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Abstract: In this paper it is presented an iterative procedure for closed loop controller tuning
applying a relay experiment. The phase margin is evaluated and a model is identified using
constraints. This model is improved at high frequencies employing frequency data from the same
experiment, the improved model is used to estimate the gain margin. The controller redesign
is performed minimizing a frequency domain criterion based on gain and phase margins that
are classical measures of robustness in addition to the crossover frequency. The procedure is
applicable for a large number of processes types and safely approach specifications using a few
experiments. Examples illustrate the properties of the design scheme. Copyright c©2008 IFAC
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1. INTRODUCTION

In many plants, process control usually is implemented
through several control levels. The PID controller is often
used in regulatory levels to provide the process robust
stability and fast response to load disturbances (Skogestad
and Postlewaite (2005)). In most systems, a simple PI con-
troller is sufficient to handle the regulatory level functions.
Frequently these controllers need to be redesigned under
operation due to poor performance.

In this context, techniques for identification and controller
redesign using closed-loop data have become very attrac-
tive. The closed-loop identification doesn’t cause stops in
system operation unlike open-loop identification. Other
reasons which can be listed are demands on safety in
process operation, unstable processes and restrictions in
production. Its has also been argued that in closed loop
it is possible to obtain representative restricted complex-
ity process models in interesting frequency ranges which
can be used to redesign controllers such as PI and PID
(Albertos and Salas (2002)).

The redesigned controller specifications may be expressed
by the gain and phase margins that are classical measures
of robustness and together with the crossover frequency
represent the time performance of the closed-loop as well.
Several gain and phase margin tuning methods have been
proposed in the literature. Some are based on graphical
methods which are not suitable for PID autotuning whilst
others are based on simple models using approximation
which do not guarantee that the specification will be
achieved (Ho et al. (1993) and Ho et al. (1997)). Model
based tuning techniques that rely only on open loop
simple dynamics may have poor performance when the
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process system is too complex. For example, decoupling
that usually results in complicated diagonal elements with
non-minimum phase behavior. There are some iterative
procedures as the one presented in de Arruda and Barros
(2003a) which uses an ad hoc iterative algorithm. Other
techniques are based on numerical methods as the one
presented in Karimi et al. (2003). Its major drawback
is that is not suitable for non-minimum phase behavior
including transport delay usually encountered in process
systems. Besides that, this iterative methods always em-
ploy two relay experiments: Phase Margin and Gain Mar-
gin Experiments which consume operation time. The use
of relevant information provided by a specific closed loop
relay experiment together with simple models accurate on
interesting frequencies can overcome these problems.

In this paper a method for iterative controller evaluation
and redesign based on the knowledge of the gain and
phase margins and the crossover frequency is proposed.
The phase margin is estimated using a specific relay
experiment. A restricted complexity model accurate on
the relevant frequency range is identified using experiment
data. The gain margin is estimated through a model based
procedure that employs experiment harmonic information.
It is established a frequency criterion that is optimized
applying a gradient method. The numerical problem is
solved using experiment information together with the
model. Open loop experiments are not necessary. The
proposed method can be applied to a large number of
processes types including non-minimum phase and time
delay dynamics given the relay feedback develops limit
cycle. Convergence is achieved using few experiments.

The paper is organized as follows. Initially the relay exper-
iment is discussed. After that the closed loop identification
technique is reviewed. Following the gain margin estimate
procedure is presented, it is explained how experiment
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information may be used to improve model parameters for
the estimate. Then the controller optimization procedure
is described. Finally simulations and an experimental ex-
ample illustrate the effectiveness of the proposed method.

2. PROBLEM STATEMENT

Consider the closed loop shown in Fig. 1. The process
transfer function is given by G (s) while the controller is
C (s) = Kp(1 + 1

Tis
). The closed loop transfer function

from the reference signal r (t) to the process output y (t)
is

T (s) =
Y (s)

R (s)
=

L (s)

1 + L (s)
(1)

where L (s) = G (s)C (s) is the Loop Gain Transfer
Function.

r y
+

-

++
G(s)C(s)

ue

w

Fig. 1. The Closed Loop.

The crossover and critical frequencies are ωg and ωc. The
phase margin (φ) is related to the frequency point where

φ = π + 6 L(jωg) (2)

and |L(jωg)| = 1. The gain margin (A) is defined as

A =
1

|L(jωc)|
(3)

where 6 L(jωc) = −π.

The problem statement is: Given a closed loop system,
evaluate robustness and performance through the gain and
phase margins in addition to the crossover frequency esti-
mate using only one closed loop experiment. If necessary,
redesign the controller iteratively and safely to match the
desired specifications.

3. RELAY EXPERIMENT

A general relay procedure to estimate the frequency point
for which a given transfer function has a desired gain is
presented in de Arruda and Barros (2003b). If the loop-
gain is under test, the feedback structure is presented in
Fig. 2 where y′

r is the operation point during the test.

Fig. 2. Loop Gain Transfer Function Estimation.

This procedure allows the estimation of the frequency at
which the loop transfer function magnitude is close to r.
Selecting r = 1, the current gain crossover frequency ωg

and the phase margin can be estimated.

4. CLOSED LOOP IDENTIFICATION USING
FREQUENCY DOMAIN CONSTRAINTS

Identification is performed using the relay experiment data
to estimate a continuous-time model accurate close to the
crossover frequency, i.e. Ĝ (jω̂g). The procedure solves a
time least-squares problem subjected to a constraint in
frequency. The constraint is obtained using the process
frequency response on the first harmonic of the relay
experiment signal. This technique was presented in Jr et al.
(2006).

4.1 Optimization Using Equality Constraints

In this section the general procedure for constrained min-
imization is reviewed. Assume the parameters to be opti-

mized θ̂, that data is grouped in a vector form yielding ma-
trices Y , Φ and the constraints are expressed as matrices
M and γ. Define the least-squares optimization problem
as

min
θ̂

J =
(

Y − Φθ̂
)T (

Y − Φθ̂
)

subject to

Mθ = γ. (4)

In order to find the solution for the least-squares opti-
mization problem with constraints, one uses the equivalent

minimization problem in relation to θ̂ and λ (the Lagrange
multiplier). Then the cost function is given by

J =
(

Y − Φθ̂
)T (

Y − Φθ̂
)

+ λ(γ − Mθ). (5)

By defining

E = 2ΦT Φ (6)

F = 2ΦT Y (7)

the optimal solution is

λT =
{

ME−1MT
}−1

{

γ − M [E]
−1

F
}

θ̂ = [E]
−1

(F + MT λT ).

4.2 Identification of FOPDT Models

The used model is first-order plus dead-time (FOPDT)
continuous-time represented by

G (s) =
b

s + a
e−τs. (8)

Define the regression vector with the available data being
discrete-time

y (t) = φ (t) θ

where

φ (t) =



−

t
∫

0

y (υ) dυ

t
∫

0

u (υ) dυ u (t)





T

, θ = [ a b β ]
T

.

The equality constraint is defined through the following
regression vector which is obtained using the linear form
(4) given by

ẑ = xT (ω̂g) θ̂
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with

ẑ = jω̂gĜ (jω̂g) ; xT (jω̂g) =
[

−Ĝ (jω̂g) 1 −jω̂g

]

The final estimate obtained is
{

â, b̂, τ̂ = β̂/b̂
}

5. GAIN MARGIN ESTIMATE

Despite the fact that the relay experiments keep the
process reference closed to the operation point, process
variability is increased and employees time is still con-
sumed during the tests. Thus, is desirable to reduce ex-
periment time as possible. Gain and phase margins tuning
methods usually employ the respective relay experiments,
so that test time may be reduced excluding the gain
margin experiment using model based estimates. The gain
margin does not influence system performance as the phase
margin and crossover frequency therefore an approximate
solution is acceptable.

5.1 Model Improvement at Higher Frequencies

The FOPDT model is identified using the presented relay
experiment data. Closed loop stable systems controlled by
PID have an interesting robustness property: ωc > ωg

(Skogestad and Postlewaite (2005)). During iterations it
is considered that the closed loop system is stable and so
on this condition is satisfied. Therefore it is possible to use
higher frequency information provided by the relay exper-
iment to improve the estimated model around the actual
critical frequency. This improvement is done scaling model
gain and delay using harmonics excitation to improve the
gain margin estimate.

Using Harmonic Information The loop gain frequency
response is computed at the harmonics of the relay exci-
tation using the Discrete Fourier Transform. It is chosen
the harmonic related to the loop gain frequency response
function closest to the critical point and the real axis in the
Nyquist Diagram. This choice aims conservatively improve
the model at the critical frequency region.

Model Gain Improvement To improve the model in the
harmonic frequency region is just necessary scale its gain
b. Then, given an initial model

Gi(s) =
bi

s + a
e−sτ ,

it is desired that the model gain be equal to the process
response gain Gd(jωo) at the frequency ωo. The improved
model gain is given by

bd = bi

|Gd(jωo)|

|Gi(jωo)|
.

Model Phase Improvement It is just necessary adjust
the model delay to improve the model phase close to an
arbitrary frequency ωo. The initial model is given by

Gi(s) =
b

s + a
e−sτi ,

and the phase improvement is given by

6 Gd(jωo) = 6 Gi(jωo) + Ψ.

Then, it is possible to describe the improved model as

Gd(s) =
b

s + a
e−s(τi+ψ)

where Ψ = ψωo. Therefore, the necessary scale to adjust
the model phase close to the interesting frequency point is
computed

ψ =
6 Gd(jωo) − 6 Gi(jωo)

ωo

.

The improved model obtained after the gain and phase
adjustments is used to estimate the gain margin.

5.2 Computing the Gain Margin Estimate

The gain margin estimate is computed solving for the
frequency with zero loop gain imaginary part. Usually,
this problem is solved using approximations or non-linear
optimization. In this paper, another approach is presented
employing specific Pade approximations. The improved
model delay is approximated close to the chosen harmonic
frequency ωo using

e−jωτ ≃ e−jωoτ 1 − τ
2 (jω − jωo)

1 + τ
2 (jω − jωo)

. (9)

More details may be found in Fausett (1999). Therefore,
it is obtained the following loop gain approximation

L(jω) ≃ Kp(1 +
1

Tijω
)

b

jω + a
e−jωoτ 1 − τ

2 (jω − jωo)

1 + τ
2 (jω − jωo)

.(10)

Solving the equation (11)
6 L(jωc) = −π (11)

using the loop gain in equation (10), it results a polynomial
equation described by

α1ω
4 + α2ω

3 + α3ω
2 + α4ω + α5 = 0 (12)

where

α1 = cos(ωoL)
τ2

4
,

α2 = sin(ωoτ)

[

τ + (a −
1

Ti

)
τ2

4

]

+ cos (ωoτ)

[

ωo

τ2

2

]

,

α3 = sin(ωoτ)

[

ωo

(

1

Ti

− a

)

τ2

2
− ωoτ

]

+

cos (ωoτ)

[(

1

Ti

− a

)

τ − 1 + (ω2
o +

a

Ti

)
τ2

4

]

,

α4 = sin(ωoτ)

[

aτ

Ti

+

(

1

Ti

− a

)(

1 −
ω2

oτ2

4

)]

+

cos (ωoτ)

[

ωoτ

(

a −
1

Ti

)

−
ωoaτ2

2Ti

]

and

α5 = sin(ωoτ)

[

−aτωo

Ti

]

+ cos (ωoτ)

[

a

Ti

(
ω2

oτ2

4
− 1)

]

.

The real positive solution closest to the used harmonic
frequency is chosen as the critical frequency estimate.
Then, the gain margin is estimated using equations (10)
and (3).
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6. THE CONTROLLER OPTIMIZATION
PROCEDURE

The controller redesign is based on the optimization of a
frequency criterion that is defined as follows:

J(ρ) =

[

(

ωg − ωd

ωd

)2

+

(

φe − φd

φd

)2

+

(

Ku − Kd

Kd

)2
]

where ρ = [Kp;
Kp

Ti
] is the controller parameter vector, ωd

and ωg are the desired and measured crossover frequencies,
φe and φd are the measured and desired phase margins, Ku

is the loop gain magnitude at the critical frequency and
Kd is the inverse of the desired gain margin Ad.

The controller parameters are obtained applying a gradi-
ent based optimization technique, the iterative Newton’s
formula

ρi+1 = ρi − γiR
−1J ′(ρi).

To solve this numerical problem is necessary to compute
the gradient and the Hessian, J ′(ρi) and R respectively.
The algorithm will converge if the Hessian exists and is
positive definite, even if the gradient is approximated. The
gradient is given by

J ′(ρ) =

(

ωg − ωd

ω2
d

)

∂ωg

∂ρ
+

(

φe − φd

φ2d

)

∂φe

∂ρ

+

(

Ku − Kd

K2
d

)

∂Ku

∂ρ

and Hessian can be computed as

R =
1

ω2
d

∂ωg

∂ρ
(
∂ωg

∂ρ
)T +

1

φ2
d

∂φe

∂ρ
(
∂φe

∂ρ
)T

+
1

K2
d

∂Ku

∂ρ
(
∂Ku

∂ρ
)T

where the second order derivatives have been suppressed
to avoid a non-positive definite Hessian. The problem
solution requires the computation of some derivatives
considering the frequency response functions features at
the critical and crossover frequencies.

The derivative
∂ωg

∂ρ
is computed observing that between

optimization iterations the magnitude of the loop gain is

unity at the crossover frequency
∂|L(jωg)|

∂ρ
= 0 what results

in

∂ωg

∂ρ
= −

|G(jωg)|
∂|C(jωg)|

∂ρ
(

|C(jωg)|
∂|G(jω)|

∂ω
|ωg

+ |G(jωg)|
∂|C(jω)|

∂ω
|ωg

) .

For the Phase Margin derivative ∂φe

∂ρ
it follows that at ωg

∂ 6 L(jωg)

∂ρ
=

∂ 6 C(jωg)

∂ρ
+

+

(

∂ 6 C(jω)

∂ω
|ωg

+
∂ 6 G(jω)

∂ω
|ωg

)

∂ωg

∂ρ
.

Finally, the computation of ∂Ku

∂ρ
uses

∂ |L(jωc)|

∂ρ
= |G(jωc)|

∂ |C(jωc)|

∂ρ
+

(

|C(jωc)|
∂ |G(jω)|

∂ω
|ωc

+ |G(jωc)|
∂ |C(jω)|

∂ω
|ωc

)

∂ωc

∂ρ

and

∂ωc

∂ρ
= −

(

∂ 6 C(jω)

∂ω
|ωc

+
∂ 6 G(jω)

∂ω
|ωc

)−1
∂ 6 C(jωc)

∂ρ

where was used the fact that between iterations at the
critical frequency ∂ 6 L(jωc)

∂ρ
= 0.

Process derivatives are computed using the FOPDT model
as follows

∂ 6 G(jω)

∂w
=

a

ω2 + a2
− τ

and
∂ |G(jω)|

∂w
=

−bω

(ω2 + a2)1.5

The derivatives evaluated at the crossover frequency are
computed employing the identified model with constraints
whilst the derivatives evaluated at the critical frequency
are computed using the improved model.

7. SIMULATION EXAMPLES

In this section two representative simulation examples are
shown which illustrate the use of the technique. The noise
power applied during identification is 0.001 and the DFTs
are computed evaluating just one period of the signals.
The closed loop time response is simulated applying a step
of magnitude 1 to the setpoint and a step disturbance of
magnitude 0.1 to the process output.

7.1 Second Order Plus Dead Time Process

The process is given by

G(s) =
2s + 1

(10s + 1)(0.5s + 1)
e−s.

The initial PI controller is Ci(s) = 1.68(1 + 1
13.53s

).

Evaluation The phase margin and the crossover fre-
quency are estimated through the relay experiment φe =
101o and ωge

= 0.1269. The model based gain margin
estimate is Am = 18.28. The model improvement is lim-
ited by the identified model dynamics. Actually, the gain
margin, the phase margin and the crossover frequency are
Ar = 4.21, φr = 101o and ωgr

= 0.16 respectively. The new
specifications are Ad = 2.5 and φd = 70o. It is desirable
improve the system response by increasing the crossover
frequency gradually during the iterations ωgi+1

= 1.5ωgi
.

Iterative Redesign Procedure Data between iterations
are presented in table 1. The improved model at the third
iteration is compared to the identified one and the real
process in Fig. 3, the respective real gain margin is Ar =
2.42 and the model based estimated one is Am = 2.36.
The frequency cost function value J has decreased along
the iterations. The procedure has converged to the desired
specifications as can also be noted in Fig. 4. The redesigned
controller has improved the closed loop time response as
shown in Fig. 5.
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Table 1. Iteration Data

Kp Ti φe ωg Am J

Initial 1.68 13.53 101.43 0.1269 18.28 0.5290

1 2.21 8.25 90.08 0.2001 5.15 0.2292

2 3.48 6.79 88.27 0.3360 1.85 0.1521

3 2.84 2.80 66.24 0.3831 2.36 0.0587

−1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5
Process

FRF Harmonics

Initial Model

Improved Model

Fig. 3. Improved Model Nyquist Diagram
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Fig. 4. Nyquist Diagram
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Fig. 5. Closed Loop Response

7.2 Eighth Order Process

The process is now given by

G(s) =
1

(s + 1)8

and the initial controller is Ci(s) = 1.365(1 + 1
12.41s

).

Evaluation The phase margin and the crossover fre-
quency are estimated applying the relay experiment: φe =
39.43o and ωge

= 0.278. Stability is improved increasing
the phase margin then Ad = 2.5 and φd = 70o. Due the
small phase margin and its aggressive time response, it

is desired to decrease the crossover frequency along the
iterations ωgi+1

= 0.8ωgi
.

Iterative Redesign Procedure In Table 2 it is shown
the iterations data. Even though the estimate procedure
presents errors in the first iteration due the initial model
dynamics, the algorithm converges to the specifications.

Table 2. Iteration Data

Kp Ti φe ωg Am J

Initial 1.36 12.41 39.43 0.2780 43.98 0.5075

1 1.21 22.44 115.45 0.0709 1.44 0,5152

2 0.57 4.94 72.67 0.0904 2.28 0.0366

The result is close to the specifications as noted in Fig. 6.
Performance and stability have been improved, the system
presents a smaller overshoot and rise time, damping has
been improved also (Fig. 7).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4
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Specifications
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Fig. 6. Nyquist Diagram
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Fig. 7. Time Response

8. EXPERIMENTAL EXAMPLE

The laboratory scale process consists of a thermoelectric
Peltier module acting as a heat pump on a flat metal
plate load. An air cooler is used to extract heat from the
opposite face of the Peltier module. The process temper-
ature varies between 10oC and 70oC when operating at a
room temperature of around 24oC. Power is applied using
PWM actuators while the temperature is measured using
LM35 sensors. The modelling of the thermoelectric module
results in a complex model that is highly nonlinear as can
be seen in Huang and Duang (2000). Linearization and
model reduction results in a second order model without
including the actuator and sensor dynamics. In this pa-
per, the model is assumed to be unknown. The initial PI
controller is Ci(s) = 1(1 + 1

60s
).
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Evaluation The closed loop is evaluated using the relay
experiment and it is estimated φe = 49o and ωge

=
0.0143. The relay experiment excitation is shown in Fig. 8
where can be observed the high noise power. The model
based gain margin estimate is Am = 5.2. Using another
specific relay experiment, the gain margin experiment, it
is estimated Ae = 4 (de Arruda and Barros (2003a)).

100 200 300 400 500 600 700 800 900 1000

2000

2500

3000

3500

4000
y

u

r

Fig. 8. Relay Experiment

Performance and stability may be improved with the
new specifications Ad = 3.5 e φd = 70o. It is also
desirable improve system response increasing the crossover
frequency iteratively ωgi+1

= 1.1ωgi
.

Iterative Redesign Procedure The results obtained dur-
ing iterations are presented in table 3. It can been noted
that better values for the phase margin and the gain
margin have been achieved.

Table 3. Iteration Data

Kp Ti φe ωg Am J

Initial 1 60 49.00 0.0143 5.2433 0.1028

1 1.6295 111.2903 61.59 0.0153 4.7306 0.0452

2 2.1069 150.5747 71.00 0.0153 4.6801 0.0362

3 2.5496 144.7354 70.72 0.0161 4.1876 0.0177

The system response has been improved, specifically over-
shoot, rise time, damping and variability as show in Fig. 9.

50 100 150 200 250 300

2450

2500

2550

2600

2650

2700

2750

Initial

Redesigned

Setpoint

Fig. 9. Time Response

The parameters shown in Table 4 may be used to evaluate
time response improvements also (Astrom and Hagglund
(1995)). The redesigned controller has improved the ma-
jority of the parameters.

Table 4. Time Response Evaluation

Initial Redesigned

IE 6563 9823

IAE 19253 16239

ITAE 1923039 1693682

ITE -529837 453808

ITSE 130234109 88126600

9. CONCLUSIONS

In this paper is presented a novel procedure for controller
evaluation and iterative redesign. The gain and phase mar-
gins that are classical robustness measures are evaluated
then an optimization technique is applied to a frequency
criterion. The technique uses a relay experiment to esti-
mate the phase margin and the crossover frequency whilst
a model is identified accurately close to the crossover
frequency. Aiming reduce the number of experiments, the
gain margin is estimated employing the model. Open
loop experiments are not necessary. The procedure can
be easily extended to PID controllers. It was shown how
the technique can safely approach specifications using a
few experiments. Simulation and experimental examples
illustrate its effectiveness.
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