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Abstract: This paper presents a new method for matching metric maps generated by mobile
robots that act cooperatively. This process of information matching makes it possible to
perform global map generation from local maps (possibly partial and nonconsistent) provided by
individual robots. The proposed method is based on a paraconsistent artificial neural network
model that considers as input data the Euclidean distances between the points from each one of
the partial maps. The use of this kind of input information makes the individual maps invariant
with respect to relative rotation and translation among the robots in the mapping environment.
The neural network then analyzes these distances to determine what are the matching belief
relations among the points of the distinct maps. The algorithm implemented for the neural
architecture achieved good results with very satisfactory computational performance, and made
it possible to determine the certainty and contradiction degress in the map point matching
analysis. The results show that the proposed approach is robust for the cases were it was applied.
Equally important is the fact that the considered architecture allows for the combination of

information from partial maps acquired in execution time during navigation.
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1. INTRODUCTION

A fundamental issue to be considered for the design
and implementation of autonomous mobile robots is the
exploratory capacity in the actuation environment, with
no prior information and aiming at learning a sufficient
representation of the environment, as far as the task goals
are concerned. In order to build up this representation, the
robot collects and processes data informed by its onboard
sensors. The final objective is to acquire, through this
exploratory processes, a global map of the environent and
the corresponding self-localization of the robot.

Many of the proposed solutions for map generation and
localization are based on simultaneous algorithms (Simul-
taneous Localisation And Mapping — SLAM), e.g. Dis-
sanayake et al. [2000] and Thrun and Liu [2003]. However,
independently from considering either SLAM or separate
mapping and localization techniques, it is a matter of fact
that environmental modelling based on the combination
of partial maps is expected to be computationally more
efficient, due to some degree of parallelism, than modelling
based on a single exploratory robot. Therefore, there is
an iherent advantage on using coperative robotic systems
where algorithms for matching partial individual maps are
used to obtain a global envionment map, such as in the
method described in Diosi and Kleeman [2005].
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This article proposes a novel method for matching indi-
vidual local maps generated by cooperative robots. The
method is based on paraconsistent artificial neural net-
works, described in Section 3.

2. PARACONSISTENT LOGIC

According to da Costa et al. [1999] Batens et al. [2000]
and Bremer [2005], Paraconsistent Logic is a non-classical
Logic that was proposed to deal with realistic situations
regarding uncertainties that are not supported by classical
approaches.

Let T be a theory based on a logic L, from a language L’
that includes the negation symbol —. Theory T is said to
be nonconsistent if there is a sentence A such that A and
=A are theorems of T, otherwise T is said to be consistent.

We say that a theory T is trivial if all the sentences of
its language are theorems, otherwise we say that T is
nontrivial.

A logic L is paraconsistent if it is used as basis for
nontrivial and nonconsistent theories, i.e., a paraconsistent
logic allows for operations on inconsistent information
systems without subsuming triviality of the theory.
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2.1 Two-valued Annotated Paraconsistent Logic

A Two-valued Annotated Paraconsistent Logic is a para-
consistent logic with a representation on how much an
evidence express knowledge about a proposition P, based
on two components.

A proposition P, ») is such that p, A € [0,1], u indicates
the degree of a favouring evidence for P and ) is the degree
of oposing evidence for P. From those definitions, one can
obtain:

® P(.0,0.0), a true proposition (complete favouring evi-
dence, no opposing evidence).

e P.0,1.0), a false proposition (no favouring evidence,
complete opposing evidence).

e P(1.0,1.0); anonconsistent proposition (complete favour-
ing evidence, complete opposing evidence).

e P(.0,0.0), a paracomplete proposition (no favouring or
opposing evidences).

® P.:5,0.5), a nondefined proposition (equal favouring
and opposing evidences at 0.5).

Propositions in a two-valued paraconsistent logic can be
depicted as points in the lattice shown in Figure 1.

N Dct
UVcte-Uppervaluefor +1
contradictioncontrol
LVec-Bottomvaluefor
certaintycontrol
4 Dc
F T
1 +1
UVcce-Uppervaluefor
certaintycontrol
i Py
N=Nonconsistent=P
F=False=P
LVctc-Bottomvaluefor 1 T=True=P ,
contradictioncontrol 1 L =Nondetermined=P
D,=p+1-1
D.=p-1

Fig. 1. Lattice for interpreting propositions in a two-valued
annotated paraconsistent logic.

In a two-valued paraconsistent logic, degrees of belief
and disbelief are evidences which support the decision
making process. Figure 1 also presents the equations for
acquiring the degrees of contradiction D, and certainty
D., respectively Equations 1 and 2.
Doy =p+X2—-1
De=p—A

(€]
(2)

As shown on Figure 1, the values of the degree of cer-
tainty D, are marked horizontally in the x-axis (degree of
certainty axis), whereas the degree of contradiction are
marked vertically (in the degree of contradiction axis).
Two arbitrary limiting values (UV,.. = upper value for
certainty control and LV.. = lower value for certainty
control) determine if the resulting degree of certainty is
high enough to establish if the analysed proposition is ab-
solutely true or false. Similarly, two limiting values (U V.
= upper value for contradiction control and LV,;. = lower
value for contradiction control) determine if the resulting
degree of contradiction is high enough to establish if the
analysed proposition is absolutely nonconsistent or nonde-
termined. Both degrees are on the interval [-1,41], and an

analysis on the point representation of any proposition in
the lattice outputs the intensity of its degrees of certainty
and contradiction

3. PARACONSISTENT ARTIFICIAL NEURAL
NETWORKS

As defined in da Silva Filho and Abe [2001], Abe [2004],
Abe et al. [2005] and Ferrara et al. [2005], a paraconsis-
tent artificial neural network (PANN) is a connectionist
structure, a large network of components based on Anno-
tated Paraconsistent Logic ( da Costa et al. [1999]). Such
components are the paraconsistent artificial neural cells.

8.1 The Paraconsistent Artificial Neural Cell

The paraconsistent artificial neural cell (PANC) is the
simplest structure in a PANN with a well-defined function-
ality da Silva Filho and Abe [2001]. The output value D.,
of a PANC is the resulting degree of belief, calculated from
Equation 2 and limited to the range [—1, +1]. However, for
obtaining the resulting degree of belief according to the
two-valued paraconsistent logic formalism (Section 2.1),
the value must be in the interval [0, 1]. A normalization is
thus required, according to Equation 3.

D.+1
D= —5 (3)

Equation 3 is the Basic Structural Equation BSEq for a
PANC.

Amongst the many PANC models described in da Silva Filho
and Abe [2001], we present here only three types of PANC
which are required for the design of a paraconsistent neural
network for map matching: Simple Logical Connection Cell
(cPANC), Decision Cell ({PANC) and the Learning Cell
(IPANC).

8.2 The Paraconsistent Stmple Logical Connection Cell

According to da Silva Filho and Abe [2001], the Para-
consistent Simple Logical Connection Cell (cPANC), rep-
resented in Figure 2, is a logical comparator among the
degrees of belief that are input to it. For the particular
case of two inputs (u, A), the cPANC generates the output
according to:

If:D. >1/2 then
Output p
Else:
Output is A

8.8 The Paraconsistent Artificial Neural Cell for Decision

The Paraconsistent Artificial Neural Cell for Decision, de-
picted in Figure 3, receives as inputs two belief degrees (u,
A) and outputs a result corresponding to a paraconsistent
logical 3-valued decision. Value 1 is the conclusion “True”,
value 0 represents “False”, and vale 1/2 represents “Non-
defined”. This cell is also equipped with two adjusting
parameters: a decision factor F'ty and a contradiction tol-
erance factor F't.;. The output is obtained in the following
way:

14676



17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

n

|

sIPANC

oy

Fig. 2. The Paraconsistent Simple Logical Connection Cell.
e Calculation of limit values for falsehood and truth:
Vigp = 1- Fta (4)

Vir = (5)

e Calculation of contradiction and certainty is per-
formed according to equations 1 and 2.

The output states S; e Sy are then obtained from the
following comparisons:
If:Vip < D. <Vly then
S1 = 1/2 =Nondefined and Sz =0
If:D. > Vly then
S1 =1= True and S =0
If:D. <Vlip then
S1 =0 =False and Ss =0
If :|Dct| > Fter and |Det| > |Dc| then

S1 =1/2 = Nondefined and S2 = D¢t = |Det|

Ft,

Gomex

Fig. 3. Paraconsistent Artificial Neural Cell for Decision.

8.4 The Paraconsistent Artificial Neural Cell for Learning

A paraconsistent artificial neural cell for learning (IPANC)
is a pattern learning structure. The method for determin-
ing its learning is based on the equations of Paraconsis-
tent Logic. A IPANC is parameterized by an externally
adjusted learning factor Fa.

A TPANC is an autoassociative memory for values in the
closed interval [0,1]. Initially, its output is set at 0.5,
indicating a nondefined output. As input values are fed
to the cell, the output belief if forced convergence to the
last input value.

For generating this autoassociation, the output belief is
used in a feedback manner, with a complement calculation
(C in Figure 4) in the disbelief input.

Figure 4 is the representation of a IPANC.

B Y
{ c]
IPANC
F,
LA N
F T

Gionie

Fig. 4. Paraconsistent Artificial Neural Cell for Learning.

The learning process is based on Equation 6:

(n— (1= De(k)) * Fa+1)

Di(k+1)= 5 (6)

where G/(k + 1) is the value of the resulting belief, p is
the input pattern appied to the cell at a given time, and
1— G.(k) is the negation of the previous resulting belief. ¢

8.5 Paraconsistent Artificial Neural Units

Paraconsistent Artificial Neural Units (PANUs) can be
thought of as similar to the structural local arrangements
of biological neurons in the nervous system. PANUs are
clusters of PANCs purposefully linked, forming arrange-
ments with distinct configurations and defined fuctions.
Such units are then linked among themselves to form the
basic functional structue of a PANN. In the work reported
herein, we implemented three PANUs: one for decision
making, one for learning and one for extraction of maxima.

4. MAP MATCHING

A global map of an explored environment can be obtained
by combining local map information acquired through a
cooperative robotic system da Silva et al. [2005]. Each
individual robot explores the environment and generate
corresponding local maps using standard techniques for
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map generation. Through cooperation one can obtain,
from those partial and possibly inconsistent maps, a global
map representation using an appropriate method for map
matching.

4.1 Preprocessing

Map generation for each robot is based on the algorithm
described in da Silva and Ribeiro [2007]. This algorithm
is responsible for acquiring map reference points and
distances between the robot and obstacles and walls in the
environment via a laser scanner mounted on the top of the
robot. From the x and y coordinates of the reference points
obtained from the laser sensing, an array with all the
pairwise point-to-point Euclidean distances is generated.
Thus,

E(j,i) = \/(m(J} z) —m(i,2))* + (m(j,y) — m(i,y))? (7

where i and j are the indexes for all the possible point pairs
of the map.

These distances are the inputs for the PANN. Using
distance information for map matching makes the process
invariant to relative translation and rotation among the
robots which are mapping the environment.

4.2 Modelling of the PANN

We propose a PANN for solving the map matching prob-
lem. The main characteristics of this approach are a)
matching using as basis for the determination of certainty
and contradiction degrees between maps in a pointwise
manner; and b) low computational cost. Figure 5 illus-
trates the implemented PANN.

The model is based on three types of PANCs. The first one
is a dPANC with adjustable decision factor which defines a
threshold for the matching comparison between the point-
to-point Euclidean distances. The outputs of the dPANCs
are fed to IPANCs for a learning process which produces a
convergence trend towards points with largest similarity.
The last component is the cPANC, which defines the point
with the largest degree of belief for matching the compared
point.

The inputs for the PANN are two Euclidean distance
arrays, each corresponding to a partial map generated by
a robot. Lines and columns are indexed by the points ¢
and j of the map, and each position in the array is the
corresponding Euclidean distance from ¢ to j, E(j,i).

The operation of the PANN is as follows.Initially, each line
position of a line from the array of Euclidean distances
from one map is compared against the line positions of
each line from the array from the other map, via the
dPANCs (which together form the decision PANU). For
each comparison of distances that are below a threshold
(decision factor), the resulting outputs are fedforward to
the learning PANU formed by IPANCs, each of which
forcing the output towards the point from the second
map with largest similarity to the point from the first
map among the analysed points corresponding to each
line of the second array. Then, the resulting beliefs from
the IPANCs are input to the connection PANU, composed
by ¢cPANCs, which then determine which maps points
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Fig. 5. Paraconsistent Artificial Neural Network for Point
Matching.

from the analysed map has largest beliefs. This process
is repeated for all the other points from the first map.

5. EXPERIMENTAL RESULTS

Experiments on map matching using the PANN were
implemented in Matlab 7.0 (MathWorks [2007]). Sensor
information was acquired by running the Player/Gazebo
simulator Gerkey et al. [2004], using a model of a laser
scanner on a Pioneer2DX robot which navigates around
the simulated environment and periodically executes the
PANN for matching the acquired points. Thus, although
there is actually a single simulated robot, the matching
process is carried out considering partial maps indepen-
dently generated at distinct times, which is precisely what
would happen if the local maps were generated by different
robots.

Figures 6 and 7 show the local maps 1 and 2, generated
at different times and robot locations. The decision factor
for the dPANC was set as 0.03.

Executing the PANN generated the results informed in
Table 1, which presents all the beliefs of points from Map
1 (in the rows) with respect to points in Map 2 (in the
columns). The matching points are in bold, and the PANN
identified the best possible matching.

After some navigation steps of the robot (again at different
positions), we ran again the PANN. Representations of the
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Fig. 9. Local Map 4.

4 with the best belief correspondences against the points
in Map 3.

Table 2. Beliefs obtained from the matching of
Map 4 to Map 3.

Fig. 7. Local Map 2.
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Table 1. Beliefs obtained from the matching of
Map 2 to Map 1.
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Again, with more exploration of the environment and
further approximation to the obstacles, new points for
matching were acquired. The new maps (respectively Map

5 and Map 6) are shown in Figures 10 and 11.
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generated local maps to be matched, Map 3 and Map 4,
are shown in Figures 8 and 9.
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Fig. 8. Local Map 3.

Results obtained for the matching of maps 8 and 9 are
shown in Table 2, which emphasizes the points from Map

30 1

20 5 1

-20 0 20 40 60 80

Fig. 10. Local Map 5.

According to the results depicted in Table 3, we can again
say that the best matching was generated, through a
correct pointwise belief identification.

Finally, it is worth pointing out that the PANN model
had very good computational performance, which might
encourage real-time map matching applications. Results
were produced on a computer with Intel Core Duo 1.6
and 1Gb RAM, with proessing times of approximately 0.5
seconds.
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Fig. 11. Local Map 6.

Table 3. Beliefs obtained from the matching of
Map 6 to Map 5.
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6. CONCLUSIONS AND FUTURE WORK
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We proposed a new map matching algorithm based on
paraconsistent logic and information acquired by cooper-
ative robots exploring an unknown environment.

From the individual maps generated by each robot, we
initially generate point-to-point Euclidean distances. This
corresponds to the production of a set of information
arrays which are then fed to a paraconsistent artificial
neural network whose aim is to produce the map matching.
From the distance information in each array, this network
determines the pairwise degrees of similarity among points
in the maps. As a net result, the degrees of matching belief
among the points of the maps are generated.

We performed three experiments with data acquired from
a laser scanner on a Pioneer2DX robot, simulated in
the Player/Gazebo platform, with good results. Optimal
matching was consistently produced, with low computa-
tional cost.

For future work, we intend to consider other input repre-
sentation techniques distinct from Euclidean distance. We
also intend to consider learning, namely how to adapt the
learning cell in order to produce more accurate matchings.
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