q2 + B22M2)
T Q2CT

2 B12

C1Q1 C2Q2 −γI D

BT
11 BT

12 DT γI

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0

(10)

which is a linear matrix inequality (LMI) with respect
to Q1 > 0, Q2 > 0, M1 and M2. When it is feasible,
the state feedback gains are obtained by K1 = M1Q

−1
1 ,

K2 = M2Q
−1
2 . This is a well known design procedure

for decentralized state feedback of interconnected systems,
and we also assume that the state feedbacks (6) are
obtained using the above procedure.

Throughout this paper, we will let λm(·) and λM (·) denote
the smallest and the largest eigenvalue of a symmetric
matrix, respectively. Then, for any positive definite matrix
W , the inequality

λm(W ) |x|2 ≤ xT Wx ≤ λM (W ) |x|2 (11)

holds for any x.

Here, as depicted in Fig. 1, we deal with the case where
only quantized local state information is available. For
this reason, we modify the state feedback (6) using the
quantized information of x as

u1 = K1μ1q1(
x1

μ1
) , u2 = K2μ2q2(

x2

μ2
) . (12)

For any fixed positive scalars μ1 and μ2, the closed-loop
system composed of the systems (4), (5) and the new state
feedback (12) is given by

{
ẋ = Ax + B1w + F (μ, x)

z = Cx + Dw ,
(13)

where

F (μ,x) =

[
F1(μ1, x1)

F2(μ2, x2)

]
�
=

⎡
⎣ μ1B21K1

(
q1(

x1

μ1
) − x1

μ1

)
μ2B22K2

(
q2(

x2

μ2
) − x2

μ2

)
⎤
⎦ . (14)

Now, the control problem is very natural. Due to the
existence of quantization error, the stability of the closed-
loop system and the desired H∞ disturbance attenuation
level γ is not guaranteed. For this reason, we formulate
our control problem as follows:

Decentralized Quantizer Design Problem. Design a
decentralized control strategy which adjusts μ1 depending
on the local state x1 and adjusts μ2 depending on the
local state x2 appropriately, so that the stability of the
overall closed-loop system and the same H∞ disturbance
attenuation level γ is achieved.
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4. MAIN RESULT

Since (9) is a matrix inequality, we can always find a block
diagonal positive matrix R = diag{R1, R2} such that⎡

⎢⎣
AT P + PA + R PB1 CT

BT
1 P −γI DT

C D −γI

⎤
⎥⎦ < 0 (15)

which is equivalent to

⎡
⎢⎣ AT P + PA + R +

1
γ

CT C PB1 +
1
γ

CT D

BT
1 P +

1
γ

DT C −γI +
1
γ

DT D

⎤
⎥⎦ < 0 . (16)

We are in the position to state and prove the first main
result in this paper.

Theorem 1. Assume that for the two quantizers Mi is
chosen large enough compared to Δi so that

Mi > 2Δi
‖PiB2iKi‖

λm(Ri)
, i = 1, 2 . (17)

Then, there exists a control strategy for updating μi, which
is dependent on the local state xi, such that the closed-
loop system (13) is asymptotically stable and the H∞
disturbance attenuation level γ is achieved.

Proof. Since xi
μi

(i = 1, 2) is quantized before going to the
state feedback, we obtain by using the properties of general
quantizers in (1) and (2) that whenever |xi| ≤ Miμi, the
following holds. ∣∣∣∣qi(

xi

μi
) − xi

μi

∣∣∣∣ ≤ Δi (18)

We consider the Lyapunov function candidate
V (x) = xT Px (19)

for the closed-loop system (13). By using the matrix
inequality (16), we obtain that when |xi| ≤ Miμi, the
derivative of V (x) along solutions of (13) satisfies

V̇ = (Ax + B1w + F (μ, x))T
Px

+xT P (Ax + B1w + F (μ, x))

=
[
xT wT

] [
AT P + PA PB1

BT
1 P 0

][
x
w

]

+xT PF (μ, x) + FT (μ, x)Px

≤ [
xT wT

]
⎡
⎢⎣−R − 1

γ
CT C − 1

γ
CT D

− 1
γ

DT C γI − 1
γ

DT D

⎤
⎥⎦ [

x
w

]

+xT PF (μ, x) + FT (μ, x)Px

=− 1
γ

zT z + γwT w

−xT
1 R1x1 + xT

1 P1F1(μ1, x1) + FT
1 (μ1, x1)P1x1

−xT
2 R2x2 + xT

2 P2F2(μ2, x2) + FT
2 (μ2, x2)P2x2

≤− 1
γ

zT z + γwT w

−λm(R1)|x1|
(
|x1| − 2Δ1

‖P1B21K1‖
λm(R1)

μ1

)

−λm(R2)|x2|
(
|x2| − 2Δ2

‖P2B22K2‖
λm(R2)

μ2

)
. (20)

According to (17), we can always find a scalar ε ∈ (0, 1)
such that

Mi > 2Δi
‖PiB2iKi‖

λm(Ri)
× 1

1 − ε
, i = 1, 2 , (21)

which is equivalent to
1

1 − ε
× 2Δi

‖PiB2iKi‖
λm(Ri)

μi < Miμi , i = 1, 2 . (22)

Therefore, for any nonzero xi, we can find a positive scalar
μi such that

1
1 − ε

× 2Δi
‖PiB2iKi‖

λm(Ri)
μi ≤ |xi| ≤ Miμi . (23)

This is also true in the case of x = 0, where we set μ = 0 as
an extreme case and consider the output of the quantizer
as zero.

In other words, since we can always choose μ so that (23)
is satisfied, (20) holds and thus

V̇ ≤− 1
γ

zT z + γwT w − ελm(R1)|x1|2 − ελm(R2)|x2|2

≤− 1
γ

zT z + γwT w − ε
λm(R)
λM (P )

V

=−ε
λm(R)
λM (P )

V − 1
γ

Γ(t) , (24)

where Γ(t)
�
= zT (t)z(t) − γ2wT (t)w(t) .

First, by setting w = 0 in (24), we see clearly that the
system is asymptotically stable.

Next, since V (t) ≥ 0, we obtain from (24) that V̇ ≤
− 1

γ Γ(t), and thus for any t > t0,

V (t) − V (t0) ≤ − 1
γ

t∫
t0

Γ(τ)dτ . (25)

Using V (t) ≥ 0 again, we obtain
t∫

t0

zT (τ)z(τ)dτ ≤ γV (t0) + γ2

t∫
t0

wT (τ)w(τ)dτ , (26)

which implies that the H∞ disturbance attenuation level
γ is achieved. This completes the proof.

Remark 1. In the existing references (for example,
Liberzon [2003], Zhai et al. [2004]), the value of μ is
updated in a time-controlled manner, i.e., when to change
the value of μ is dependent only on time. This is not
possible for the present situation because we do not know
the value of w(t) and thus we can not drive x(t) into
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a specified invariant region, as done in Liberzon [2003],
Zhai et al. [2004]. To overcome this difficulty, we have
proposed a state-dependent strategy (23) for adjusting the
value of μ. As also pointed out in many other references,
such a state-dependent strategy is usually more robust to
modelling imperfection than time-dependent one.

Remark 2. There is an important observation concerning
the implementation of the quantizer proposed in this
section, and it is also valid for the quantizer in the next
section. We assume that the function qi(·), which may be
very complicated, has been designed and we implement
μiqi(xi

μi
) (NOT q(xi

μi
) only) as a parameter-dependent

quantizer. Since the variable of the function qi(·) is xi

μi
,

the quantizer can flexibly deal with large or small state
xi by adjusting the value of μi, so that the condition
(23) is satisfied. This is very important in H∞ control
problems since the state xi may be very large temporarily
due to unexpected disturbance input. In the case where
only qi(xi

μi
) is viewed as a quantizer, the output of the

quantizer has to be scaled by μi before it is passed to the
controller. The function qi(·) in this paper is a general
concept for quantization, and thus careful consideration is
required in real implementation.

Remark 3. Although the H∞ disturbance attenuation
level γ is fixed in this paper, the same discussion is
applicable for any positive γ > γopt, where γopt is the
optimal H∞ norm that the system composed of (4) and
(5) can reach via decentralized state feedback.

5. EXTENSION TO OUTPUT FEEDBACK

In the case where the state information is not available in
the feedback loop and also in the quantizer, we need to pull
out certain output information from the system and then
consider output feedback. For this reason, we consider in
this section the interconnected system described by⎧⎪⎨

⎪⎩
ẋ1 = A11x1 + A12x2 + B11w1 + B21u1

z1 = C1x1 + D1w1

y1 = E1x1

(27)

and ⎧⎪⎨
⎪⎩

ẋ2 = A21x1 + A22x2 + B12w2 + B22u2

z2 = C2x2 + D2w2

y2 = E2x2

(28)

where y1 ∈ �q1 and y2 ∈ �q2 are the local measurement
outputs, E1 and E2 are constant matrices of appropriate
dimension, and all the other vectors and matrices are the
same as before. We assume that the triples (A11, B21, E1)
and (A22, B22, E2) are stabilizable and detectable.

Although the following discussion is also valid for dy-
namical output case, we assume for notation simplicity
that, without taking quantization into consideration, a
decentralized static output feedback

u1 = K1y1 , u2 = K2y2 (29)

has been designed such that the overall closed-loop system
is stable and the H∞ norm of the transfer function from

w to z is less than a specified level γ. Then, the matrix
inequality (9) and (16) are satisfied with

A =
[

A11 + B21K1E1 A12

A21 A22 + B22K2E2

]
. (30)

Without causing confusion, we use the same notation A,
which is different from the matrix in (8). As in the previous
section, we suppose that the gains K1 and K2 are designed
in a decentralized manner using a block diagonal positive
definite matrix P .

Now, we deal with the case where only quantized mea-
surements of the output yi are available, and thus the
decentralized static output feedback (29) takes the form
of

u1 = K1μ1q1(
y1

μ1
) , u2 = K2μ2q2(

y2

μ2
) . (31)

Again, although we used the same quantizer notation q1

and q2 for notation simplicity, they are generally different
from the previous ones since the dimensions of xi and yi

are basically different.

The closed-loop system composed of (27), (28) and (31) is{
ẋ = Ax + B1w + F (μ, y)

z = Cx + Dw ,
(32)

where

F (μ, y) =

[
F1(μ1, y1)

F2(μ2, y2)

]
�
=

⎡
⎣ μ1B21K1

(
q1(

y1

μ1
) − y1

μ1

)
μ2B22K2

(
q2(

y2

μ2
) − y2

μ2

)
⎤
⎦ . (33)

Also, due to the existence of quantization error, the stabil-
ity and the desired H∞ disturbance attenuation level γ is
not guaranteed. Next, we propose a control strategy which
adjusts the quantizers’ parameters μ1 and μ2 appropri-
ately, depending on the local measurement outputs, so that
the stability and the desired H∞ disturbance attenuation
level γ is achieved.

Theorem 2. Assume that for the two quantizers Mi is
chosen large enough compared to Δi so that

Mi > 2Δi
‖PiB2iKi‖‖Ei‖

λm(Ri)
, i = 1, 2 . (34)

Then, there exists a control strategy for updating μi, which
is dependent on the local measurement output yi, such that
the closed-loop system (32) is asymptotically stable and the
H∞ disturbance attenuation level γ is achieved.

Proof. Since yi
μi

= Eixi
μi

(i = 1, 2) is quantized before
being passed to the feedback, we obtain by using the prop-
erties of general quantizers in (1) and (2) that whenever
|yi| ≤ Miμi, the inequality∣∣∣∣ yi

μi
− q(

yi

μi
)
∣∣∣∣ ≤ Δi (35)

is true. We consider the same Lyapunov function candidate
(19) for the closed-loop system (32). By making the same
calculation as in the proof of Theorem 1, we obtain that
when |yi| ≤ Miμi, the derivative of V (x) along solutions
of (32) satisfies
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V̇ = (Ax + B1w + F (μ, y))T Px

+xT P (Ax + B1w + F (μ, y))

≤− 1
γ

zT z + γwT w

−xT
1 R1x1 + xT

1 P1F1(μ1, y1) + FT
1 (μ1, y1)P1x1

−xT
2 R2x2 + xT

2 P2F2(μ2, y2) + FT
2 (μ2, y2)P2x2

≤− 1
γ

zT z + γwT w

−λm(R1)|x1|
(
|x1| − 2Δ1

‖P1B21K1‖
λm(R1)

μ1

)

−λm(R2)|x2|
(
|x2| − 2Δ2

‖P2B22K2‖
λm(R2)

μ2

)

≤− 1
γ

zT z + γwT w

−λm(R1)
|x1|
‖E1‖

(
|y1| − 2Δ1

‖P1B21K1‖‖E1‖
λm(R1)

μ1

)

−λm(R2)
|x2|
‖E2‖

(
|y2| − 2Δ2

‖P2B22K2‖‖E2‖
λm(R2)

μ2

)
.

(36)

According to (34), we can always find a scalar ε ∈ (0, 1)
such that

Mi > 2Δi
‖PiB2iKi‖‖Ei‖

λm(Ri)
× 1

1 − ε
, (37)

which is equivalent to
1

1 − ε
× 2Δi

‖PiB2iKi‖‖Ei‖
λm(Ri)

μi < Miμi . (38)

Similarly as in Theorem 1, if we choose the quantizer’s
parameter μi for any yi such that

1
1 − ε

× 2Δi
‖PiB2iKi‖‖Ei‖

λm(Ri)
μi ≤ |yi| ≤ Miμi , (39)

then (36) is true and thus

V̇ ≤ − 1
γ

Γ(t) − ελm(R1)
|x1|
‖E1‖|y1| − ελm(R2)

|x2|
‖E2‖|y2| .(40)

The remaining proof, concerning the asymptotic stability
and the H∞ disturbance attenuation level, is the same as
in Theorem 1, and is thus omitted.

Remark 4. The difference between the control strategies
(23) and (39) is that (23) is dependent on the local state xi

while (39) is dependent on the local measurement output
yi. This is natural since in the present situation we can
not obtain the state information directly.

Remark 5. Both the condition (17) in Theorem 1 and
the condition (34) in Theorem 2 are flexible, in the sense
that we can choose the matrices Pi, Ri (and Ki) so
that these conditions are satisfied. These matrices are not
independent and they must satisfy the matrix inequality
(16), but we still have much design freedom since it is
an inequality and we can incorporate some optimization
requirement when solving (9) and (16).

6. CONCLUSION

In this paper, we have studied stabilization and H∞ dis-
turbance attenuation problem for interconnected feedback
control systems where the states or the measurement out-
puts are quantized before they go to the controller. We
have proposed a local-state-dependent (or local-output-
dependent) control strategy for updating the quantizers’
parameters on line so that the overall closed-loop sys-
tem is asymptotically stable and achieves the same H∞
disturbance attenuation level as in the case where no
quantization is involved.

Our next interest is the H∞ disturbance attenuation
problem for interconnected feedback control systems with
two quantizers (quantization of both states/outputs and
control inputs), as mentioned in Zhai et al. [2004]. Fur-
thermore, the application of these results for design of
large-scale networked control systems is an interesting and
challenging problem.
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