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Abstract: This paper considers tasking a finite number of cooperative agents to randomly
emerging targets for their removal. Faults occur when some agents engaged in a mission are
expired. Agents are subject to threat at a level determined by the number of targets present.
On the other hand, the rate at which a target is removed depends on the number of cooperative
agents assigned to it. Faults effectively change the network architecture and therefore degrade the
network performance. Designs of control policies that determine the number of agents assigned
are based on the network life when expired agents cannot be replenished, and on the network
availability when expired agents are replenished at a certain rate. Tasking process is described
by a discrete event system in the form of a queuing network, where agents are servers and
targets are customers. Optimal policies are determined by solving a Markov decision problem.
To facilitate the reader’s understanding of the motivation, and of the problem, the agents are
specialized to networked pairs of airborne sensors that are tasked to locate non-cooperating
microwave transmitters as targets.

1. INTRODUCTION

This paper formulates and solves a new problem of task-
ing a finite number of cooperative agents to randomly
emerging targets for their removal. It focuses on enhancing
the network performance in the face of expiration of its
agents. The resulting network is said to be fault-tolerant.
When the agents considered are networked airborne sen-
sors, the mobility and a multiplicity of the sensing nodes
make fault-tolerance possible. Fault-tolerant tasking in
this paper is achieved by implementing operation policies
optimized for network availability.

Control of networked multiple agents has been an inten-
sively discussed topic recently in the controls literature
Antsaklis et al. [2007]. Oh et al. [2007], for example, de-
scribes a pursuit evasion game, where mobile agents are to
chase and capture multiple moving targets in a minimum
amount of time, and a network of stationary sensors serves
to help enhance the target observability in the game.

With unmanned aerial vehicles (UAVs) replacing station-
ary networks and manned vehicles, significant improve-
ments in network performance can be expected. Network-
ing in a hostile environment, however, poses new chal-
lenges. Data exchange inherent to a networked operation
and prolonged mission time due to poor execution expose
the otherwise passive location sensors, thus increase the
likelihood of the vehicles being destroyed.

Examine a situation where the motion of two unmanned
aerial vehicles (UAV) and a hostile radar lie within a
plane, as illustrated in Fig. 1. Let us assume that the two
⋆ This work was supported in part by the US Air Force Office of
Scientific Research under Grants FA9550-06-0456 and in part by
the US Air Force Research Laboratory under Contract FA8750-07-
1-0172.

Fig. 1. Transmitter location using a TDOA measurement
and an FDOA measurement by two airborne sensors.

vehicles are equipped to acquire both the time difference
of arrival and the frequency difference of arrival of the
radar signal Ho et al. [1997]. The sensors are mounted
on the vehicles, and thus are subject to the same speed
and curvature constraints as that of the vehicles. The
sensors are passive nodes when acquiring data from the
transmitter, but become active when exchanging data
between them in order to provide a location estimate.

It can be seen from Figure 1 that at least two sensor
carrying vehicles, which make both a TDOA measurement
and an FDOA measurement, are needed in a 2-dimensional
setting to locate the target. A noiseless measurement of
time difference of arrival by a pair of sensors on the two
vehicles is given by

sT =
1

c
[
√

(x2 − xe)2 + (y2 − ye)2

−
√

(x1 − xe)2 + (y1 − ye)2], (1)
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and a noiseless measurement of frequency difference of
arrival by the same pair of sensors is given by

sF =
fe

c
[
(x2 − xe)u2 + (y2 − ye)v2
√

(x2 − xe)2 + (y2 − ye)2

−
(x1 − xe)u1 + (y1 − ye)v1
√

(x1 − xe)2 + (y1 − ye)2
], (2)

where (xe, ye) is the transmitter location to be estimated,
(x1, y1) and (x2, y2) are the positions of the two vehicles,
respectively, (u1, v1) and (u2, v2) are the velocities of the
vehicles, fe is the carrier frequency of the transmitted
signal, and c is the speed of light.

Since the measurements are always noisy, multiple mea-
surements are needed for an accurate location estimation
of the emitter. Such measurements can be distributed
temporally along the trajectories of motion of a pair of
sensors, or spatially over multiple pairs of sensors, or both.
Measurements made by multiple pairs of sensors, which
form a network, offer greater degree of fault-tolerance,
and greater potential for improved speed and accuracy in
target location. The reader is referred to Ho et al. [1997]
and Torrieri [1984] for more detailed discussion on methods
for location estimation and accuracy analysis.

A tasking problem that is specific to this application refers
to that of allocating a finite number of sensor pairs to
randomly emerging microwave transmitters to maximize
the network availability. A tasking policy that is too
greedy tends to exhaust resources before the arrival of
unanticipated radars, whereas a tasking policy that is too
conservative tends to lengthen the exposure of the sensor
carrying vehicles. Tasking is treated as a server allocation
problem of a queuing network. Optimal policies are sought
as the solutions of Markov decision problems.

The paper is organized as follows. Section 2 modeling the
tasking process for a small scale sensor network. Section
3 designs supervisory control policies for optimal tasking
for the cases where lost sensors can and cannot be replen-
ished by solving appropriate Markov decision problems.
Section 4 evaluates the network performance in terms of
expected network life and steady-state availability. Section
5 concludes the paper.

2. MODELING OF TASKING PROCESS

An optimized tasking is one that maximizes the expected
life of the network where the lost airborne sensors cannot
be replenished, or one that maximizes the expected steady-
state availability of the network where the lost sensors can
be replenished. In this study fault-tolerance refers to the
network’s tolerance to vehicle loss.

Figure 2 is a queuing network model of a six-sensor,
finite target population tasking process, where each server
represents a pair of sensors capable of independently
locating a target to a certain accuracy in the absence other
pairs, and a customer is a randomly emerging target.

Each customer resides in the queue or a server is regarded
as a detected target which is being or to be served by one or
more servers or sensor-pairs. Service is complete as soon as
the target location is determined to a required accuracy. A

(a) One sensor-pair/target allocation

(b) Two sensor-pair/target allocation

(c) Three sensor-pair/target allocation

Fig. 2. A queuing network model of a three sensor-pair,
finite target population airborne sensor network.

target is then considered removed. A sensor-pair allocated
to a target is tied to the target until its service is complete,
or the life of the sensor-pair is terminated, whichever comes
first. The three delay elements of average delay 1/λ imply
that target population is limited by three at any given
time. A new target is generated or replenished at a delay
element with rate λ upon the service completion of a target
at one or multiple servers.

An supervisory control policy determines whether to al-
locate one, or two, or three pairs of sensors to each re-
ported target, with a corresponding mean service time of
1/µ1, (≥)1/µ2, (≥)1/µ3, respectively, where µi denotes the
service rate of committing i pairs of sensors to a target.
Given the sensing mechanism, the mean service time by
a single pair of sensors is in the range of seconds to tens
of seconds, dominated by the time required to adjust sen-
sor positions and velocities for continued data collection,
exchange, and processing needed for target location to a
required accuracy. Each sensor-pair has a mean lifetime
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1/ν0 ≥ 1/ν1 ≥ 1/ν2 ≥ 1/ν3, depending on the threat level
quantified by the number of targets present as indexed
by the subscript. 1/ν0 is the server life representing the
expected natural endurance of a vehicle, which is “often
an hour or so at best” Samad et al. [2007]. It also reflects
sensor lives affected by undetected targets. The network
is said to have expired when there is no longer a single
surviving sensor-pair.

Tasking process model is built in this study with the
premise that event life distributions have been established
for the process of target arrival (exp(λ) ≡ 1 − e−λt),
the process of target location (exp(µi)), the process of
loss of a sensor-pair (exp(νi)), and the process of sensor
replenishment (exp(ω)) when new sensor carrying vehicles
are supplied for an expired network. Since all event lives
are assumed to be exponentially distributed, the database
unit can be conveniently modeled as a Markov chain
specified by a state space X , an initial state probability
mass function (pmf) πx(0), and a set of state transition
rates λ, µi, νi, and ω.

A state name is coded with a 4-digit number indicative of
the number of targets present and the network configura-
tion. A valid state representation is given by QS, where
queue length Q ∈ {0, 1, 2, 3}, and server state S = (i, j, k),
with i ∈ {0, 1, 2, 3, 4}, and j ∈ {0, 1, 2, 3, 4, 5}, and k ∈
{0, 1, 3, 4, 5}. A server state “0”, represented by the value
of i, or j, or k, indicates an idle sensor-pair, a “1” indicates
a target’s being located by one server (or one sensor-pair),
a “2” and a “3” indicate that a target’s being located by
two and three cooperating servers, respectively, a “4” indi-
cates a lost server, and a “5” indicates that the lost server
has been tied to another server in serving a target. The
expired network requires 4 distinct states to memorize the
possible queue length distributions. Note that this state
specification has assumed homogeneous sensor-pairs and
homogeneous targets, and has made use of the symmetry
which results in 37 states. A set of alternative state names
are assigned from X = {1, 2, ..., 37} with 0000 mapped
to x = 1 and the network expiration states mapped to
x = 34, 35, 36, and 37.

Events that trigger the transitions and the corresponding
transition rates are given as follows. An emerging target
enters with rate (3 − Q) × λ. A target is located by one
sensor-pair with rate µ1, and i(> 1) cooperative sensor-
pairs with rate µi. In the latter case, the i servers are
configured as a single hyper-exponential server with i
parallel stages Cassandras et al. [1999]. An arriving target
enters any one of the servers with probability 1/i, which
has a service time distribution exp(µi). When service is
completed, the target is removed, while no new target can
enter service when the hyper-exponential server is busy.
The service time distribution of a hyper-exponential server
is

Fi(t) =

i∑

j=1

1

i
(1 − e−µit) = 1 − e−µit, (3)

which assumes homogeneity of the servers. Loss of a
sensor-pair occurs at rate mν0 when the network is idle
with m remaining sensor-pairs, mν1 when one target
emerges, and mνi when i(> 1) targets emerge. Replenish-
ment process begins at the network expiration with rate ω.
If one of the sensor-pairs is lost while locating a target with

other sensor-pairs, the surviving sensor-pairs continue to
locate the target at the same rate. This is a simple way
to memorize the service already being provided without
resorting to a more complex model.

Let X ∈ X denote the random state variable at time t.
The set of state transition functions is given by

pi,j(t) ≡ P [X(t) = j|X(0) = i], i, j = 1, 2, ..., 37. (4)

The continuous-time Markov chain can be solved from the
forward Chapman-Kolmogorov equation Cassandras et al.
[1999],Kao [1997]

Ṗ (t) = P (t)Q(u(x)), P (0) = I, P (t) = [pi,j(t)] (5)

and Q(u(x)) is called an infinitesimal generator or a rate
transition matrix whose (i, j)th entry is given by the rate
associated with the transition from current state i to
next state j. Table 1 summarizes information contained
in transition rate matrix Q(u(x)). Control variable u(x)
will be discussed shortly. State probability mass function
at time t

π(t) = [π1(t) π2(t) · · · π37(t)], t ≥ 0 (6)

can be solved from

π̇(t) = π(t)Q(u(x)), given π(t = 0). (7)

A Markov chain for the tasking process of Figure 2
has been established so far. Since transition rate matrix
Q is dependent on control actions, the state transition
functions pi,j(t) are being controlled, and so are the state
probabilities. Rate transition matrix Q is given in the form
of a table in Table 1.

X

Coded X Arrivals Completions Losses & Replenishements

Q S1 S2 S3 X' Rate X' Rate X' Rate X' Rate X' Rate X' Rate X' Rate X' Rate X' Rate

1 0 0 0 0 4 3* *u1 7 3* *u2 9 3* *u3 x x x x x x 2 3*v0 x x x x

2 0 4 0 0 5 3* *u1 8 3* *u2 x x x x x x x x 3 2*v0 x x x x

3 0 4 4 0 6 3* x x x x x x x x x x 34 v0 x x x x

4 1 1 0 0 10 2* *u1 13 2* *u2 x x 0 µ1 x x x x 5 3*v1 x x x x

5 1 1 4 0 11 2* x x x x 2 µ1 x x x x 6 2*v1 x x x x

6 1 1 4 4 12 2* x x x x 3 µ1 x x x x 35 v1 x x x x

7 1 2 2 0 13 2* x x x x 0 µ2 x x x x 22 2*v1*u1 8 v1*u2 x x

8 1 2 2 4 14 2* x x x x 2 µ2 x x x x 23 2*v1 x x x x

9 1 3 3 3 15 2* x x x x 0 µ3 x x x x 26 3*v1 x x x x

10 2 1 1 0 16  x x x x 4 µ1 x x x x 11 3*v2 x x x x

11 2 1 1 4 17  x x x x 5 µ1 x x x x 12 2*v2 x x x x

12 2 1 4 4 18  x x x x 6 µ1 x x x x 36 v2 x x x x

13 2 2 2 1 19  x x x x 7 µ1*u1 4 µ2*u2 x x 24 2*v2*u1 14 v2*u2 x x

14 2 2 2 4 20  x x x x 5 µ2*u1 8 µ2*u2 x x 30 2*v2 x x x x

15 2 3 3 3 21  x x x x 4 µ3*u1 7 µ3*u2 9 µ3*u3 28 3*v2 x x x x

16 3 1 1 1 x x x x x x 10 µ1 x x x x 17 3*v3 x x x x

17 3 1 1 4 x x x x x x 11 µ1 x x x x 18 2*v3 x x x x

18 3 1 4 4 x x x x x x 12 µ1 x x x x 37 v3 x x x x

19 3 2 2 1 x x x x x x 10 µ2*u1 13 µ2*u2 x x 25 2*v3*u1 20 v3*u2 x x

20 3 2 2 4 x x x x x x 11 µ2*u1 14 µ2*u2 x x 33 2*v3 x x x x

21 3 3 3 3 x x x x x x 10 µ3*u1 13 µ3*u2 15 µ3*u3 31 3*v3 x x x x

22 1 2 5 0 24 2* x x x x 2 µ2 x x x x 6 v1*u1 23 v1*u2 x x

23 1 2 5 4 30 2* x x x x 3 µ2 x x x x 35 v1 x x x x

24 2 2 5 1 25  x x x x 22 µ1*u1 5 µ2*u2 x x 12 v2*u1 30 v2*u2 x x

25 3 2 5 1 x x x x x x 24 µ1*u1 11 µ2*u2 x x 18 v3*u1 33 v3*u2 x x

26 1 3 3 5 28 2* x x x x 2 µ3 x x x x 27 2*v1 x x x x

27 1 3 5 5 29 2* x x x x 3 µ3 x x x x 35 v1 x x x x

28 2 3 3 5 31  x x x x 5 µ3*u1 8 µ3*u2 x x 29 2*v2 x x x x

29 2 3 5 5 32  x x x x 6 µ3 x x x x 36 v2 x x x x

30 2 2 5 4 33  x x x x 6 µ2 x x x x 36 v2 x x x x

31 3 3 3 5 x x x x x x 11 µ3*u1 14 µ3*u2 x x 32 2*v3 x x x x

32 3 3 5 5 x x x x x x 12 µ3 x x x x 37 v3 x x x x

33 3 2 5 4 x x x x x x 12 µ2 x x x x 37 v3 x x x x

34 0 4 4 4 x x x x x x x x x x x x 1 w x x x x

35 1 4 4 4 x x x x x x x x x x x x 4 w*u1 7 w*u2 9 w*u3

36 2 4 4 4 x x x x x x x x x x x x 10 w*u1 13 w*u2 15 w*u3

37 3 4 4 4 x x x x x x x x x x x x 16 w*u1 19 w*u2 21 w*u3

u1=I1, u2=I2, u3=I3, X : current state, X ': next state

Fig. 3. Transitions and transition rates of the tasking
process

3. DESIGN OF SUPERVISORY CONTROL POLICY

Several possible supervisory control policies associated
with tasking are examined. An aggressive policy allocates
as many available sensor-pairs to as many targets present;
A greedy policy allocates all available sensor-pairs to one
target at a time; A conservative policy always allocates
only one sensor-pair to every target present to reserve
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assets in anticipation of new targets. In addition, four
optimal policies have been attempted to minimize the cost
of sensor loss, threat level, unattended targets, and time
needed to replenish upon network expiration, respectively.

The optimal policies are obtained by solving Markov
decision problems of appropriate penalty functions. A
discrete-time Markov chain model suitable for this purpose
can be derived under each cost criterion by the application
of a uniformization procedure Kao [1997]

π(tk+1) = π(tk)[I +
1

ρ
Q(u(xk))], (8)

where the uniform rate ρ is greater than any total outgoing
transition rates at any states of the original continuous-
time Markov chain (7).

Each Markov decision problem considered in this paper as-
sumes that a cost, denoted by C(i, u), is incurred at every
state transition, where i is the state entered and u is a con-
trol action selected from a set of admissible actions Cassan-
dras et al. [1999], Bertsekas [1995]. A solution amounts to
determining a stationary policy π = {u(xk), k = 0, 1, · · · }
that minimizes the following expected total discounted
cost

Vπ(x0) = Eπ

∞∑

k=0

αkC(Xk, uk) (9)

where 0 < α < 1 is a discount factor. C(Xk, uk) in each of
the four Markov decision problems takes the form of total
number of lost sensor-pairs, ω−1 at the state of network
expiration, νi at the state where it is the server loss, and
Q at the state where it is the queue length, respectively.

Let Xk ∈ {1, 2, · · · , 37} denote the random state variable
at tk = k/ρ in the discrete time Markov chain. Control
action

u(xk) =

{
1, allocate one sensor-pair to a target
2, allocate two sensor-pairs to a target
3, allocate three sensor-pairs to a target

(10)
Note that the indicator functions in Table 1 are defined
follows

Ii =

{
1, u = i
0, otherwise

, i = 1, 2, 3. (11)

It is known Cassandras et al. [1999], Bertsekas [1995] that
under the condition 0 ≤ C(j, u) < ∞ for all j and all u that
belongs to some finite admissible sets Uj , the minimum
cost V ∗(i) satisfies the following optimality equation:

V (i) = min
u∈Ui






C(i, u) + α

37∑

j=1

pi,jV (j)






, u ∈ Ui, (12)

i = 1, · · · , 37, where pi,j is the (i, j)th entry of I +
1

ρ
Q(u(xk)).

The solution to (12) can be obtained via linear program-
ming Boyd et al. [2004], Bertsekas [1995]. In this case, the
set of optimality equations is turned into a set of affine
constraints on the set of optimization variables {V (i)},
and the problem can be formally stated as follows.

0 5 10 15 20 25 30 35 40
0

0.5

1
Greedy Policy

 

 

0 5 10 15 20 25 30 35 40
0

0.5

1
Conservative Policy

0 5 10 15 20 25 30 35 40
0

0.5

1
Aggressive Policy

0 5 10 15 20 25 30 35 40
0

0.5

1
Optimal Policy

state

I
1

I
2

I
3

Fig. 4. Control policy indicators. red: one sever/target;
green: two servers/target; blue: three servers/target

Maximize V (1) + V (2) + · · · + V (36) + V (37) (13)

Subject to V (i) ≥ 0, i ∈ X = {1, · · · , 37} (14)

V (i) ≤ [C(i, u) + α
∑

j

pi,jV (j)] |u, (15)

∀u ∈ Ui, i ∈ X .

In the tasking process considered, Uj is nonempty only at
state j = 1, 2, 4, 7, 13, 14, 15, 19, 20, 21, 22, 24, 25, 28,
31, 35, 36, 37. Therefore, (15) leads to 99 affine inequality
constraints. This problem is readily solvable by linprog

in MATLAB’s Optimization Toolbox MathWorks [2006].
The active constraints are checked with a MATLAB script
to determine the optimal control policy.

Figure 4 shows an example of 4 stationary control policies
depicted in terms of indicator functions, as defined in (11),
of the state x ∈ X . It can be seen that the optimal policy
takes into consideration of anticipated targets more than
the aggressive policy, but is much more aggressive in terms
of use of resources than the conservative policy. Among
the four optimal policies solved, only the policy derived
under the least sensor loss is plotted (bottom), which
will be shown shortly to outperform other three optimal
policies in terms of both MTTNE and availability. The
minimum queue length policy coincides with the greedy
policy, as expected. The other two optimal policies make
less aggressive use of resources than the optimal policy
shown. The least sensor loss policy will be called the
optimal policy from this point on.

The control policies are robust with respect to the range
of parameter variations that have been examined: ν1 ∈
[0.001, 0.01] 1/sec., and λ ∈ [0.001, 0.1] 1/sec. The optimal
policy is calculated at α = 0.0792. All optimal policies
drift slightly toward more conservative actions (using fewer
resources) as the discount factor α increases, which is
consistent with the outcome of the longer term policy
making. Because of the finite target population setup,
the effect of increasing the target arrival rate is not
fully reflective of the target traffic intensity. Simulations
with MATLAB SimEvets MathWorks [2006] are being
performed without limiting the target population.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3595



4. PERFORMANCE ANALYSIS

The seven policies developed in Section 3 are compared
against one another with respect to two common mea-
sures of fault-tolerance: mean time to network expiration
(MMTNE) and availability. These have been used in Wu
et al. [2005] in a similar fashion as performance measures
of a database unit.

When no replenishment is provided, the network life
eventually expires when all sensor-pairs are lost. This
occurs when the network enters one of its absorbing states
at 34, 35, 36, or 37. Decompose the state probability vector

π(t) = [πτ (t)
︸ ︷︷ ︸

1×33

πα(t)
︸ ︷︷ ︸

1×4

] (16)

where vector πτ (t) contains transient state probabilities,
and πα(t) contains absorbing state probabilities. Decom-
posing the rate transition matrix Q accordingly yields

Q =

[
Q11 Q12

0 0

]

(17)

From (17), it can be determined that mean time to network
expiration is given by

MTTNE = −πτ (0)Q−1
11 1τ , 1τ = [1 · · · 1

︸ ︷︷ ︸

1×33

]T (18)

Suppose as soon as the network expires, a replenishment
process starts. Suppose with a rate ω the airborne sensors
are replenished, and at the completion of the replenish-
ment, the tasking process immediately resumes. In this
case, the Markov chain (7) becomes irreducible, and a
unique steady-state distribution exists Kao [1997]. The
steady-state availability, which can be roughly thought
of as the fraction of time the network has at least one
surviving pair of sensors, is computed by

Anet = 1 − πF (∞), (19)

where πF (∞) = π34(∞) + π35(∞) + π36(∞) + π37(∞),
the sum of state probabilities associated with network
expiration, which can be determined by solving

π(∞)Q = 0, and

37∑

x=1

πx(∞) = 1. (20)

A slightly different notion of availability is also examined,
where the network is considered unavailable as long as
unattended targets are present. In this case, the network
availability is given by

Atgt =
11∑

i=1

πi(∞) + π13(∞) + π16(∞) + π2(∞)

+π23(∞) + π24(∞) + π26(∞) + π27(∞). (21)

Mean time to network expiration is plotted in Figure 5
against target arrival rate with two sets of sensor loss rates
as parameters at α = 0.0792. It shows that compromise
that optimal policy makes between being too greedy and
too conservative enhances the network life consistently for
all parameters values considered.

In Figure 6, availability is also plotted against target
arrival rate with two sets of sensor loss rates as parameters
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Fig. 5. Mean time to network expiration as a function of
target arrival rate with two sets of sensor loss rates as
parameters.
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Fig. 6. Network availability with at least one surviving
server.

at discount factor α = 0.0792. The observations from
the MTTNE apply in terms of the gain the optimal
policy offers. It is noted that the availability is low. This
is because of the low replenishment rate used in the
computation, which corresponds to an expected time of
more than 40 minutes to reestablish the lost network.

It is expected that the network availability defined as the
probability that all targets is lower than the availability
defined as the probability that there is at least one sur-
viving server. On the other hand, the dependence of both
notions of availability on the sensor loss rate and on the
target arrival rate stays the same. Figure 7 shows the plot
of the two availabilities against target arrival rate with two
sets of sensor loss rates νi as parameters under the optimal
policy.

Extensive simulations using MathWorks [2006] is being
conducted to generate a more complete picture of the
network performance in response to control policies for
a larger size of networks. The results will be reported
elsewhere.
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Fig. 7. Comparison between availability with at least
one surviving server (dash) and availability with all
targets being attended (solid).

5. CONCLUSIONS

This paper sought to determine supervisory control poli-
cies that best configure an airborne location sensor net-
work to provide a high degree of guarantee of prompt
completion of coordinated data acquisition and processing
missions in the face of loss of vehicles. Use of redundancy
and dynamic allocation of participating sensors was the
key enablers.

The paper presented a queuing network approach to opti-
mal sensor-pair assignment to locate detected targets for
a small scale airborne sensor network, where use of redun-
dancy is balanced with avoiding more vehicle exposure.

A number of related issues are being investigated. In addi-
tion to loss of sensors, degradation of network performance
can also be the result of broken communication links.
Such incidents are modeled as intermittent faults of the
servers in queuing networks. The effects of such faults
will be studied using discrete event simulations, which
will also examine possible emergent phenomenon of larger
networks, and non-homogeneous sensors and targets.

A highly relevant task is to solve a guidance and then a
control problem of the vehicles. Guidance problem Huang
et al. [2008] refers to that of establishing a criterion and
deriving a set of desired vehicle trajectories under the
criterion that the airborne sensors are expected to follow
to expedite the target location estimation to a required
accuracy. It is known that the quality of acquired data by
the airborne sensors depends highly on both the network
architecture which is determined by the number of sensor-
pairs, and the states of all participating sensors relative
to the target and to one another. A guidance principle
based on the entropy Cover et al. [1991] of the noise

distribution of the sensed signal has been established,
based on which one seeks to adjust the states of the sensors
to the most suitable positions and velocities for further
data acquisition and processing.

Once the guidance principle is determined, feasible vehicle
trajectories can be generated. Path following control can
be performed with time coordination Kaminer et al. [2006]
to achieve synchronous data acquisition by the sensors.
Both the guidance and the control problems are being
investigated, and will be reported separately in the near
future.
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