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Abstract: We are considering the problem of identifying Wiener systems that includes memoryless 
nonlinearities. The focus is made on the determination of the system nonlinearity which is not necessarily 
invertible, smooth or parametric. To this end, a frequency approach is developed, that investigates the 
system output extrema. In the case where the nonlinearity is strictly monotonic, a simple experiment is 
performed involving the application of a sine signal. In the general case, such an experiment is repeated a 
few times with different amplitudes. 

 
 
 

 

1. INTRODUCTION 

An important research activity is devoted to the problem of 
nonlinear system identification based on Wiener models. 
Most of the proposed solutions have been developed 
supposing that the nonlinearity is a polynomial of known 
degree and the linear part is a transfer function of known 
order, see e.g. (Chou et al., 1999), (Hasiewicz, 1987), 
(Hunter et al., 1986), (Nordsjö, 2001), (Pajunen, 1992), 
(Voros, 1997) and (Wigren, 1993). The proposed 
identification algorithms has used iterative optimisation 
methods. But, these are shown to be efficient provided that 
the iterative process converges, e.g. see (Voros, 1997), 
(Wigren, 1993). Unfortunately, the convergence is not 
guaranteed except under restrictive conditions ((Wigren, 
1993)).  Frequency-type solutions have also been proposed, 
see e.g. (Gardiner, 1993). The idea is to apply repeatedly a 
sinusoidal input with different amplitudes and frequencies. 
Then, exploiting the polynomial nature of the nonlinearity, 
the input-output equation can be uniquely solved with respect 
to the unknown parameters. Nonparametric nonlinearities 
have in turn been dealt with using different approaches. In 
(Greblicki, 1992)-(Greblicki, 1997), the identification 
problem is coped with using stochastic tools. But, the input 
signal is assumed to be a white noise and the nonlinearity is 
supposed to be invertible. In (Bai, 2003) a frequency solution 
is proposed for noninvertible nonlinearities. However, that 
phase estimator is not generally consistent and, consequently, 
the consistency of the overall identification method is, in 
turn, not generally guaranteed, see (Giri et al., 2007). 

In this paper, we are considering Wiener system 
identification in presence of not necessarily parametric, 
invertible and smooth nonlinearities. The focus is precisely 
made on the estimation of the nonlinearity, knowing that if 
this were available then the linear subsystem could be 

recovered using exiting methods (e.g. (Hu et al., 2005)). To 
this end, we will investigate the correlation between the 
extrema of the (unmeasured) internal signal )t(x  and those 
of the system output )t(y .  

2. IDENTIFICATION PROBLEM STATEMENT 

2.1 Class Identified Systems 

We are considering nonlinear systems that can be described 
by the Wiener model (Fig.1), with a memoryless nonlinear 
element characterized by a piecewise continuous function 

(.)f . The above model is analytically described by the 
following equations: 

 )t(u*)t(g)t(x =  (1) 

 )t())t(x(f)t(y ν+=  (2) 

g(t) denotes the inverse Laplace Transform of G(s);  x(t) is a 
(non-measurable) internal signal; the noise )t(ν  is a 
supposed to be a zero-mean stationary ergodic stochastic 
process. 

 G(s)  f(.) 
u(t) x(t) y(t)

ν(t) 

 
Fig. 1. Wiener model 

2.2 Identification objective 

 Our purpose is to design an identification scheme that 
determines the function )x(f , in the interval 

)j(GUx)j(GU ωω ≤≤− , for a given couple 
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0,0U >> ω  . Since x(t) is not measurable, the system 
identification should be fully based upon measurements of 
the input )t(u  and the output )t(y . Therefore, the 
considered identification problem does not have a unique 
solution: if the couple ( )G(s) ),x(f  represents a solution 
then, any couple of the form ( )G(s)/K ),Kx(f   is also a 
solution (where K is any nonzero real). Such a lack of 
uniqueness, will be exploited (in Section 3) to cope with the 
uncertainty on the amplitude of the internal signal )t(x . 

3. BASIC MATHEMATICAL FACTS 

3.1 Wiener Model Rescaling and Identification Problem 
Reformulation 

All along this Section, the identified system is submitted to a 
given sine input: 

 
)tsin(U)t(u ω=    (t ≥ 0) (3) 

 
where the amplitude  U>0 and the frequency 0>ω  are kept 
constant. Let T be the corresponding period   ( ωπ /2T = ). 
Then, it follows from (1) that the internal signal turns out to 
be (in steady state)  

)tsin(X)t(x Uu ϕω −= with )j(G.UXU ω=  and 

( ))j(G ωϕ arg −= . The resulting output signal is 
)t())t(x(f)t(y u ν+= . The above expression of )t(xU  is 

preferably rewritten in the following form: 
 

))tt(cos(X)t(x UU ϕω −=  with:     2//t
def

πωϕϕ +=  (4) 
 

)t(xU  is not available since neither the amplitude XU nor the 
phaseϕ  are known. The first uncertainty can be coped with 
rescaling the system model (1) (making use of the fact that 
the model is not unique). Specifically, the focus will be made 
on the following rescaled models: 

 

( )(s)G,f)U(M UU

def
+++ =  , ( )(s)G,f)U(M UU

def
−−− =    (5) 

with: )X(f)x(f)X(f)x(f UUU x       ,x U −== −+             (6) 

       )s(G
X
1(s)G

U
U =+ ,    )s(G

X
1(s)G

U
U −

=− . (7) 

 
The new models (5) also represent the system and generate 
respectively the following internal signals: 

 
 ))tt(cos()t(x ++ −= ϕω ,  ))tt(cos()t(x −− −= ϕω  (8) 
 
where ϕϕ tt =+ ; ωπϕϕ /tt +=− . That is, the new internal 
signals are independent on the amplitude U (contrarily to the 
signal )t(xU  associated with the initial model (1)). 

Nevertheless, all models generate the same output, i.e. 
 
 )t()t(y)t(y u ν+=  (9) 

with: ))t(x(f))t(x(f))t(x(f)t(y UUUU === −−++           (10) 
 
In the light of the above observations, it is clear that the 
parameter ϕt  turns out to be the only uncertain parameter. In 

the sequel, we seek identification of either +f  or −f . Notice 
that these are not distinguishable from the system input and 
output signals (u(t), y(t)). So, it is not important which one of 
them will actually be determined.  

3.2 Analysis of Internal and Output Signals Extrema 

The identified system is submitted to the sine input  (3) 
where U>0 and 0>ω  are constant. First, let us investigate 
the correspondence between the extrema of )t(x+  and 

)t(x− , on one hand, and those of )t(yU , on the other hand. 

3.2.1 Correspondence between extrema of the internal 
signals and those of the undisturbed output: 

It is clear that the global extrema of )t(x +  and )t(x−  occur 

at the instants: 

ωπϕ /itti +=    (i=0, 1, 2, …) (11) 

On the other hand, one gets from (10): 

dt
)t(dx

))t(x(
dx

df
dt

)t(dx
))t(x(

dx
df

dt
)t(dy UUU

−
−

−+
+

+

==  (12) 

Then, one has, for all integers i:  

 0
dt

)t(dy iU =  (13) 

That is, each extremum of )t(x+  and )t(x−  gives rise to an 

extremum of )t(yU  and all these extrema occur at the same 
instants defined by (11), independently of the input 
magnitude. However, it is clear from (12) that )t(yU  may 
well have other extrema occurring at different instants. These 
are simply the solutions of the equations: 

 0))t(x(
dx

df0))t(x(
dx

df UU == −
−

+
+

          ,  (14) 

In the sequel, the focus will only be made on the extrema (of 
)t(x+ , )t(x− , )t(yU ) that occur at the instants it   defined 

by (11). Indeed, if one of these were identified it would be 
possible to determine the quantities ( −+

ϕϕ t ,t ) and, 
equivalently, the unknown phase ϕ .  The crucial issue is 

how to recognize the it ’s  when only a recording of the 
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(disturbed) output signal y(t) is available? The following 
subsection is a first step to answer such a question. 

3.2.2 Characterization of internal signal extrema using the 
measured output:  

First, notice that when the system is excited by the sine input 
defined by (3), the undisturbed output )t(yU  is, in steady-
state, periodic with period ωπ m/2m/T = , for some 
(unknown) integer 1m ≥ .  Then, the effect of output noise 
can be removed resorting to the following specific filtering: 

 ∑
−

=

+=
1N

0k

def
)kTt(y

N
1)N,t(y  for t∈[0, T) (15) 

where ωπ /2T =  and N is a sufficiently large integer. The 
averaged output thus defined is now related to the 
undisturbed output )t(yU : 

Proposition 3.1. Consider the system (1), submitted to 
Assumptions A1-A3, excited by the sinusoidal input (3) 
where U>0 and 0>ω  are arbitrary but constant. Then, for 
t∈[0, T): )t(y)N,t(ylim U=

∞→N
  (w.p.1). Consequently, one 

has for 0tt =  and 1tt = : ( ) 0)N,t(ylim
dt
d

=
∞→N

   (w.p.1), where 

the s'ti  are defined by (11).    � 

Proof. As )t(yU  is (in steady-state) periodic with period 
m/T , it follows from (9) that, for any real t and all integers 

k : 

)kTt(v)t(y)kTt(y U ++=+  (16) 

On the other hand, the ergodicity of )t(v implies that, for any 
fixed t: 

0))kTt(v(E)kTt(v
N
1 lim

N

1kN
=+=+∑

=∞→
  (w.p.1) (17) 

Combining this with (16), one gets, for all t: 

)t(y)kTt(y
N
1lim U

N

1kN
=+∑

=∞→
  (w.p.1) 

This proves the proposition � 

It is thus established that, just as )t(yU , the averaged output 
)N,t(y  has in turn two extrema in [0, T), occuring at the 

instants it ( 1,0i = ) defined by (11). It may happen that 
)N,t(y  possesses other extrema at different instants. But, 

the extrema of interest are those occurring at the instants it . 
Now, the question is: how to recognize these instants when a 
recording of the undisturbed system output is available? To 
answer such a question, a procedure is described in Section 4 
for the case of strictly monotonic functions (.)f . The general 
case is considered in section 5.  

 

4. IDENTIFICATION OF MONOTONIC FUNCTIONS 
(.)f   

The system is again submitted to a sine input 
)tsin(U)t(u ω=  where the amplitude U>0 and the 

frequency 0>ω are kept constant all along the present 
section. Furthermore, the function (.)f  is presently supposed 
to be either (strictly) increasing or (strictly) decreasing. It is 
clear that if (.)f  is increasing then (.)fU

+  and (.)fU
−  will, 

respectively, be increasing and decreasing and vice-versa. 
Whatever the precise situation, one has:

 0)x(
dx

df0)x(
dx

df UU ≠≠
−+

     and       (for all x) 

which yields, due to (12): 

0
dt

)t(dx
dt

)t(dx
0

dt
)t(dyU ==⇔=

−+

 

     , ...)2, 1, 0(itt i ==⇔   (18) 

Then, it follows from (18) that )t(yU  has no other extrema 

than those occurring at the instants it . Furthermore, the 
monotony of (.)fU

+  and (.)fU
−  implies that these extrema are 

global, just as are the corresponding extrema of  )t(x+  and 

)t(x− . Moreover, if the maximums of )t(yU  occur at the 

instants  j2t , then its minimums will necessarily occur at the 

instants 1j2t + . Let ...) 2, 1, 0,(i  =iτ  denote the instants where 

)t(yU  really takes its maximums. Then, since )t(yU  has the 
same period as )t(u , one has: 

 )(  ,...2,1i/21ii ==− − ωπττ  (19) 

The following proposition shows that, if one of the instants 
)(  , ...2, 1, 0ii =τ  were known then it would be possible to 

determine the model nonlinearity. 

Proposition 4.1. Consider the system (1) submitted to the 
input signal (3) where U>0 and 0>ω  are arbitrary but 
constant.  

1) If (.)f  is strictly monotonic, there exists a Wiener model 
{ })U(M),U(MM * −+∈   such that the maximums of the 

corresponding internal signal, say )t(x* ,  occur at the 
instants )(  , ...2, 1, 0ii =τ .  

2) More precisely, if (.)f  is increasing (resp. decreasing) 
then )U(MM * +=  and )t(x)t(x* +=  (resp.  )U(MM * −=  

and )t(x)t(x* −= ). 

3) Let *f denote the nonlinearity associated to *M . Then, 
one has for all t: 

 ))t(x(f)N,t(ylim **

N
=

∞→
    (w.p.1)   � 
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Proof. The proof is omitted due to the limitation of the 
paper's length. � 

Since Uy  is not measurable, the iτ ’s  have to be estimated 
from the filtered output )N,t(y . Making full use of 
Propositions 3.1 and 4.1, the following procedure is proposed 
to get estimates of the iτ ’s and, consequently, of the model 
nonlinearity. 

Strictly Monotonic Nonlinearity Identification (MNI): 

MNI-1. Apply a sine input )tsin(U)t(u ω=  to the 
nonlinear system of interest and get a recording of the output 
y(t) over a sufficiently large interval (the recording is 
preferably started in steady state ). 

MNI-2. Generate the averaged version )N,t(y  taking a 

sufficiently large value of N. Note *τ  any instant where 

)N,t(y  achieves its maximum (the next one is  ωπτ /2* + ). 

MNI-3. Let the internal signal )t(x*  be a cosine (with 

period ωπ /2 and amplitude 1) that takes its maxima at *τ  

and ωπτ /2* + . That is  ))t(cos()t(x ** τω −= . Then, the 

parameterized curve ( ))N,t(y),t(x* , with 

ωπττ /2t ** +≤≤  defines an estimate (.)f̂ N  of the 

nonlinearity (.)f * . The larger is N the better the estimate 
quality. 

 

5. IDENTIFICATION OF NON MONOTONIC 
FUNCTIONS (.)f  

In such a case, the main difficulty lies in the fact that the 
system output )t(y  (resulting from a sine input 

)tsin(U)t(u ω= ) may possess other extrema than those 

produced by the internal signal ( )t(x+  or )t(x− ). Indeed, 
other extrema may occur, specifically there where equations 
(14) have solutions. Moreover, the set of instants where (14) 
is satisfied may be uncountable. As in Section 3, attention 
will be paid to the extrema of )t(yU  that are associated to 
the internal signal. These extrema will be based used to solve 
the problem at hand, i.e. the determination of the system 
nonlinearity. For this reason, they will be referred to ‘useful 
extrema’. Accordingly, the other extrema, if any, are called 
useless.  Now, the question is: how to recognize the useful 
extrema when a (graphical) recording of the output y(t) is 
available?  

To answer such a question let us analyze the effect that a 
change of the input amplitude will produce on signals and 
models (especially (5)-(6)). To this end, consider two sine 
inputs that only differ by their amplitudes: 

 )tsin(U)t(u 11 ω= ,   )tsin(U)t(u 22 ω=  (20) 

where 21 UU ≠ . Let ( ))t(y),t(y 2
U

1
U  and  ( ))t(y),t(y 21  

denote the resulting undisturbed and disturbed outputs. 
Referring to the (initial) model ( ))s(G(.),f , defined by 
equation (1), the internal signals turn out to be: 

 ( )ϕω −= tsinX)t(x 11 ,  ( )ϕω −= tsinX)t(x 22  (21) 

where  ( ))j(Garg ωϕ −=  is independent of the input 
amplitude. Then, it readily follows that, the extrema of )t(x1  
and )t(x2  take place at the same instants: 

)( 2(2 K,2, 1, 0i2/)ikt
def

i =++== ωππϕ        (22) 

 i.e. they are not affected by a change of the input amplitude. 
Furthermore, one has: 

 
dt

)t(dx)).t(x(
dx
df

dt
)t(dy 1

1

1
U = , (23a) 

dt
)t(dx)).t(x(

dx
df

dt
)t(dy 2

2

2
U =  (23b) 

implying: 0
dt

)t(dy
dt

)t(dy

ii kt

2
U

kt

1
U ==

==

 (24) 

This yields the following statement: 

 

Proposition 5.1. The output signals ( )t(y1
U , )t(y2

U )   

generated by the system (1) in response to the inputs ( )t(u1 , 

)t(u2 ) exhibit the following features: 

1) The useful extrema of  )t(y1
U  and )t(y2

U  are achieved at 
the same instants i.e. these only depend on the frequency 
ω and not on the amplitude of the applied input. 
Consequently, a change on the input amplitude only produces 
(at the output) a change on the useful extrema amplitude. 
This is simply expressed saying that the useful extrema 
moves vertically when the input amplitude changes. 

2) The useless extrema of  )t(y1
U  may not be (and generally 

are not) achieved at the same instants as those of )t(y2
U  i.e. 

these instants depend on both the amplitude and frequency of 
the applied input. This observation is simply expressed 
saying that the useless extremum move horizontally (and 
they are the only to do so) when the amplitude of the applied 
input is changed. � 

 

The above proposition is graphically illustrated by fig. 2 that 
shows the moving of both type of extrema when the non 
linearity is )x5.01/(x10)x(f 2+= . The result of 
Proposition 5.1 is not immediately utilizable (to determine 
the instants of occurrence of the useful extrema), since it 
involves the non-measurable outputs ( )t(y1

U , )t(y2
U ). 

However, it can be made immediately utilizable (just as we 
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did in Section 3) by simply substituting to ( )t(y1
U , )t(y2

U ) 
their filtered versions ( ))N,t(y),N,t(y 21 . This is formally 
stated in the following procedure: 

Nonmonotonic Nonlinearities Identification (NNI): first 
part 

NNI-1. Apply successively 2 or more sine inputs 
( )t(u1 , )t(u2 , …) with different amplitudes but the same 
frequency. Get a recording of the resulting outputs 
( )...),t(y),t(y 21   and generate their filtered versions 
( )...),N,t(y),N,t(y 21   according to (15).  

NNI-2. Compare the extrema of the filtered output signals 
and select all those that take place (in the different output 
recording) at the same instants (provided they are equally 
spaced). The extrema thus selected are the useful extrema; 
during the selection process make use of the fact that a useful 
extrema comes on each ωπ /  seconds, that is in each period 
one gets 2 (and only 2) useful extrema. 

NNI-3. If necessary, take a large N or make one more 
experiment with a different amplitude and go back to step 
NNI-1. 

 

Now to determine the nonlinearity, we will exploit again the 
data corresponding to the experiment made in NNI-1 
corresponding to the largest input signal amplitude. For the 
selected experiment, the notations of Section 3 are resorted to 
i.e. the input )tsin(U)t(u ω= , the filtered output )N,t(y , 

the specific models ( )U(M + , )U(M − ), the resulting 

internal signals ))tt(cos()t(x ++ −= ϕω , 

))tt(cos()t(x −− −= ϕω . Let us point out some mathematical 
facts: First, note that in any time-interval of length 

ωπ /2T = , there are two (and only two) useful extrema of 
)t(yU  taking place in that interval. These may be (or not) of 

the same nature (minimum or maximum). Whatever the 
situation, two extrema (and only two) will be seen at any 
recording of )N,t(y , over a one period T. The first one is 
referred to 'reference extremum' and the corresponding 
instant is denoted τ1. The second useful extremum is located 
at the instant  T12 += ττ .  

Proposition 5.2. There exists a Wiener model 
{ })U(M ),U(MM * −+∈  such that the corresponding internal 

signal )t(x* achieves its maxima (that are all equal to 1) at 

the instants )(  , ...2, 1, 0iiTT 1

def

i =+= τ     � 

Proof. the proof is omitted due to the paper's length.  � 

Based on the above result, we can continue the procedure 
NNI towards the identification of the nonlinearity *f  

associated to the model *M . 

Nonmonotonic Nonlinearities Identification (NNI): second 
part 

NNI-4. Let )N,t(y  be any one of the filtered outputs 
obtained in step NNI-1. Evaluate quickly from such a 
recording an estimate 1τ̂  of the instant 1τ . 

NNI-5. Let )t(x̂  be a cosine (with period ωπ /2  and 
amplitude 1) that takes its maximums at instants 

...) 2, 1,(i  =+= ;i2ˆT̂ 1i ω
πτ . Then, )t(x̂ is an estimate of 

)t(x* . Specifically, ))ˆt(cos()t(x̂ 1τω −= . Furthermore, the 
parameterized curve ( ))N,t(y),t(x̂ , with 

ωπττ /2ˆtˆ
11 +≤≤  defines an estimate (.)f̂ N  of the 

nonlinearity (.)f * . The larger is N the better the estimate 
quality. 

 Refined search of the extremum instant 1τ  

The estimate 1τ̂  determined graphically may be improved 
using analytical tools. First, remark that one has, for any 
integer i and any real δ : )T(x)T(x ii δδ +=− . Then, one 
has for all i and δ :  

( ) ( ) )T(y)T(xf)T(xf)T(y iUiiiU δδδδ +=+=−=− . That 
is, the output )t(yU  that is periodic with period 

ωπ m/2m/T =  (for some 1m ≥ ) presents in turn a 
symmetry with respect to the vertical axes passing by iTt =  
(i=0, 1, 2, …). Note also that the integer m can simply be 
determined using the fact that ω  and the period 

ωπ m/2m/T =  are both known. These observations will 
now be exploited to improve the estimate 1τ̂ . To this end, let 
us introduce the following parameterized function: 

 




−

+<≤
=

otherwhise1
m/tif1

)t(s
def ωπττ

τ   (25) 

where τ  is any real such that ωπτ m/0 ≤≤ . Consider the 
following integral quantities: 

∫= m
T

0 U

def
dt)t(y)t(s)(J ττ         ( )ωπ /2T =  (26a) 

∫= m
T

0

def
dt)N,t(y)t(s)N,(I ττ  (26b) 

The symmetry of )t(yU  with respect to the vertical axis 
passing by 11Tt τ== , implies that 0)(J 1 =τ . On the other 
hand, it follows using Proposition 3.1 that, for any fixed 

[ )ωπτ m/,0∈ : )(J)N,(I ττ →  as ∞→N  (w.p. 1). From 
the above observations one gets: 

 ( ) 0N,Ilim 1N
=

∞→
τ        (w.p. 1) (27) 

Therefore, the instant 1τ  can be determined searching the 
minimum of ( )N,I τ  with respect to τ , using usual iterative 
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algorithms. Since the function ( )N,I τ  may have several 
(local) minima (due to others possible symmetries with 
respect to vertical axes passing by others instants), the search 
procedure should be initialized near the minimum of interest, 
namely τ1. Indeed, the graphically obtained estimate 1τ̂  
constitutes an appropriate initial value. 

6. SIMULATION 

The identification method developed in the previous sections 
will now be illustrated considering a Wiener system  
characterized by: 

)2s)(1s(
)1s(12)s(G

++
−

= ,    
2x5.01

x10)x(f
+

=  (28) 

)t(v  is a sequence of uniform random number in [ ]1,1 +− .  
The above system is successively submitted to sinusoidal 
inputs: 

 )tsin(U)t(u 11 ω= , )tsin(U)t(u 22 ω= ,  1U1 = , 
8.0U2 = , s/radπω = . Note that, letting 

)tsin(U)t(u)t(u 11 ω== , one gets for system (28): 

 ( )2x611.11
x22.32)x(f

+
=+ , ( )2x611.11

x22.32)x(f
+

−=−  

Following the NNI procedure, the averaged outputs )N,t(y1  
and )N,t(y2  are generated, using (15) with 140N = . The 
obtained signals are represented by fig. 2, and an estimate 1τ̂  
(of 1τ ),  by a simple inspection. The obtained estimate has 
served to initialize the optimization procedure described in 
the end of Section 5. A refined estimate is thus obtained, 
namely 200/T8.62ˆ

1 =τ  (with ωπ /2T = ). Then, as 
pointed out in NNI-5, ))ˆt(cos()t(x̂ 1τω −=  turns out to be 

an estimate of )t(x*  and the parameterized curve 

( ))N,t(y),t(x̂  defines an estimate (.)f̂ N  of the nonlinearity 

(.)f * ; the obtained curve is plotted in fig. 3. These show 

that (.)f̂ N  is an estimate of +
Uf .   

 
 

Fig. 2. Filtered outputs y1(t,N) and y2(t,N)  

 
Fig. 3 The plot ( ))N,t(y),t(x̂ 1   
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