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Abstract: A systematic approach is proposed for the metabolic control analysis of various dynamic 
behaviors in biological systems. The complex kinetic models are reduced by identifying the conservation 
relations and the time scale analysis. Subsequently, the biological systems are categorized into the three 
groups: systems with the steady-states, sustained oscillations, or other non-steady states. The sensitivities 
are measured to calculate the corresponding control coefficients that are defined considering the 
characteristics of the dynamics of the systems. The proposed approach is illustrated with its application to 
the dynamic behaviors of a complex biological model. 

 

1. INTRODUCTION 

The newly-developed high-throughput devices have 
contributed to the recent growing interests in dynamic 
modelling and analysis of the living systems (Johnson et al., 
2004; Villas-Boas et al., 2005), which provide invaluable 
information for biological research. The main purpose of 
dynamic analysis is to predict the changes in system 
behaviours upon given perturbations. Therefore, the 
sensitivities of a system, i.e., the changes of system responses 
to the internal or external perturbation, are measured for 
metabolic control analysis (Kacser and Burns, 1973; Heinrich 
and Rapoport, 1974a, b). While many models show the stable 
steady-states of similar characteristics to Teusink model 
(Teusink et al., 2000), others exhibit periodic phenomena as 
in yeast glycolytic oscillations (Ghosh and Chance, 1964) or 
display chaotic behaviours. In this work, the aforementioned 
behaviours are classified for the dynamic analysis of various 
biological models.  

2. CONTROL COEFFICIENTS IN METABOLIC 
CONTROL ANALYSIS 

The changes of network activities to perturbations are 
quantified by identifying the inherent relationships between 
the relative changes in the system response, e.g., flux or 
metabolite concentration, to the perturbed parameter. The 
relationships inform how the control of fluxes or intermediate 
concentrations is distributed among the different enzymes in 
a metabolic pathway. Instead of assuming that flux is 
controlled by one rate-limiting step, it assumes that it is 
controlled by a number of parameters (Gunawardena, 2002). 

2.1 Steady-states 

Metabolic control analysis was first developed as a 
mathematical formalism for the steady-state control and 
sensitivity analysis of biological systems (Kacser and Burns, 
1973). The control coefficients are defined to be the system 
properties of an enzyme that express how a systemic variable 
depends on the activity of the enzyme. The flux control 

coefficient, i.e., the change of steady-state flux of a reaction 
to the change of the concentration of enzymes or intermediate 
species, Ca, can be written as: 
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where Fj is the steady-state flux of reaction step j, and [ei], 
the concentration of the enzyme for the reaction step i. 
Absolute changes of [ei] and Fj depend on their units used to 
measure them, influencing the magnitude of Ca. Hence, it is 
preferable to normalize the changes in [ei] and Fj, which 
gives 
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At the limit of an infinitesimally small changes in [ei] and Fj, 
the flux control coefficient is given by 
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The larger the flux control coefficient means the greater 
degree of control an enzyme ei has on the steady-state flux Fj. 
For the experimental design, the flux control coefficient is 
often also defined as 
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where ri is the rate of reaction step i that changes to the 
perturbation in the concentration of the enzyme for reaction 
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step i, [ei]. The flux control coefficient reveals the relative 
changes between the steady-state flux and the rate of reaction 
step i. 

2.2 Sustained Oscillation 

A certain biological system returns to the sustained 
oscillation after a perturbation in the system. Reijenga et al. 
(2002) defined the response coefficients for the systems with 
oscillatory behaviors. The changes in the period and the 
amplitude are measured instead of the steady-state flux. With 
respect to the change in a parameter, e.g., the concentration 
of enzyme, e0, the changes in the period, P, and the amplitude, 
K, are measured as: 
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The period and amplitudes can be measured from the 
dynamic simulation of the target model. As it takes some 
time to reach the sustained oscillatory state after a parameter 
perturbation is made on a system, the early transient part of 
the time horizon should be eliminated from the time data. 

2.3 Other Non-steady States: Time-varying control 
coefficients 

For the systems that do not reach the steady-state, the control 
coefficients are defined by extending the definition of 
sensitivity functions to time-varying ones (Acerenza et al., 
1989; Hu and Yuan, 2006). The coefficients are calculated by 
assuming that the response of a system is at the pseudo-
steady-state. Accordingly, it is not the one control coefficient 
but the trajectories of them that provide the information on its 
dynamics. 

3. SYSTEMATIC APPROACH FOR METABOLIC 
CONTROL ANALYSIS 

The current work proposes the systematic approach for 
classifying the biological systems into three aforementioned 
control coefficients. As illustrated in Fig. 1, the size of the 
complex biological systems is firstly reduced by eliminating 
the singular part of the models. Subsequently, the steady-
states are identified and their stabilities are investigated to 
examine the behaviours about the steady-state. Finally, the 
control coefficients corresponding to each group of 
behaviours are obtained. 

3.1 Identification of Conservation (Moiety) Relations 

A set of kinetic equations for a biological system includes the 
dependent as well as the independent relations. Those 
dependent relations correspond to the linearly dependent 

rows in the stoichiometry matrix. The concentration changes 
of n biochemical species are equivalent to the rate of m 
reactions, multiplied by the matrix of stoichiometric 
coefficients, S. 
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where C(t) is the vector of concentrations and k is the rate 
constant. The null space N of stoichiometry matrix S, and the 
reduced matrix SR have the following relationship.  
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where I is the identity matrix, and the remaining part is M. 
Accordingly, C(t) is rearranged. 
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Ci and Cd are the vectors for the concentrations of 
independent and dependent species, respectively. Substituting 
(2) into (1), 

 

Fig. 1. Flowchart describing the proposed systematic 
approach for metabolic control analysis of general 
biological systems. tss and tp are the time point when 
systems reach the steady-state or the periodic behaviour, 
respectively. 
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Therefore,  
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where T is the sum of the initial concentrations of 
independent species. Based on the above equation, the 
ordinary differential equations for the kinetic equations can 
be eliminated from the computation. Finally, the reduced 
model is obtained in the differential equation form. 
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3.2 Steady-state Determination 

The steady-states can be identified by the Newton-Raphson 
method. This algorithm is a robust method for solving the 
nonlinear equations. In this method, the derivative of an 
equation, and extrapolates along the derivative are calculated 
until the solution comes to satisfy the given tolerance. At a 
steady-state, 
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In the kth iteration, the next solution is evaluated as  

 
1
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where rk is the reaction rate at the kth iteration, and J is the 
Jacobian matrix of rk. The iteration stops as soon as the 
requested tolerance is achieved. 
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where tol is the desired tolerance. For the systems without the 
steady-states, however, the algorithm displays the 
concentration at the time limit as the solution. Therefore, the 
stability of the obtained steady-states should be inspected to 
check whether the result indicates the real steady-state or not. 

3.3 Time Scale Analysis 

 

The kinetic models are further reduced by differentiating 
their time scales. The automated complexity reduction for all 
possible dynamics of biological systems can be conducted 
with Low-Dimensional Manifolds (Zobeley et al., 2005). 
Using the quasi-steady-state approximation, the reactions that 
are substantially faster than the reaction of our interest are 
neglected from the kinetic processes.  

3.4 Stability Analysis of the Obtained Steady-state 

Stability analysis investigates whether a system always 
returns to the reference state after a perturbation. The 
dynamic behaviours of most biochemical systems can be 
modelled as a set of nonlinear differential equations. These 
dynamic behaviours can be analyzed by linearizing the 
nonlinear system.  

For the steady-state concentration Ci,ss,  
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The above nonlinear differential equation can be expanded in 
a Taylor series about Ci,ss.  
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The high-order terms than the second order in the Taylor 
series expansion can be ignored. The above equation can be 
rearranged as, 

 
( )ir C Jζ=  

 
where  

 
ssii CC ,−=ζ  

 
To prove the stability of a nonlinear system, the inclusion of 
decaying exponentials should be checked. For the eigenvalue 
lambda of the Jacobian matrix J, 

 
λζζ =J  

 
Each eigenvalue is paired with the corresponding eigenvector. 
When the zeta is not zero, vector solutions are the 
eigenvectors of J. The characteristic equation of the Jacobian 
matrix J is 
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For stability analysis, the above equation is extended to the 
nth order equation in lambda. 
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The stability can be determined referring this eigenvalue.  

3.5 Calculation of the Control Coefficients 

For the systems with steady-states or sustained oscillatory 
behaviours, the corresponding control coefficients are 
calculated as illustrated in section 2. For the other systems, 
and for the transient period before reaching the steady-state 
or sustained oscillation, the time-varying control coefficients 
are obtained.  

4. ILLUSTRATION 

The proposed approach is demonstrated with the kinetic 
model of ERK pathway developed by Cho et al. (2003).  For 
this model, 4 conservation relations are identified with 
WebCell (Lee et al., 2006) as follow. 

 
RP + RKIP-P/PP =  163.194e-6 M 

RAF-1*/RKIP/ERK-PP + ERK-P + MEK-PP/ERK + ERK-
PP = 259.918e-6 M 

Raf-1*+ RAF-1*/RKIP + RAF-1*/RKIP/ERK-PP = 126.291 
e-6 M 

RKIP + RAF-1*/RKIP + RAF-1*/RKIP/ERK-PP + RKIP-P 
+ MEK-PP + MEK-PP/ERK + RKIP-P/PP = 152.685e-6 M 

 
The steady-state concentrations are obtained as shown in 
Table 1.   

Table 1. Steady-state concentrations of ERK 
pathway 

No Compounds Concentration (*e-6 M)
1 Raf-1* 67.3 
2 RKIP 0.0521 
3 RAF-1*/RKIP 0.0183 

4 RAF-1* 
/RKIP/ERK-PP 

59.0 

5 ERK-P 0.0393 
6 RKIP-P 0.0126 
7 MEK-PP 65.4 

8 MEK-PP/ERK 26.2

9 ERK-PP 175

10 RP 161

11 RKIP-P/PP  2.14
 
Subsequently, time scale analysis (Zobeley et al., 2005) using 
Matlab substitutes 2 out of remaining 7 differential equations 
with 2 algebraic equations. Stability analysis showed that 
these steady-states are all stable. 

Finally, the time-varying control coefficients are obtained for 
the initial transient states and for the steady-states. For 
example, the effects of parameter k5 on ERK-P and ERK-PP 
are described in Figs. 2 and 3.  

 
 

 

Fig. 2. The effect of the change in the value of k5 on ERK-P. 

 
 

 

Fig. 3. The effect of the change in the value of k5 on ERK-PP. 
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5. CONCLUSIONS 

A systematic approach for the metabolic control analysis has 
been proposed to this end. The complex biological systems 
are reduced by identifying the conservation relations and the 
time scale analysis. The control coefficients for the reduced 
models are classified into the three groups based on their 
stabilities at the steady-states. The proposed approach has 
been illustrated with its application to a signaling pathway. 
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