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Abstract: A new stability condition in terms of LMIs is studied in this paper, continuous-
and discrete-time fuzzy systems treated in a unified manner. Based on a premise-dependent
Lyapunov function and multiconvexity, we release the conservatism that commonly exists in the
common P approach.

1. INTRODUCTION

Recently a large number of literature on fuzzy control are
TS model-based control where, mostly, the common P
approach searching for a single Lyapunov function remains
active Wang et al. [1996], Tanaka et al. [1998], Kim and
Lee [2000], Blanco et al. [2000], Tuan et al. [2001]. Another
category emphasizes parameter-dependent functions with
multiple Pj matrices as a candidate of Lyapunov function
Johansson et al. [1999], Kiriakidis [2001], Chadli et al.
[2000], Tanaka et al. [2001a,b], Feng and Ma [2001], Cao
et al. [1996]. To remove the time-derivative dependence,
progress has been made recently in obtaining less con-
servative results using non-quadratic approach (multiple
Lyapunov functions) Morere et al. [1999], Guerra and
Perruquetti [2001], Guerra and Vermeiren [2001], Tanaka
et al. [2003] where a fuzzy Lyapunov candidate is used for
a discrete- and continuous-time T-S fuzzy model and the
resulting stability condition is shown to be more relaxed
than the condition derived from the common P approach.
In this paper, multiconvexity property from Apkarian and
Tuan [2000] is combined with premise-dependent Lya-
punov function to derive sufficient conditions for stability
test of TS fuzzy systems.

The paper is organized as follows. Section II rehearses
some useful results which forms the foundation for later
developments. Section III derives the stability conditions
for continuous- and discrete-time systems via a premise-
dependent Lyapunov in conjunction with multiconvexity
property. Two examples are illustrated in Section IV and
conclusion is drawn in Section V.

2. PRELIMINARIES

To begin with, we introduce the following definitions and
corollaries which serve as the entry point to this paper.

1 This work was supported in part by the National Science Council

of the ROC under grant NSC-95-2221-E-008-046.

A polytope Π in Rn is defined as the compact set

Π := {
r

∑

i=1

µivi :
r

∑

i=1

µi = 1, µi ≥ 0, vi ∈ Rn} = co V (1)

which constitutes the convex hull of the set V =
{v1, · · · , vr}. We denote the set of vertices of Π as vert Π :=
V .

The following corollary is a useful tool permitting us
to convert maximization of a function over a polytope
Π into exploring maximum of a function over vert Π.
The corollary below clarifies this fact Apkarian and Tuan
[2000]:

Corollary 1. (Multiconvexity). Consider a polytope Π and
the directions d1, · · · , dq determined by the edges of Π. f
has a maximum over Π in vert Π if the following is satisfied

∂2f(v + λdl)

∂λ2
≥ 0 ∀v ∈ Π, l = 1, · · · , q (2)

where v + λdl is a direction vector paralleling the edges of
Π.

To find applications of the Corollary 1 to Lyapunov theory,
it is instructive to consider the case in which f is a
quadratic function, f(µ) = µT Qµ + cT µ + a. In particular
f(µ) will be the time derivative function of a Lyapunov
candidate function.

3. STABILITY ANALYSIS

In this section, we derive a stability condition for an open-
loop fuzzy system that is displayed below:

δx =
r

∑

i=1

µiAix = Aµx (3)

where Ai is a system matrix of each rule i and µi ≥ 0 is
the firing strength of rule i. δ is a derivative operator for
continuous-time systems, (δx=ẋ(t)) and a delay operator
for discrete-time systems, (δx=x(k + 1)).
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Theorem 2. (Continuous Stability). The open loop sys-
tem (3) is stable if there exist symmetric, positive definite
matrices Xj and upper bounds |µ̇j |≤ φj satisfying the
following LMIs:

r
∑

ρ=1

φρXρ + XjA
T
j + AjXj < 0, 1 ≤ j ≤ r (4)

XiA
T
i + AiXi + XjA

T
j + AjXj − (XjA

T
i +

AiXj + XiA
T
j + AjXi) ≥ 0, 1 ≤ i < j ≤ r (5)

Proof:
Consider a quadratic function V (x(t))=xT (t)X−1

µ x(t),

where Xµ =
∑r

j=1
µjXj and Xj ’s are symmetric, positive

definite matrices such that for all t and Ẋµ =
∑r

ρ=1
µ̇ρXρ,

the time derivative of V (x(t)) along the state trajectories
is

V̇ (x) = ẋT X−1

µ x + xT X−1

µ ẋ + xT
dX−1

µ

dt
x

= xT (AT
µ X−1

µ + X−1

µ Aµ +
dX−1

µ

dt
)x.

Based on Lyapunov theory, a sufficient condition is

AT
µ X−1

µ + X−1

µ Aµ +
dX−1

µ

dt
< 0.

Pre- and post-multiplying the inequality above by Xµ

yields

XµAT
µ + AµXµ + Xµ

dX−1

µ

dt
Xµ < 0.

Since

dX−1

µ

dt
= −X−1

µ ẊµX−1

µ

we have

XµAT
µ + AµXµ − Ẋµ < 0

yielding

XµAT
µ + AµXµ −

r
∑

ρ=1

µ̇ρXρ < 0 (6)

By the virtue of the bounded µ̇ρ assumption, an upper
bound expression is given below:

LHS(6)≤
r

∑

ρ=1

φρXρ +
r

∑

i=1

r
∑

j=1

µiµjMij

=
r

∑

ρ=1

φρXρ + µT Mµ

= f(µ) < 0 (7)

where

|µ̇ρ| ≤ φρ, φρ ≥ 0 and µ = [µ1 · · ·µr]
′

M =







M11 · · · M1r

...
. . .

...
Mr1 · · · Mrr






,Mij = (XjA

T
i + AiXj)

and Mij are real symmetric, matrix-valued and linear
functions of decision variables (multiple Lyapunov matri-
ces) Xi. Note that the problem arisen with (7) involves
infinitely many LMIs associated with each value of the
parameter µ and is known to be intractable Apkarian and
Tuan [2000]. By enforcing some constraints of geometric
structure on the functional dependence in µ, it is possible
to reduce the problem to a feasibility problem of solving
a finite number of LMIs. To this end, we note that the
parameter vector µ = [µ1 · · ·µr]

′, known as the firing
strengths, evolves in the simplex defined below

Γ := {µ :
r

∑

i=1

µi = 1, µi ≥ 0}.

Recalling (1), we have the polytope Γ shown in Figure 1:
To ease the proof, we assume r = 3 so that a geometrical

Fig. 1. Firing strength in the three-dimension space

structure becomes tangible and the vertices of Γ can be
found to be v1 = [1, 0, 0]′, v2 = [0, 1, 0]′, v3 = [0, 0, 1]′ (see
Figure 1) and the sufficient condition (7) for r = 3 becomes

f(µ) =
3

∑

ρ=1

φρXρ +

[

µ1

µ2

µ3

]′ [

M11 M12 M13

M21 M22 M23

M31 M32 M33

][

µ1

µ2

µ3

]

< 0(8)

Equation (8) being a quadratic function of µ, Corollary 1
says that f(µ) is negative whenever it is multiconvex along
lines paralleling the edges of Γ and furthermore f(µ) is
negative over vert Γ. The remaining of the proof follows
in two phases: (A) showing the second derivative condition

(2) is satisfied so that the negativeness of V̇ is assured by
(B) checking the vertexes of Γ.

(A) To check the multiconvexity along the edges of Γ.

The directions dl, l = 1, · · · , q is determined by vectors
with all but two zero coordinates, the nonzero coordinates
having opposite signs.

Along the direction d1 := [1,−1, 0]′ of Figure 1, we get

f(µ + λd1) =
r

∑

ρ=1

φρXρ +

[

µ1 + λ
µ2 − λ

µ3

]′ [

M11 M12 M13

M21 M22 M23

M31 M32 M33

][

µ1 + λ
µ2 − λ

µ3

]
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which yields

∂2f

∂λ2
= M11 + M22 − M12 − M21.

Along the direction d2 := [0, 1,−1]′, we get

f(µ + λd2) =
r

∑

ρ=1

φρXρ + [ µ1 µ2 + λ µ3 − λ ]

[

M11 M12 M13

M21 M22 M23

M31 M32 M33

][

µ1

µ2 + λ
µ3 − λ

]

which yields

∂2f

∂λ2
= M22 + M33 − M23 − M32.

Similarly, along the direction d3 := [−1, 0, 1]′ we get

∂2f

∂λ2
= M11 + M33 − M13 − M31.

For r = 3, the multiconvexity is assured if

M11 + M22 − M12 − M21 ≥ 0

M22 + M33 − M23 − M32 ≥ 0

M11 + M33 − M13 − M31 ≥ 0

are satisfied. Arguing in the same fashion as r = 3 case,
we have the following results for the general case

Mii + Mjj − Mij − Mji

= XiA
′

i + AiXi + XjA
′

j + AjXj − (XjA
′

i + AiXj +

XiA
′

j + AjXi) ≥ 0, 1 ≤ i < j ≤ r.

This proves inequality (5). What follows is to

(B) check the vertices

At the vertex [1, 0, 0]′

f(v1) =
r

∑

ρ=1

φρXρ + [ 1 0 0 ]

[

M11 M12 M13

M21 M22 M23

M31 M32 M33

][

1
0
0

]

=
r

∑

ρ=1

φρXρ + M11.

At the vertex [0, 1, 0]′

f(v2) =
r

∑

ρ=1

φρXρ + [ 0 1 0 ]

[

M11 M12 M13

M21 M22 M23

M31 M32 M33

][

0
1
0

]

=
r

∑

ρ=1

φρXρ + M22.

Similarly, at the vertex [0, 0, 1]′ we have

f(v3) =
r

∑

ρ=1

φρXρ + M33.

For r = 3, to ensure negativeness, we need

r
∑

ρ=1

φρXρ + M11 < 0

r
∑

ρ=1

φρXρ + M22 < 0

r
∑

ρ=1

φρXρ + M33 < 0.

Paralleling the argument for r = 3, we arrive at the
following form for the general case.

r
∑

ρ=1

φρXρ + Mjj

=
r

∑

ρ=1

φρXρ + XjA
′

j + AjXj < 0, 1 ≤ j ≤ r.

This proves inequality (4).

Remark 1: The assumption of boundedness in the rate of
state-dependent firing strength µ is removed by using an
idea of piecewise differential quadratic (PDQ) Lyapunov
function and linear systems with jump Ma and Feng [2003].

Remark 2: By strengthening the condition in (4), one can
slightly relax the multiconvexity requirement in (5). As an
example, the feasibility problem to inequality (7) can be
equivalently recast into the following problem: There exist
matrices Zij such that the following inequality is feasible

r
∑

ρ=1

φρXρ +
r

∑

i=1

r
∑

j=1

µiµjMij < −
r

∑

i=1

r
∑

j=1

µiµjZij

where ∀µ ∈ Γ and

Z =









Z11 Z12 · · · Z1r

Z21 Z22 · · · Z2r

...
...

. . .
...

Zr1 Zr2 · · · Zrr









≥ 0.

Proof: Similar lines to those in Apkarian and Tuan [2000].

Arguing as in Theorem 1, the associated solvability condi-
tions are easily obtained as (1 ≤ j ≤ r, 1 ≤ i < j ≤ r)

r
∑

ρ=1

φρXρ + XjA
′

j + AjXj < −Zjj (9)

XiA
′

i + AiXi + XjA
′

j + AjXj − (XjA
′

i + AiXj

+XiA
′

j + AjXi) ≥ −(Zii + Zjj − Zij − Zji) (10)








Z11 Z12 · · · Z1r

Z21 Z22 · · · Z2r

...
...

. . .
...

Zr1 Zr2 · · · Zrr









≥ 0. (11)

Analogously, we will derive the stability condition for the
discrete-time open-loop system (3), demonstrating that
the multiconvexity property can be applied as well, con-
stituting a unified treatment for multiconvexity stability
analysis
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Theorem 3. (Discrete Stability). The open loop system
(3) is stable if there exist symmetric, positive definite
matrices Xj satisfying the following LMIs (1 ≤ i < j ≤ r):

[

−Xj XjA
′

j

AjXj −Xj

]

< 0, 1 ≤ j ≤ r (12)

[

0 ∗
AiXi + AjXj − (AiXj + AjXi) 0

]

≥ 0 (13)

Proof: Consider a quadratic function V (x(k)) = x′(k)X−1

µ x(k)

where Xµ =
∑r

j=1
µjXj . The time difference of V (x(k))

is displayed below:

∆V = V (x(k + 1)) − V (x(k))

= x′(k + 1)X−1

µ x(k + 1) − x′(k)X−1

µ x(k)

= x′(k)A′

µX−1

µ Aµx(k) − x′(k)X−1

µ x(k)

= x′(A′

µX−1

µ Aµ − X−1

µ )x < 0.

A sufficient condition is

A′

µX−1

µ Aµ − X−1

µ < 0

yielding

XµA′

µX−1

µ AµXµ − Xµ < 0.

Schur complement gives
[

−Xµ XµA′

µ

AµXµ −Xµ

]

< 0

Rewriting the matrix inequality yields

0 >













−
r

∑

j=1

µjXj ∗

r
∑

i=1

r
∑

j=1

µiµjAiXj −
r

∑

j=1

µjXj













=−
r

∑

j=1

µj

[

Xj 0
0 Xj

]

+
r

∑

i=1

r
∑

j=1

µiµj

[

0 XjA
′

i

AiXj 0

]

=−µ′M̂ + µ′M̃µ

= f(µ) (14)

where µ = [µ1 · · · µr]
′ and

M̂ =







M1

...
Mr






, Mj =

[

Xj 0
0 Xj

]

M̃ =







M11 · · · M1r

...
. . .

...
Mr1 · · · Mrr






Mij =

[

0 XjA
′

i

AiXj 0

]

Notice that the matrices Mj and Mij are real symmetric,
matrix-valued and linear functions of decision variables
(multiple Lyapunov matrices) Xi.

For r = 3, we have (14) displayed below.

f(µ) = −

[

µ1

µ2

µ3

]′ [

M1

M2

M3

]

+

[

µ1

µ2

µ3

]′ [

M11 M12 M13

M21 M22 M23

M31 M32 M33

][

µ1

µ2

µ3

]

Arguing in the same fashion as in the proof of continuous
case, we

(A) check multiconvexity condition: Along the direction
d1 := [1,−1, 0]′ (Figure 1), we get

f(µ + λd1) = −

[

µ1 + λ
µ2 − λ

µ3

]′ [

M1

M2

M3

]

+

[

µ1 + λ
µ2 − λ

µ3

]′ [

M11 M12 M13

M21 M22 M23

M31 M32 M33

][

µ1 + λ
µ2 − λ

µ3

]

Then

∂2f

∂λ2
= M11 + M22 − M12 − M21.

Similar to the first direction just shown, along the direction
d2 := [0, 1,−1]′ we get

∂2f

∂λ2
= M22 + M33 − M23 − M32.

and along the direction d3 := [−1, 0, 1]′, we get

∂2f

∂λ2
= M11 + M33 − M13 − M31.

For r = 3, the multiconvexity condition is satisfied if

M11 + M22 − M12 − M21 ≥ 0

M22 + M33 − M23 − M32 ≥ 0

M11 + M33 − M13 − M31 ≥ 0.

Arguing in the same fashion as r = 3 case, we have the
following results for the general case (1 ≤ i < j ≤ r)

Mii + Mjj − Mij − Mji

=

[

0 ∗
AiXi + AjXj − (AiXj + AjXi) 0

]

≥ 0

This proves inequality (13).

(B) Check vertexes condition:

At the vertex [1, 0, 0]′

f(v1) =−

[

1
0
0

]′ [

M1

M2

M3

]

+

[

1
0
0

]′ [

M11 M12 M13

M21 M22 M23

M31 M32 M33

][

1
0
0

]

=−M1 + M11.

Similar to vertex [1, 0, 0]′, we arrive at the following
expression for the vertex [0, 1, 0]′

f(v2) =−M3 + M33.

For r = 3, to ensure negativeness, we need

−M1 + M11 < 0

−M2 + M22 < 0

−M3 + M33 < 0.

Paralleling the argument for r = 3, we arrive at the
following form for r > 3
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−Mj + Mjj

=

[

−Xj 0
0 −Xj

]

+

[

0 XjA
′

j

AjXj 0

]

< 0

=

[

−Xj XjA
′

j

AjXj −Xj

]

< 0, 1 ≤ j ≤ r.

This proves inequality (12).

Remark 3: Likewise, by strengthening the condition in
(12), one can slightly relax the multiconvexity requirement
in (13). (See Remark 1)

−
r

∑

j=1

µjMj +
r

∑

i=1

r
∑

j=1

µiµjMij < −
r

∑

i=1

r
∑

j=1

µiµjZ̄ij

where ∀µ ∈ Γ and

Z =









Z̄11 Z̄12 · · · Z̄1r

Z̄21 Z̄22 · · · Z̄2r

...
...

. . .
...

Z̄r1 Z̄r2 · · · Z̄rr









≥ 0, Z̄ij =

[

Zij1 Zij2

Zij2 Zij3

]

Proof: Similar lines to those in Apkarian and Tuan [2000].

Arguing as in Theorem 2, the associated feasibility condi-
tions are easily obtained as (1 ≤ j ≤ r, 1 ≤ i < j ≤ r)

[

−Xj + Zjj1 ∗
AjXj + Zjj2 −Xj + Zjj3

]

< 0 (15)





Zii1 + Zjj1 − Zij1 − Zji1
(

AiXi + Zii2 + AjXj + Zjj2

−(AiXj + Zij2 + AjXi + Zji2)

)

⋆
Zii3 + Zjj3 − Zij3 − Zji3

]

≥ 0 (16)









Z111 Z112 · · · Z1r2

Z112 Z113 · · · Z1r3

...
...

. . .
...

Zr12 Zr13 · · · Zrr3









≥ 0. (17)

4. EXAMPLES

In order to appreciate the efficiency of the proposed
method, we consider examples where the T-S fuzzy models
are borrowed from existing papers.

4.1 Continuous fuzzy systems

A continuous fuzzy system, borrowed from Tanaka et al.
[2003], composed of the following two rules

R1 : IF x1(t) is M1, THEN ẋ(t) = A1x(t)

R2 : IF x1(t) is M2, THEN ẋ(t) = A2x(t)

The fuzzy sets are described by the following two triangu-
lar membership functions:

µ1(x(t)) =
1 + sin(x1(t))

2
, µ2(x(t)) =

1 − sin(x1(t))

2

and

A1 =

[

−5 −4
−1 −2

]

, A2 =

[

−2 −4
20 −2

]

the global T-S fuzzy model is:

ẋ(t) = (µ1(x(t))A1 + µ2(x(t))A2)x(t)

With φ1 = 0.85, φ2 = 0.85 and solving (9)-(11) and the
following matrices are obtained:

X1 =

[

15.9551 −13.0451
−13.0451 19.0928

]

,X2 =

[

6.3777 0.9237
0.9237 27.7212

]

Z11 =

[

18.1033 5.6567
5.6567 5.2445

]

, Z12 =

[

−52.5093 −154.8967
−154.8967 588.9001

]

Z21 =

[

0.1002 − 0.0334
−0.0334 − 0.5345

]

× 10−16

Z22 =

[

6.9587 −1.3361
−1.3361 17.0730

]

.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.1

0

0.1

0.2

0.3

Time (t)

X
1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.1

0

0.1

0.2

0.3

Time (t)

X
2

Fig. 2. States trajectory of (1) with initials values
x(0)=[0.15 0.15].

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3
x 10

−3

Time (t)

V
(x

(t
))

Fig. 3. Time transient of fuzzy Lyapunov function.

4.2 Discrete fuzzy systems

Consider a discrete-time fuzzy system borrowed from Feng
[2004] in which the rule base listed below:

Rl : IF xl(t) is µl, THEN ẋ(t) = Alx(t), for l = 1, ...., 7

The system matrices are given as

A1 =

[

1.0000 0.5000
−0.3000 0.8000

]

A2 =

[

1.0000 0.4875
−0.2750 0.8000

]
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A3 =

[

1.0000 0.4750
−0.2500 0.8000

]

A4 =

[

1.0000 0.4500
−0.2000 0.8000

]

A5 =

[

1.0000 0.4250
−0.1500 0.8000

]

A6 =

[

1.0000 0.4125
−0.1250 0.8000

]

A7 =

[

1.0000 0.4000
−0.1000 0.8000

]

.

By using the matlab LMI toolbox, one can easily verify
that for the common P solution, there exists no positive
definite matrix for the fuzzy system to guarantee its
stability. In other words, the fuzzy does not admit a global
quadratic Lyapunov function. By solving (15)-(17) and the
following matrices are obtained:

X1 =

[

12.6862 −2.6269
−2.6269 7.5386

]

,X2 =

[

12.6589 −2.6219
−2.6219 7.5225

]

X3 =

[

14.6175 −3.0920
−3.0920 7.7062

]

,X4 =

[

15.6588 −3.3812
−3.3812 7.2376

]

X5 =

[

16.4814 −3.6419
−3.6419 6.5599

]

,X6 =

[

16.8279 −3.7749
−3.7749 6.1639

]

X7 =

[

9.0780 −1.3718
−1.3718 8.1157

]

indicating a stable system.

5. CONCLUSION

In this paper, two stability conditions based on multicon-
vexity are developed for both continuous- and discrete-
time T-S fuzzy systems. The proposed approach utilizes a
premise-dependent Lyapunov function to prove Lyapunov
stability of the underlying fuzzy systems, leading to a
non-common P method that releases the conservatism of
the common P scheme. It is shown and demonstrated via
examples that the stability can be determined by solving
a set of LMIs.
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