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Abstract: Solid waste collection and hauling account for the greater part of the total cost in modern solid 
waste management systems. In a recent initiative, 3,300 Swedish recycling containers have been fitted 
with level sensors and wireless communication equipment thereby giving waste collection operators access 
to real-time information on the status of each container. In a previous study (Johansson, 2006), analytical 
modeling and discrete-event simulation have been used to evaluate different scheduling and routing 
policies utilizing the real-time data, and it has been shown that dynamic scheduling and routing policies 
exist that have lower operating costs, shorter collection and hauling distances, and reduced labor hours 
compared to the static policy with fixed routes and pre-determined pick-up frequencies employed by many 
waste collection operators today. This study aims at further refining the scheduling and routing policies by 
employing a model predictive control (MPC) framework on the system. In brief, the MPC controller 
should minimize an objective cost function consisting of fixed and variable collection and hauling costs for 
a fixed future horizon by calculating a sequence of tactical scheduling and routing decisions that satisfies 
system constraints using a receding horizon strategy. 

 

1. INTRODUCTION 

Over the last 20 years, car traffic has grown at a rate of 3.3 
percent per annum and road freight traffic has grown almost 
at 5 percent per annum (OECD, 1995). Consequently, freight 
transportation-related problems are mounting (OECD, 1997). 
Solid waste collection and hauling are estimated by 
municipal planners in Malmoe, Sweden, to account for 10-
15% of the total freight transportations in the city, but due to 
the low average speed of vehicles used, and numerous stops 
during collection, the effect they have on congestion, air 
pollution, and noise is higher than that of other types of 
freight transportation. 
 
The most important achievements in reducing traffic-related 
problems to date have been effected through advances in 
technology; e.g. developments in engine technology to reduce 
fuel consumption, noxious emissions and noise; and cleaner 
fuels. The gains made have in some cases, however, been 
offset by changes in behavior, e.g. savings in fuel through 
engine design has been offset by the trends towards more 
powerful engines, higher speeds, and increased congestion 
(OECD, 1995). Policy-makers and scientists alike agree that 
technology alone cannot solve the problems; habits and 
behaviors need to change too. This makes telematics 
technology an interesting topic as it can be used to enable and 
aid changes in traffic behavior. The word telematics was 
“originally coined to mean the convergence of 
telecommunications and information processing, the term 
later evolved to refer to automation in automobiles. GPS 
navigation, integrated hands-free cell phones, wireless 

communications and automatic driving assistance systems all 
come under the telematics umbrella.” (Definition from 
TechEncyclopedia; www.techweb.com, 2004-06-28). Recent 
developments have extended the concept to equipment fitted 
on the load carrier. Examples of such equipment are the level 
sensors and alarm systems for recycling containers for 
corrugated board and cardboard in Sweden.  
 
Since 1994, Sweden has had producer’s responsibility 
regulations for packaging waste. All companies that 
manufacture, import or sell packaging are responsible for 
ensuring that packaging waste can be collected and recycled. 
Together, these companies have formed five material 
handling companies working together under the name 
Packaging Collection Service, with the task of organizing and 
administering this responsibility. In order to collect 
packaging waste, the Packaging Collection Service has set up 
recycling stations at more than 7,000 locations throughout the 
country. A typical recycling station has a number of 
containers where nearby households can discard plastic, 
paper, cardboard, corrugated board, metal, and glass 
packaging. The collection, hauling, and sorting of packaging 
waste is contracted out to local entrepreneurs. The containers 
are typically collected by front-loading compacting vehicles. 
Due to heavy congestion, this vehicle type cannot, however, 
be used in downtown areas and consequently some inner city 
containers are of a different design and are collected using 
smaller, less efficient, non-compacting, open-sided vehicles 
which use a crane for waste collection. Recently, the material 
handling companies for corrugated board and cardboard, 
Returwell and Svensk Kartongåtervinning respectively, fitted 
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their containers with level sensors and wireless 
communication equipment in order to assess the quality of 
the service provided. The investment was paid in full by the 
material handling companies. Approximately 3,300 
containers of this type have been distributed to recycling 
stations around the country. The sensor is mounted under the 
lid of the container. It is activated once an hour and assesses 
the level of the container by means of four infrared light-
emitting diodes. If three of the four beams are broken, an 
alarm is raised and transmitted through the GSM network, 
and an automatically generated email is sent to the waste 
collection operator. A second alarm is raised when all four 
beams are broken and a reset signal is sent when a tilt-sensor 
indicates that the container has been emptied. In order to 
assure the quality of service, the operator is charged a penalty 
if the time between the second alarm and the reset signal 
exceeds 24 hours on weekdays and 48 hours on a weekend.  
 
Studies of solid waste management systems report that waste 
collection and hauling represent the greater part of the total 
cost of such systems (Baht, 1996; Leander in Sonesson 
2000). Although the equipment fitted on the recycling 
containers in Sweden has given waste collection operators 
access to real-time information on container status, many 
operators have chosen not to use the data to improve the 
planning and control of their operations. Instead, they 
continue to rely on their traditional static planning approach, 
employing fixed routes with predetermined pick-up 
frequencies. The situation where some waste collection 
operators have embraced technology raises many questions 
on how real-time data can be used for planning and control 
purposes.  
 
The purpose of this paper is therefore to evaluate if model 
predictive control can be used to improve the scheduling and 
routing of solid waste transports in the system. This problem 
is characterized by the simultaneous presence of three 
fundamental aspects: 
 
• Scheduling: to specify a time or set of times when a 

certain route should be executed. 
• Routing: to organize the physical movement of goods 

between different geographical sites. 
• Dynamicity: the two aspects above embedded in a 

framework of constantly changing information, a time 
horizon, and where  decisions influence later decisions. 

 
It should be pointed out that the study is primarily related to 
waste collection from a relatively small number of discrete 
points, and does not apply directly to house-to-house 
curbside collection of residential wastes. 
 
1.1 Vehicle scheduling and routing 
 
Vehicle scheduling and routing problems have been 
extensively researched during the last three decades. The 
classical vehicle routing problem (VRP) aims to minimize the 
total cost of routing a multiple number of vehicles from a 
depot to service customer nodes and then return. The problem 
can be further characterized by, for example, type of fleet, 

number of depots, and type of operations (pure pick-ups, pure 
deliveries, and mixed). The vehicle scheduling and routing 
problems (VSRP) are an extension of the VRP with a time 
horizon, additional time constraints, place requirements on 
the order of operations (Bodin and Golden, 1981). Most work 
in this area has, however, focused on static problem 
formulations where all information is known to the planner 
beforehand despite its stochastic and dynamic characteristics. 
 
Stochastic vehicle routing and scheduling problems arise 
when elements of the problem are modeled as random 
variables, e.g., stochastic travel time and stochastic demand. 
The typical solution approach to this class of problems is a 
priori optimization of the probability that the tour(s) can be 
completed given the constraints of the problem. With support 
for real-time decision making, such as wireless 
communication, geographic information systems (GIS), and 
global positioning systems (GPS), the importance of 
simultaneously handling the temporal aspects of uncertainty 
is growing. Dynamic data is characterized by its constantly 
changing nature and includes e.g. real-time traffic conditions, 
customer demands, driver and vehicle statuses. Psaraftis 
(1988) and Powell et al (1995) feature comprehensive 
surveys of stochastic and/or dynamic vehicle routing 
problems. 
 
The problem domain belongs to a class of optimization 
problems that are intrinsically hard to solve. Lund et al 
(1996) introduced the concept of degree of problem 
dynamism, measured by the ratio of dynamic distance over 
static distance, and evaluated its effect on the quality of the 
solutions. This concept was further explored by Larsen et al 
(2001) who also proposed a taxonomy for dynamic routing 
systems where the ratio between dynamic requests and total 
number of requests is used as the key determinant of the 
system’s degree of dynamism. In the context of this study, 
only containers where the sensors have raised alarms and 
initiated a tour are regarded as dynamic requests. Other 
containers that might be collected on the same tour are 
regarded as non-dynamic, planned events, although the 
planning takes place ad hoc at the time when the tour is 
initiated. Applications of VRP and VSRP related to waste 
collection can be found in Bommisetty and Dessouky (1998), 
Tung and Pinnoi (1999), Shih and Chang (2001), Baptista et 
al (2001), Angelelli and Speranza (2002), Zografos and 
Androutsopoulos (2002). However, none of the articles deals 
with dynamic scheduling and routing, nor the underlying 
system characteristics or how they are connected to different 
scheduling and routing policies. 
 
1.2 Model Predictive Control 
 
MPC is an optimal control strategy utilizing an internal 
forecasting model to generate predictions of future system 
behavior and an optimization model. Applications of MPC 
have been widely used in industry, and also some 
contributions of MPC can be found supply chain and logistics 
literature (Bose and Pekny, 2000; Braun et al., 2003; Perea-
López et al., 2003; Tzafestas et al., 1997; Wang et al., 2007; 
Zafra-Cabeza et al., 2007).  
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2. METHODOLOGY 
The research methodology used in this study is a blend of 
analytical and simulation modeling combined with empirical 
case research. The first approach was to construct analytical 
models in an attempt to reflect an ideal system, thus isolating 
vital system characteristics which determine the effect of 
dynamic planning in a waste collection context. The second 
modeling approach, stochastic discrete-event simulation, was 
used to build more realistic models of the system. The 
simulation approach allowed a relaxation of the assumptions 
made in the analytical models and more advanced 
geometries, heterogeneous sets of containers, and more 
complex planning policies could therefore be evaluated. The 
final simulation case study is built on observations and 
interviews with planners and drivers operating the downtown 
recycling stations in Malmoe. Supplementary interviews were 
conducted with two other operators of similar systems in 
order to investigate their usage of real-time data. 
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Figure 1. Normal probability plot of the waste collected from 

the recycling station at Karlskronaplan, Malmoe, Sweden. 
The mean weight of the waste collected in a week is 
73.36 kg with a standard deviation of 16.47 kg, or 10.5 
kg/day, with a standard deviation of 6.2 kg/day0.5. 

 
2.1 Analytical model 
 
In order to evaluate the benefits of adopting dynamic 
scheduling in solid waste collection, an analytical model of a 
system with N containers was developed using probability 
theory. The container contents weight after a certain time was 
assumed to follow a normal distribution, an assumption 
supported by the empirical data collected (Fig. 1). The goal 
of the static scheduling is to collect all containers before the 
capacity of any one is expected to exceed its limits. In order 
to compute the optimal static collection frequency, an 
acceptable risk-level, α  has to be set. The α-level is the risk 
that any of the N containers exceeds its capacity. It is 
assumed that all N containers are emptied on the same tour 
and that the containers are independent but identical in terms 
of capacity, mean fill rate, and its standard deviation. The 
mean time between collections [MTBC] is then defined by  
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1 α−== −  : inverse cumulative standardized normal 

distribution 
α  : risk of exceeding any container capacity  

dayx  : mean inflow per container and day [kg/day] 

xs  : standard deviation of inflow per container and day [kg/day0.5] 
M  : container capacity [kg] 
N  : number of containers 
 
This time should be compared to the MTBC for a dynamic 
system where the collection occurs when the first container 
exceeds its capacity and an alarm is raised. It is assumed that 
the dynamically controlled system has sufficient capacity to 
respond to the alarm and that the time for collection is 
negligible. The MTBC for the dynamic system can then be 
calculated by using equation 1 with an α-value of 0.50, which 
corresponds to a 50% chance (or risk) that at least one of the 
N containers is 100% full and triggers the alarm (Fig. 2). 
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Figure 2. A theoretical representation of the additional 

container weight expected when comparing a system with 
optimal static scheduling for a given risk-level versus a 
system with event-driven, dynamic scheduling. 

 
Since the real system does not operate 24 hours a day, seven 
days a week, the equation has to be adapted to operating only 
in the daytime on weekdays. Since the model assumes that all 
N containers are emptied on the same tour, regardless of 
whether the tour is initiated by a static schedule or triggered 
by a level sensor, the cost of the individual tours is the same, 
but since the frequency of tours differs, the long-term cost 
will be different. The ratio between the MTBCstatic scheduling 
and the MTBCdynamic scheduling is a measure of the potential 
cost reduction of adopting dynamic planning. 
 
2.2 Simulation model  
 
The simulation model consists of containers, vehicles, and a 
recycling facility. The key attributes of the containers are 
mean waste fill rate [kg/day], standard deviation of fill rate 
[kg/day0.5], current weight [kg], capacity [125 kg], and 
location. Each container is fitted with a level sensor that 
triggers an alarm signal when the container exceeds the 75% 
level (“yellow alarm”), and when it is 100% full (“red 
alarm”). The key attributes of the vehicles are the current 
weight of its load [kg], capacity [2500 kg], average speed [20 
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km/h], time to perform different actions, e.g. check station 
and set up vehicle for collection [2.5 min], collect [2.5 
min/container], reset vehicle and leave station [2 min], empty 
vehicle at recycling facility [10 min], distance cost [0.6 
EUR/km], and hourly cost [39 EUR/h].  
 
Two different city geometries were used. The first geometry 
was a hypothetical city model where the collection points 
were equidistantly located around a circle with a recycling 
plant outside the circle. The simulation results reported were 
based on a geometry with a city center radius of 2 km and a 
distance to the recycling plant of 15 km. The second 
geometry used in the simulation was a model of the actual 
system in Malmoe, Sweden (Fig. 3). Based on input values 
for system size, a random system was created in terms of the 
number of containers and geometry parameters, minimum 
and maximum values for the waste generation, and standard 
deviation of fill rate. The mean waste fill rates per container 
were drawn from a uniform distribution with the minimum 
and maximum value as parameters. The simulation results 
reported in this article are based on a waste generation 
minimum value of 4 kg/day, a maximum value of 20 kg/day, 
and a standard deviation of 50% of the mean fill rate.  
 

 
 
Figure 3. The Malmoe Simulation Model 
 
During the simulation, each location generates waste 
according to a normal distribution and adds it to the 
containers on an hourly basis. It should be pointed out that 
the inflow model of having a normally distributed amount of 
waste added to the container once an hour is not a true 
representation of the variation in inflow to the containers.  On 
an aggregated level, the normal distribution appears to 
adequately resemble the real system over time and in 
particular in the later stages when the container’s content is 
approaching the critical levels where the sensor raises alarms.  
 
When the waste quantity exceeds the threshold values of 75% 
and 100%, alarms are raised and depending on which 
planning policy is used, vehicles might be scheduled and 
routed to the recycling point. If a container is full and not 
collected within a specified time, 24 hours on weekdays and 
48 hours during the weekend, a penalty is charged. As with 
the real system, collection and hauling are only conducted in 
the daytime on weekdays. The duration was 104 weeks. The 
primary performance indicators used included the total 

operational cost of the system, penalty cost, labor hours, 
collection and hauling distance, number of tours, and number 
of containers collected, all on an annual basis. The variations 
in outputs between runs were small, and five replicates 
appeared sufficient to allow an estimate of the system 
behavior. Five different collection policies were used in the 
evaluation: 
Policy 1: Static scheduling and static routing. This policy 
mimics the actual operations of the system practiced today 
with fixed collection days and routes. The procedure for 
solving the static routing problem is based on the heuristic 
algorithm proposed by Christofides and Beasley (1984).  
Policy 2: Dynamic scheduling and dynamic routing to full 
containers. This policy is fully event-driven and initiates a 
tour to full containers within 24 hours from the receipt of a 
“red alarm”. In order to avoid overfull containers and 
subsequent penalties during weekends, a special rule for 
Fridays was introduced so that containers where the “yellow 
alarm” has been triggered were also collected. An alarm that 
is received while a vehicle is already collecting waste will not 
re-route that vehicle, but will instead initiate a new tour 
within 24 hours. As with all dynamic scheduling policies, it is 
assumed that the system has sufficient vehicles and 
manpower to handle the collection requests within 24 hours. 
Policy 3: Dynamic scheduling and dynamic routing to 
“almost” full containers. This policy is similar to policy 2, 
and initiates a tour to full containers within 24 hours from the 
receipt of a “red alarm” or a “yellow alarm” on a Friday. The 
vehicle is, however, not routed exclusively to full containers, 
but also to nearby containers which have an estimated level 
greater than a set threshold value.  
Policy 4: Static scheduling and dynamic routing to “almost” 
full containers. The static scheduling and routing to “almost” 
full containers policy is based on a static scheduling using the 
same collection days as policy 1 has chosen. The routing is, 
however, done to full and “almost” full containers using the 
same logic as policy 3. The policy aims to maintain the 
benefits of static schedules for the drivers, while using the 
real-time data for improving the demand prediction and 
routing. 
Policy 5: Employing model predictive control. The 
scheduling and routing is done by MPC controller using a 
prediction and control horizon of each 14 days. The 
controller calculates a sequence of tactical scheduling and 
routing decisions satisfying system constraints by means of a 
receding horizon strategy while minimizing the collection 
and hauling cost. The policy aims to investigate if it is 
beneficial to modify the policy given a specific state of the 
system, rather than having fixed the policy as in 1-4. 
 
The second simulation model is built on empirical data from 
the Malmoe downtown recycling system and features a 
realistic geometry and waste generation. The system consists 
of nine recycling stations located in the downtown area and 
comprises 16 containers for cardboard and corrugated board. 
Currently, a static approach to scheduling and routing is 
employed; every Monday, a vehicle is routed to all 16 
containers, and on Fridays, a vehicle is routed to two of the 
containers with above-average fill rates. The full Monday 
tour is 12.5 km long and takes approximately 3 hours to 
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complete. The mean fill rates of the containers vary from 4.5 
to 21.7 kg/day and the standard deviation is estimated to be 
between 44% and 59% of the mean fill rate.  
 
Validation and verification of the simulation model The goal 
of the verification and validation process is twofold; (1) to 
create a model that represents the true system closely enough 
to be used as a substitute for the purpose of experimenting 
and predicting system behavior, and (2) to create credibility 
of the model  (Banks et al, 2001). One of the most critical 
data assumptions in the solid waste collection model was 
related to modeling of waste generation that created the 
demand for collection. Data on recycling waste per recycling 
point in the real system was therefore collected over a period 
of 6 months, from November 2003 until May 2004. In the 
model, it was assumed that the amount of waste in a 
container after a certain time would follow a normal 
distribution. With the exception of the time around 
Christmas, when the generation of packaging waste is 
extremely high, this assumption was validated using a 
Kolmogorov-Smirnov test. The hypothetical city simulation 
model was also quantitatively validated by comparing it to 
the analytical model. In total 6,724 simulation runs of 
varying system sizes ranging from 5 to 50 containers, mean 
fill rates ranging from 5 to 25 kg/day, and standard deviations 
ranging from 0 to 10 kg/day0.5 were compared to the 
analytical model with a mean average percent error [MAPE] 
of 0.18% indicating a very good match between the models. 
A quantitative validation of the model and the Malmoe 
system was not done due to the lack of data on individual 
tours. Instead, aggregated data on a yearly basis was 
available, allowing the model to be validated (and calibrated) 
on this level. As expected, policy 1 and policy 4 produce 
identical results when the threshold value is set to 0%.  
 

3. RESULTS AND DISCUSSION 
 
In the analytical model, the savings potential is given by the 
increased MTBC in the dynamically controlled system versus 
the system with static planning. This is shown in Fig. 4 where 
the savings potential is plotted as a function of the mean fill 
rate and the standard deviation of the fill rate for a system 
operating 24 hours a day, 7 days a week.  Evidently, dynamic 
planning offers the greatest savings potential for systems 
exhibiting high variation and low mean fill rates, while the 
potential for systems with low variation is negligible. 
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Figure 4. Savings potential for dynamic scheduling and 

routing vs. static scheduling and routing, for a 10-
container system operating 24/7, calculated using the 
analytical model [%]. 

Figure 5 displays the savings potential for a system where 
operations are allowed on weekdays only. The jagged nature 
of the surface merits explanation. Due to constraints posed by 
working hours, the static scheduling policy operates with 
spare capacity for most combinations of inflows. Since the 
savings potential is given by the quotient between the 
operating cost of a static scheduling system and a 
dynamically controlled system, a saw-like surface appeared. 
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Figure 5. Savings potential for dynamic scheduling and 

routing versus static scheduling and routing, for a 10-
container system operating on weekdays only, calculated 
using the analytical model [%]. 

 
The result that variability has a significant impact on the 
savings potential is also confirmed by the simulation results 
of the hypothetical city model.  
 
The dynamic policy 2 has the greatest container utilization, 
but for small systems, the process comes at the expense of 
frequent tours, long distances, and low utilization of the 
vehicle. For a larger system, however, this policy proves to 
be the most cost efficient although the distance is slightly 
higher than for the other policies. In fact, it can be shown that 
policy 2 is optimal for large, dense systems. For smaller 
systems, however, policy 1 is superior to policy 2. Since most 
systems for recycling containers are smaller than 100 
containers, this comparison explains the reluctance of waste 
collection operators to adopt the dynamic policy 2.  
 
For systems smaller than 100 containers; policy 3, and to a 
lesser degree policy 4, manage to reduce the collection and 
hauling distance and increase both vehicle and container 
utilization compared to policy 1. It should be pointed out that 
the results of operating according to policy 3 and policy 4 are 
highly dependent on the threshold value for what should 
constitute an “almost” full container. In the simulations 
reported in this study the threshold values of 40% and 75% 
respectively were used. The relatively low value of 40% for 
smaller systems indicates the importance of fully utilizing the 
vehicle once it has been decided that a tour should be 
initiated. The policy 5 produces similar results as policy 3 for 
smaller systems, and as policy 2 for larger systems, i.e. the 
MPC controller seems to switch to the optimal policy 
automatically given the size of the system.  
 
Operating cost has been used as an aggregated measure of the 
efficiency of a system. The simulation results from the 
hypothetical city model reveal that there is a strong link 
between the system size and the cost of operating the 
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different policies. Further, the results show that policy 4 
mirrors the cost of policy 1 closely. The results obtained from 
the hypothetical city model are confirmed by the result from 
the simulation of the actual system in Malmoe. The result 
shows that policy 3 reduces collection and hauling distances 
by 17%, the number of stops to collect containers is 
decreased by 14% and the operational cost reduced by 15%. 
As expected, policy 2 is much less efficient due to the small 
size of the system. In this simulation the total cost of 
operating with policy 4 is 17% higher, with 5% of the costs 
due to penalties for overfilling containers. 
  

4. CONCLUSIONS 
 
In this study, the effect of some basic scheduling and routing 
policies in the collection of solid waste has been examined, 
both for a hypothetical city model and a model of a real 
system. From the study, it can be concluded that dynamic 
scheduling and routing policies exist that have lower 
operating costs, shorter collection and hauling distances, and 
which collect fewer containers compared to the static policy 
employed by many waste collection operators, for all system 
sizes and realistic levels of variation. Further, dynamic 
scheduling and routing have the highest potential to decrease 
cost in the face of irregular demand. For large, dense systems, 
the dynamic scheduling and routing policy 2 is the optimal 
solution. When the number of containers is decreased and/or 
the distance between the containers is increased, this policy 
rapidly loses its benefits however. For smaller systems, the 
dynamic policy 3 is more suited and cost reductions in the 
range 10% to 20% can be expected for the type of systems 
evaluated in this study. The policy 5 of using an MPC 
controller will automatically determine when the switch from 
policy 2 to policy 3 should be done. Policy 5, however, does 
not outperform any of the other policies. This may be a bit 
surprising, but is likely to be caused by the static nature of the 
waste inflow. The inflow for each container is modeled as a 
stochastic variable, i.e., once “optimal” settings have been 
established for policy 2 or 3, they remain “optimal” and the 
MPC controller is not able to improve the system further. 
 
 

REFERENCES 
 
Angelelli, E. and Speranza, M. G., (2002). The application of a 

vehicle routing model to a waste-collection problem: two 
case studies, J. Operational Research Society, Vol. 53, pp. 
944-952 

Banks, J., Carson, J.S., Nelson, B.L. and Nicol, D.M., (2001). 
Discrete-Event System Simulation, Prentice Hall., Upper 
Saddle River, NJ. 

Baptista, S., Oliveira, R. C. and Zúquete, E., (2002). A period 
vehicle routing case study, Eur. J. Operational Research, 
Vol. 139, pp. 220-229  

Bhat, V. N., (1996), A model for the optimal allocation of trucks for 
solid waste management, Waste Management & Research, 
Vol. 14, pp. 87-96  

Bodin, L. and Golden, B. (1981). Classification in vehicle routing 
and scheduling, Networks, Vol. 11, pp. 97-108 

Bommisetty, D. and Dessouky, M., (1998). Scheduling collection of 
recyclable material at Northern Illinois Univ. campus using 

a two-phase algorithm, Comp. and Ind. Eng., Vol. 35, 1998, 
Nos 3-4, pp. 435-438  

Bose, S. and Pekny, J. F. (2000). A model predictive framework for 
planning and scheduling problems: a case study of consumer 
goods supply chain, Comp. and Chem. Eng, Vol. 24, pp. 
329-335 

Braun, M. W., Rivera, D. E., Flores, M. E., Carlyle, W. M. and 
Kempf, K. G. (2003). A Model Predictive Control 
framework for robust management of multi-product, multi-
echelon demand networks, Annual Reviews in Control, Vol. 
27, pp. 229-245 

Christofides, N. and Beasley, J. E., (1984). The period vehicle 
routing, Networks, Vol. 14 ,1984, pp. 237-256 

Johansson, O. (2006). The effect of dynamic scheduling and routing 
in a solid waste management system, Int. J. Integrated 
Waste Management, Science and Technology, 2006, vol. 26, 
issue 8, pp. 875-885. 

Larsen, A., Madsen, O. and Solomon, M., (2002). Partially dynamic 
vehicle routing-models and algorithms, J. Operational 
Research Society, Vol. 53, pp. 637-646 

Lund, K., Madsen, O. and Rygaard,  J.,(1996). Vehicle routing 
problems with varying degrees of dynamism, Technical 
Report, IMM, The Department of Math. Modelling, Tech. 
Univ. Denmark, Lyngby, Denmark 

J. Maciejowski, J., (2002) Predictive Control with Constraints, 
Prentice Hall, England. 

OECD, (1995). Final report of the joint OECD/ECMT project group 
on urban travel and sustainable development, 
http://www1.oecd.org/cem/urbtrav/1995.htm 

OECD, (1997). Freight transport and the city, Conclusions of round 
table 109, Paris, 11-12 December 1997, 
http://www1.oecd.org/cem/online/conclus/rt109e.pdf  

Perea-Lópes, E., Ydstie, B. E. and Grossmann, I. E. (2003). A 
model predictive control strategy for supply chain 
optimization, Comp. and Chem.Eng., Vol. 27, pp 1201-1218 

Powell, W. B., Jaillet, P. and Odoni, A., (1995). Stochastic and 
dynamic networks and routing. In Ball M et al (eds), 
Network Routing 8. Elsevier Science: Amsterdam, pp. 141-
295 

Psaraftis, H. N.,(1988). Dynamic vehicle routing. In Golden, B. and 
Assad, A. (eds), Vehicle Routing: Methods and Studies. 
North Holland, Amsterdam, pp. 223-248 

Shih, L. H. and Chang, H. C., (2001). A routing and scheduling 
system for infectious waste collection, Environmental 
Modeling and Assessment, Vol. 6, pp. 261-269 

Sonesson, U., (2000). Modelling of waste collection - a general 
approach to calculate fuel consumption and time, Waste 
Management & Research, Vol. 18, pp. 115-123 

Tung, D. V. and Pinnoi, A., (2000). Vehicle routing-scheduling for 
waste collection in Hanoi, Eur. J. Operational Research, 
Vol. 125, pp. 449-468  

Tzafestas, S., Kapsiotis, G. and Kyriannakis, E. (1997). Model-
based predictive control for generalized production planning 
problems, Computers in Industry, Vol. 34, pp. 201-210 

Wang, W. Rivera, D. E. and Kempf, K. G. (2007). Model predictive 
control strategies for supply chain management in 
semiconductor manufacturing, Int. J. Prod. Economics, Vol. 
107, pp. 56-77 

Zafra-Cabeza, A., Ridao, M. A., Camacho, E. F., Kempf, K. G., and 
Rivera, D. E. (2007). Managing risk in semiconductor 
manufacturing: A stochastic predictive control approach, 
Control Eng. Practice, Vol. 15, pp. 969-984 

Zografos, K. G. and Androutsopoulos, K. N., (2004). A heuristic 
algorithm for solving hazardous materials distribution 
problems, Eur. J. Operat. Research, Vol. 152, pp. 507-519 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4486


