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Abstract: H2 preview control in the discrete-time domain is approached in a strict geometric
perspective. The original formulation in the frequency domain is recast in the time domain.
Then, it is shown how the problem in the time-domain can be reduced to the combination of
elementary subproblems. This approach requires a structural analysis of the properties of the
singular Hamiltonian system associated to the H2 control problem.

1. INTRODUCTION

Preview control encompasses a wide variety of methodolo-
gies aimed at solving tracking and/or rejection problems
where the signals to be tracked and/or rejected are a-
priori-known. Preview control can be framed either in the
exact context or in the optimal context. In the former
case, the control objective is to guarantee that external
signals be perfectly tracked by outputs (or be completely
decoupled from outputs). In the latter case, the control
target is to achieve the minimal, according to some suit-
ably chosen criterion, tracking error (or the minimal effect
of the external signals on the outputs). The equivalence be-
tween tracking and rejection problems via an appropriate
redefinition of the to-be-controlled variables is well-known.

The problem of achieving a right inverse of a dynamical
system has received a great deal of attention from the
control community since the late sixties and the problem
of devising an internally stable inverse in the presence
of unstable zeros of the original system, in particular,
has attracted a lot of research effort and generated a
large number of interesting works ever since those years.
The preview of the signals to be tracked or rejected
has represented the means to overwhelm the intrinsic
limitation introduced by unstables zeros (see e.g. Qiu and
Davison [1993] and the references therein).

The exact problem has been completely solved by means
of steering along zeros techniques both in the polynomial
context and in the more congenial geometric context. As
to geometric solutions, necessary and sufficient conditions
for perfect tracking and localization of previewed external
signals, along with ad hoc computational algorithms, were
developed in Marro et al. [2002a], Marro and Zattoni
[2006], Marro et al. [2006]. Meanwhile, the problem of
achieving optimal tracking and/or rejection was also in-
vestigated and preview was shown to be an effective means
to obtain better performance even with that milder design
requirement (see e.g. Chen et al. [2001], Hoover et al.
[2004], Marro and Zattoni [2005], Moelja and Meinsma
[2006]).

Most of the papers on this subject available in the litera-
ture refer to continuous-time system. Conversely, as to the

discrete-time case, only few contributions can be found.
Polynomial methods were developed for instance in Grim-
ble [1991]. Algebraic methods, based on the properties
on the Moore-Penrose inverse, according to a procedure
developed in Marro et al. [2003], were discussed in Marro
et al. [2002c]. Nonetheless, a structural approach, repre-
senting a valid discrete-time counterpart of that illustrated
for continuous-time systems in Marro and Zattoni [2005]
is still lacking. The main reason is that the discussion
presented in Marro and Zattoni [2005] exploits a geometric
analysis of the properties of the Hamiltonian system asso-
ciated to the H2 optimal control problem which cannot
be trivially transferred to the discrete-time domain. The
aim of this work is to develop a complete, geometric
approach to H2 preview control based on the structural
properties of the singular Hamiltonian system associated
to the H2 optimal control problem holding on the quite
general assumptions ensuring solvability of the relative
algebraic Riccati equation.

Notation. The symbols R, C, C
�, C

◦ are used for the
sets of real numbers, complex numbers, complex numbers
inside the open unit disc, complex numbers on the unit
circle, respectively. Sets, vector spaces, and subspaces are
denoted by capital script letters like X . Matrices and linear
maps are denoted by capital letters like A. The spectrum,
the image, and the kernel of A are denoted by σ(A), im A,
and kerA, respectively. The symbols tr(A), A−1, A†, and
A� are used for the trace, the inverse, the Moore-Penrose
inverse, and the transpose of A, respectively. The symbols
I and O are used for an identity matrix and a zero matrix
of appropriate dimensions.

2. H2 OPTIMAL TRACKING WITH PREVIEW IN
DISCRETE-TIME SYSTEMS

In this section, the H2 optimal tracking problem with
preview is stated in terms of an equivalent problem of H2

optimal rejection with preview.

Let us consider the discrete, time-invariant, linear system

x̄t+1 = Āx̄t + B̄ut,

yt = C̄x̄t + D̄ut,
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Fig. 1. Block diagram for H2 optimal tracking with preview

with x̄0 = 0, t∈ [0, ∞), where x̄∈R
n̄, u∈R

p, and y ∈R
q

(with q≥ p) respectively denote the state, the control
input, and the controlled output.

Let us consider a reference signal h∈R
q and let us assume

that h be known with a preview time N − 1, where N ≥μ
and μ denotes the system reachability index.

The problem of the synthesis of a feedforward dynamic
unit that ensures that the controlled output y tracks, in
the H2 optimal sense, the reference signal h, by taking
advantage of the available preview of the latter, is reduced
to an H2 optimal rejection problem through the following,
elementary manipulations (also depicted by the block
diagram of Fig. 1).

As is well known, the original H2 optimal tracking problem
is reduced to an H2 optimal rejection problem by introduc-
ing the output variable ēt = yt −ht and considering a new
plant described by

x̄t+1 = Āx̄t + B̄ut,

ēt = C̄x̄t + D̄ut − ht.

However, in order to get rid of the feedthrough term from
the to-be-rejected input h to the controlled output ē, a new
output e∈R

q is defined by inserting a cascaded unit delay
in the signal flow of the original ē. Hence, with z ∈R

q, such
that zt+1 = ēt and et = zt, the new system equations are

x̄t+1 = Āx̄t + B̄ut,

zt+1 = C̄x̄t + D̄ut − ht,

et = zt.

Finally, let x =
[
x̄� z�

]�. Then, the equations above can
also be written in standard, compact form as follows

xt+1 = Axt + But + Hht, (1)

et = Cxt, (2)
where

A =
[

Ā O
C̄ O

]
, B =

[
B̄
D̄

]
, H =

[
O
−I

]
, C = [ O I ] .

In the next section, the H2 optimal rejection problem will
formally be stated for system (1), (2), with the addition
of the feedthrough term from the control input u to the
controlled output e, for the sake of generality.

3. H2 OPTIMAL REJECTION WITH PREVIEW IN
DISCRETE-TIME SYSTEMS: PROBLEM

FORMULATION

The problem of H2 optimal rejection of signals known with
preview has been considered in the recent literature and
solved with different techniques.

In Marro et al. [2002c], the problem is tackled in the
time domain and, by virtue of superposition, is reduced
to that of rejecting a unit pulse signal known a certain
amount of time ahead of its impact on the system. The
problem is then decomposed into three subproblems, a
finite-horizon optimal control problem defined in the time
interval corresponding to the preaction time, an infinite-
horizon problem defined in the time interval corresponding
to the postaction time and the problem of optimally con-
necting the previously mentioned subproblems by taking
into account the effect of the unit pulse. The solution of the
finite-horizon problem is achieved by pseudoinversion of
suitably constructed matrices, whose dimensions depends
on the length of the preview time interval. The dimen-
sionality constraint implicit in pseudoinversion is avoided
by resorting to a multilevel algorithm detailed in Marro
et al. [2003]. The procedure is devised on the assumption
of controllability of the original system.

In Zattoni [2008], the H2 optimal rejection problem with
preview is solved in the frequency domain by means of
spectral factorization via Riccati equation. Namely, the
transfer function matrix of the feedforward dynamic unit is
derived by evaluating a suitable spectral factor connected
to the transfer function matrix from the control input to
the output of the to-be-controlled system. The preview of
the to-be-rejected signal is taken into account by inserting
a cascade of delays in the external input flow. The insertion
of the delays do not affect the computational burden in-
trinsic in the evaluation of the spectral factor. However, it
affects the factorization aimed at selecting the causal and
stable part of a polynomial matrix including the spectral
factor so as to define the feedforward compensator.

In this section, the H2 optimal rejection problem with
preview is tackled in the time domain and divided into
three subproblems as in Marro et al. [2002c]. However,
the finite-horizon optimal control problem defined in the
preaction time interval is given an analytic solution, based
on the study of the structural and geometric properties
of the associated singular Hamiltonian system reviewed
in the next Section 4. The methodology presented herein
applies on the standard assumptions that guarantee the
existence and uniqueness of the stabilizing solution of the
discrete algebraic Riccati equation associated to the prob-
lem and, consequently, the existence and uniqueness of
the solution of the associated discrete Lyapunov equation.
Moreover, since it consists of a feedforward solution, it
is assumed that the to-be-controlled system be stable or
prestabilized, which, however, does not cause actual loss
of generality with respect to the assumptions normally
introduced when dealing with control problems (see e.g.
Zattoni [2007] for further details on prestabilization and
feedforward dynamic schemes). As to numerical reliability
of possible implementations in the finite arithmetic envi-
ronment of a digital computer, it is worth stressing that the
sole critical aspects are those connected with the solution
of the discrete algebraic Riccati equation and, although
with a minor degree of criticity, those connected with the
solution of the discrete Lyapunov equation. On this regard,
it should be acknowledged that several studies have been
carried out, also in very recent years, and different options
are available in the most common Matlab c© toolbox as
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Fig. 2. Block diagram for H2 optimal rejection with
preview

well as in ad hoc packages like, e.g., the SLICOT c© package
developed by Benner and Van Dooren [2003].

Hence, the H2 optimal rejection problem with preview for
discrete-time systems is formally stated in the remainder
of this section. Its solution will be outlined in Section 5,
following the review on the structural properties of the
singular Hamiltonian system and its exploitation in the
solution of finite-horizon optimal control problems with
fixed final state presented in Section 4. The treatment that
follows, with the remarkable differences and peculiarities
pointed out in the next sections, can be viewed as the
discrete-time counterpart of that discussed in more detail
for continuous-time, stabilizable systems in Marro and
Zattoni [2005].

Let us consider the discrete, time-invariant, linear system

xt+1 = Axt + But + Hht,

et = Cxt + Dut,

with x0 = 0, t∈ [0, ∞), where x∈R
n, u∈R

p, h∈R
s, and

e∈R
q (with q≥ p) respectively denote the state, the

control input, the to-be-rejected input, and the controlled
output. Let us assume:

A1. (A,B) stabilizable;
A2. (A,B,C,D) left invertible;
A3. Z(A,B,C,D)∩C

◦ = ∅, where Z(A,B,C,D) denotes
the set of the invariant zeros of (A,B,C,D).

Moreover, let us assume that h∈R
s be known with a

preview time N − 1, where N ≥μ and μ denotes the system
reachability index.

The problem of minimizing the effect of the input signal
h reduces to a causal problem if a cascade of N − 1 unit
delays is inserted in the input h signal flow and included in
a new plant ΣP as is shown in Fig. 2. This implies that the
input signal hP of ΣP be such that hP,t =ht+N−1. Let g
denote the unit pulse response matrix of the compensated
system, from the to-be-rejected input hP to the output e.

Then, the H2-optimal rejection problem with preview
(henceforth, abbreviated as H2-ORPP) is the problem of
finding a feedforward linear dynamic compensator ΣC such
that

‖g‖2
�2 = tr

[ ∞∑
t=0

gtg
�
t

]

be bounded and minimal.

Let gj , with j = 1, . . . , s, denote the response of the com-
pensated system, with zero initial state, to the input
hPj = ejδ, where ej and δ respectively are the j-th vec-
tor of the main basis of R

s and the unit pulse signal.
Then, the solution of the H2-ORPP is derived from the

minimization of ‖gj‖2
�2

for any j = 1, . . . , s, on the basis
of the observation that the H2-ORPP can be reduced to
a compound optimal control problem (according to what
was first stated in Marro et al. [2002c]).

Let the to-be-rejected input hPj = ejδ be applied to system
ΣP , with zero initial state. The problem of finding the
control law uj minimizing ‖e‖2

�2
= ‖gj‖2

�2
is a compound

optimal control problem which refers to the quadruple
(A,B,C,D) and consists of

(i) the finite-horizon LQ control problem defined in
[0, N), with zero initial state, parameterized final
state xLj , and cost functional

CL(xLj)=
N−1∑
t=0

e�t et;

(ii) the infinite-horizon LQ control problem defined in
[N,∞), with parameterized initial state

xRj =xLj + Hj ,

where Hj is the j-th column of the to-be-rejected
input matrix H, and cost functional

CR(xLj)=
∞∑

t=N

e�t et;

(iii) the problem of finding the intermediate state xLj

minimizing the global cost functional
C(xLj)= CL(xLj) + CR(xLj).

4. A REVIEW OF NON-RECURSIVE SOLUTIONS
TO FINITE-HORIZON OPTIMAL CONTROL

PROBLEMS WITH ASSIGNED TERMINAL STATE

In this section, the main ideas and results at the basis of
a structural, non-recursive solution to the discrete-time,
finite-horizon, optimal control problem with assigned final
state are briefly reviewed, since they are functional to the
solution of the H2 preview control problem developed in
the next Section 5.

The study of the geometric properties of the Hamiltonian
system associated to the optimal control problem is crucial
in the derivation of the abovementioned results. In fact,
in the specific case of discrete-time, stabilizable systems,
it leads to the characterization of a pair of structural
invariant subspaces of the singular Hamiltonian system,
and then to the analytic solution of the finite-horizon
problem through the expression of all the admissible
trajectories of the singular Hamiltonian system and the
consequent selection of the particular trajectory by setting
the boundary conditions.

The analysis of the geometric and structural properties of
Hamiltonian systems as a means for finding the solutions
of infinite-horizon optimal control problems is well-settled
in the literature. In fact, the early studies in this context
are due to Van Dooren [1981] and Arnold III and Laub
[1984]. More recent is the generalization of the Riccati
theory via Popov function approach developed by Ionescu
et al. [1999]. Also worth mentioning in this context is
the straightforward, strictly geometric approach to the
solution of cheap and singular, discrete-time, infinite-
horizon, optimal control problems presented by Marro
et al. [2002b].
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As to the investigation of the structural properties of
Hamiltonian systems finalized to the solution of finite-
horizon, optimal control problems, the issue was com-
pletely disentangled in Marro and Zattoni [2005] as far
as continuous-time, stabilizable systems are concerned. In
fact, in Appendix of the abovementioned paper, it was
shown how to derive the invariant subspaces of the linear
transformation defined by the Hamiltonian matrix, by
performing a similarity transformation (aimed at isolating
the controllable part of the system) and computing the
maximal and minimal symmetric solutions of the algebraic
Riccati equation restricted to the sole controllable sub-
system. Incidentally, this procedure, compared with the
conceptually equivalent one which exploits the maximal
solution of the full order algebraic Riccati equation and
the solution of a Lyapunov equation — suitably associated
according to the results first published in Molinari [1977]
— has the crucial advantage, from the computational
point of view, of involving a Riccati equation of reduced
dimensions. As a matter of fact, the solution of the Riccati
equation is the sole numerically critical point of the entire
procedure.

As to the possibility of transferring to the discrete-time
case the achievements — just mentioned — regarding the
continuous-time, it is convenient to point out a remarkable
difference: i.e., in the discrete-time case, the Hamiltonian
system is intrinsically singular (or descriptor or general-
ized). In fact, it can be reduced to a regular system only
at the cost of introducing some assumptions which, in
the discrete-time case, turn out to be severely restrictive.
These are invertibility of the control weighting matrix
(while singular weighting matrices are not uncommon in
discrete-time, linear quadratic problems) and, at least in
the simplest case where the cross weighting matrix is zero,
invertibility of the dynamic matrix of the original system
(which cannot be guaranteed by pole placement under the
sole hypothesis of stabilizability).

In the light of the above considerations, a structural,
non-recursive solution to finite-horizon, optimal control
problems addressing discrete-time, stabilizable systems
was first devised in Marro and Zattoni [2007b], with focus
on the case where the final state is weighted by a generic
quadratic function. Lately, the technique was modified to
handle the case where the final state is fixed (see Marro
and Zattoni [2007a]). In the latter work, in particular, the
technique was encompassed in a multi-level procedure to
deal with output regulation problems stated for sets of
linear systems subject to a-priori-known switches. In order
to guarantee that the present paper be self-contained and
legible, a summary of that technique is reported below.

Let us consider the discrete, time-invariant, linear system

xt+1 = Axt + But, (3)

et = Cxt + Dut, (4)

with state x∈R
n, input u∈R

p, output e∈R
q, and assume

that A1, A2, and A3 hold true. Let the initial state xo and
the final state xf be assigned and compatible: i.e., let xf

be reachable from xo within the considered time interval.

The discrete-time, finite-horizon, linear quadratic optimal
control problem with fixed final state (henceforth abbrevi-

ated as FFS-FHLQP) is the problem of finding a control
sequence ut, with t∈ [0, T ), driving the state from

x0 =xo to xT =xf , (5)

while minimizing the cost functional

C =
T−1∑
t=0

e�t et =
T−1∑
t=0

[
x�

t Qxt + 2x�
t Sut + u�

t Rut

]
, (6)

with C�C = Q, C�D = S, D�D =R.

As is well-known, the Lagrange multiplier approach leads
to a two-point boundary value problem defined by the
state equations, the costate equations, the stationarity
condition and the boundary conditions. In particular,
the difference equations of the two-point boundary-value
problem can be written as the state-space generalized
system⎡

⎣ I O O
O −A� O
O −B� O

⎤
⎦

[
xt+1

pt+1

ut+1

]
=

⎡
⎣ A O B

Q −I S
S� O R

⎤
⎦

[
xt

pt

ut

]
, (7)

also called the singular Hamiltonian system. The matrix
on the left-hand side of (7) will be denoted by M , that on
the right-hand side will be denoted by N . The matrix pen-
cil λM −N is assumed to have non-vanishing determinant,
i.e. det (λM −N) 
≡ 0.

The stabilizing solution X of the discrete algebraic Riccati
equation

X =−(A�XB + S)(R + B�XB)−1(B�XA + S�)

+A�XA + Q,

0 < R + B�XB,

exists and is unique due to assumptions A1–A3. X is
also positive semidefinite and is the largest real symmetric
solution of the discrete algebraic Riccati equation. Let

K = (R + B�XB)−1(B�XA + S�),

AF = A − BK.

The solution Y of the discrete Lyapunov equation
AF Y A�

F − Y + B(R + B�XB)−1B� = 0,

exists and is unique due to condition σ(AF )⊂C
�. Let

K̄ = (R + B�XB)−1(B� − B�XAY A�
F − S�Y A�

F ).

Now, all the elements required to characterize the respec-
tive deflating subspaces of the matrix pencils λM −N and
λN −M , associated to the singular Hamiltonian system,
have been introduced. Therefore, we can state that the
subspace

V1 = im V1 = im

[
I
X
−K

]
,

is a deflating subspace of the matrix pencil λM −N and
that the spectrum of the pencil restricted to the subspace
V1, denoted by (λM − N)|V1 , is equivalent to λI −AF .
Moreover, we can assert that the subspace

V2 = im V2 = im

⎡
⎣ Y A�

F

(XY − I)A�
F

K̄

⎤
⎦ ,
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is a deflating subspace of the matrix pencil λN −M and
that the spectrum of the pencil restricted to the subspace
V2, denoted by (λN − M)|V2 , is equivalent to λI − A�

F .

The introduction of the structural invariant subspaces V1

and V2 allows us to characterize the general form of
the admissible trajectory for the singular Hamiltonian
system by stating that a trajectory ξt =

[
x�

t p�t u�
t

]�,
with t∈ [0, T ), is admissible for the singular Hamiltonian
system (7) if and only if it is of the form

ξt = V1A
t
F α + V2(A�

F )T−t−1β, with t∈ [0, T ),

where and α, β ∈R
n are parameters.

The state and costate trajectories, in particular, can be
written as[

xt

pt

]
=

[
I
X

]
At

F α +
[

Y
XY − I

]
(A�

F )T−tβ,

with t∈ [0, T ]. Therefore, the trajectories of the singu-
lar Hamiltonian system solving the original, two-point
boundary-value problem are selected by imposing the
boundary conditions. Let [x�

o x�
f ]� ∈ im Φ, where

Φ =
[

I Y (A�
F )T

AT
F Y

]
.

A trajectory ξt =
[
x�

t p�t u�
t

]�, with t∈ [0, T ), of the
singular Hamiltonian system (7), satisfying the boundary
conditions (5) is determined by[

α
β

]
= Φ†

[
xo

xf

]
. (8)

Since xo and xf are compatible,
[
x�

o x�
f

]�
∈ im Φ and the

two-point boundary-value problem is solvable. Hence, let
α1, α2, β1, β2 ∈R

n×n be such that[
α1 α2

β1 β2

]
= Φ†,

where Φ† is assumed to be partitioned according to (8).
Then, α, β ∈R

n can be expressed as
α = α1xo +α2xf , β =β1xo + β2xf .

Consequently, the state trajectories, the control input
sequences, and the optimal value of the cost functional
solving the finite-horizon optimal control problem can be
expressed as functions of the initial state xo and the final
state xf .

An optimal state trajectory xt, with t∈ [0, T ], an optimal
control law ut, with t∈ [0, T ), and the optimal cost for the
finite-horizon optimal control problem defined by (3)–(4)
with boundary conditions (5) and cost functional (6)
respectively are

xt = Xot
xo + Xft

xf , t∈ [0, T ), (9)

ut = Uot
xo + Uft

xf , t∈ [0, T ], (10)

Co =
[
x�

o x�
f

] [
C11 C12

C�
12 C22

] [
xo

xf

]
, (11)

where

Xot
= At

F α1 + Y (A�
F )T−tβ1, t∈ [0, T ), (12)

Xft
= At

F α2 + Y (A�
F )T−tβ2, t∈ [0, T ), (13)

Uot
=−KAt

F α1 + K̄(A�
F )T−t−1β1, t∈ [0, T ], (14)

Uft
=−KAt

F α2 + K̄(A�
F )T−t−1β2, t∈ [0, T ], (15)

C11 = Xα1 + (XY − I)(A�
F )T β1, (16)

C12 =
1
2
((Xα2 + (XY − I)(A�

F )T β2) (17)

−(XAT
F α1 + (XY − I)β1)�), (18)

C22 =−(XAT
F α2 + (XY − I)β2). (19)

5. H2 OPTIMAL REJECTION WITH PREVIEW IN
DISCRETE-TIME SYSTEMS: PROBLEM SOLUTION

In this section, the respective solutions to subproblems (i),
(ii), (iii) of Section 3 are considered in order. Then, the
feedforward control scheme is synthetically described.

The solution of subproblem (i) is obtained in the light
of the results summarized in Section 4. In particular, the
optimal control sequence is

uj,t =Uf,t xLj , t∈ [0, N),

and the optimal value of the cost functional is

CL(xLj)= x�
Lj C22 xLj ,

where Uf,t is given by (15) with T =N and C22 is given
by (19).

As to the solution of subproblem (ii), basic results of linear
quadratic optimal control theory give the control sequence

uj,t =−K xj,t, t∈ [N, ∞),

and the optimal value of the cost functional is CR(xRj) =
x�

RjXxRj . Hence,

CR(xLj)= x�
Lj X xLj + 2H�

j XxLj +H�
j XHj

follows from xRj =xLj + Hj .

As to the solution of subproblem (iii), the cost functional
J(xLj) is minimal with

xLj = R η and η =− (R�(C22 + X)R)†R�XHj ,

where R denotes a basis matrix of the reachable subspace
of (A,B). This result can easily be derived by imposing

∇J(η) = 2η�R�(C22 + X)R + 2H�
j XR = 0.

Then, let us focus on the synthesis of the feedforward
control scheme. With a slight abuse of notation, let the
matrix input HP = I δ be applied to the extended plant
ΣP , assumed in the zero initial state. Then, the expressions
of optimal control sequences and intermediate states hold
in a modified form where states and controls respectively
are n× s and p× s matrices, provided that xLj , xj,t,
and Hj are respectively replaced by Xa = [xLj ]j=1,...,s,
Xt = [xj,t]j=1,...,s, and H.

Hence, the structure of the feedforward compensator Σc

which ensues from the generalization of the above proce-
dure is shown in Fig. 3. The control input is ut = vt + wt,
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Fig. 3. Block diagram for H2 optimal rejection with
preview: structure of the feedforward compensator.

with t∈ [0, ∞), where vt is the output of an FIR system
Σfir whose unit pulse response matrix is

Vt =
{

Uf,t Xa, if t∈ [0, N),
O, otherwise, (20)

and wt is the output of a standard dynamic unit Σdyn

having the structure of the LQR regulator: i.e., ruled by

x̃t+1 = AF x̃t + Bvt + HhP,t−N+1,

wt =−K x̃t,

with x̃0 = 0, t∈ [0, ∞).

Again, refer to the layout shown in Fig. 3. The FIR system
performs its action on a system which is subject to the
forcing input wt = − K x̃t from the time t = 0 (not t =N
as was considered in Section 3). Nevertheless, the FIR
system unit pulse response has the expression (20), due
to the fact that the discrete algebraic Riccati equation
associated to the quadruple (AF , B,C −DK,D) matches
the discrete algebraic Riccati equation associated to the
original quadruple (A,B,C,D). Hence, the superimposed
feedback is zero.

6. CONCLUSION

H2 optimal tracking and H2 optimal rejection of previewed
signals have been considered and solved in a unified frame-
work where H2 optimal tracking is reduced to H2 optimal
rejection. The solution has been derived by exploiting
basic results of linear quadratic optimal control theory
and a geometric/structural approach to the finite-horizon
linear quadratic optimal control problem with assigned
final state. The synthesis of the feedforward compensator,
including finite impulse response systems has also benn
illustrated.
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