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Abstract: In this paper, an adaptive control problem is formulated and solved for a scalar
linear stochastic system perturbed by a fractional Brownian motion and an ergodic (or average
cost per unit time) quadratic cost functional. The Hurst parameter for the fractional Brownian
motion may take any value in (1/2, 1).

1. INTRODUCTION

The adaptive control of a linear quadratic Gaussian system
has a sizable history of research where the perturbations
are white Gaussian noise. In this adaptive control problem,
some parameters of the system are assumed to be unknown
so that it is required to estimate the parameters and control
the system simultaneously. These adaptive control problems
have been studied in both discrete and continuous time. In
this paper, the processes are in continuous time so it is most
natural to associate the results with those in continuous
time for white Gaussian noise (e.g. Caines [1992], Chen et al.
[1996], Chen and Guo [1991], Duncan and Pasik-Duncan
[1990], Kumar [1983]).

In this paper an adaptive control problem is solved for a
linear quadratic Gaussian system where the perturbations
are a fractional Gaussian noise with the Hurst parameter
in the interval (1/2, 1). By analogy with the fact that white
Gaussian noise in continuous time is a “formal” process
as the derivative of Brownian motion and one needs to
consider Brownian motion, fractional Gaussian noise is a
formal process as the derivative of a fractional Brownian
motion and one needs to consider fractional Brownian
motion.

A fractional Brownian motion with the Hurst parameter
in (1/2, 1) has a long range dependence that exhibits
a bursty behaviour for the sample paths and seems to
be a useful model for a variety of physical phenomena.
A fractional Brownian motion was initially defined by
Kolmogorov Kolmogorov [1940] and some statistics of it
occurred in the study of rainfall in the Nile River valley by
Hurst Hurst [1951]. Subsequently, Mandelbrot Mandelbrot
[1963] noted its usefulness for modeling economic data, and
Mandelbrot and van Ness Mandelbrot and Van Ness [1968]
developed some of its properties. More recently, it has been
proposed as a useful model in describing internet traffic in
telecommunications and the occurrence of epileptic seizures.

In this paper, an adaptive control problem for a scalar
linear stochastic control system perturbed by a fractional
? Research supported in part by NSF grant DMS 0505706.

Brownian motion with the Hurst parameter H in (1/2, 1) is
solved. A necessary ingredient of a self-optimizing adaptive
control is the corresponding optimal control for the known
system. It seems that the optimal control problem has only
been solved for a scalar system Kleptsyna et al. [2005]. In
the solution of the adaptive control problem, a strongly
consistent family of estimators of the unknown parameter
are given and a certainty equivalence control is shown to
be self-optimizing in an L2(P ) sense. It seems that this
paper is the initial work on the adaptive control of such
systems.

2. PRELIMINARIES

Before formulating the adaptive control problem, it is useful
to describe precisely a fractional Brownian motion and to
review the result Kleptsyna et al. [2005] for the solution
of the optimal control of a scalar system with a fractional
Brownian motion and an ergodic (or average cost per unit
time) quadratic cost functional.

A real-valued process (B(t), t ≥ 0) on a complete proba-
bility space (Ω,F ,P) is called a (real-valued) standard
fractional Brownian motion with the Hurst parameter
H ∈ (0, 1) if it is a Gaussian process with continuous
sample paths that satisfies

E [B(t)] = 0

E [B(s)B(t)] =
1
2

(
t2H + s2H − |t− s|2H

) (1)

for all s, t ∈ R+.

Since a (standard) fractional Brownian motion B with
the Hurst parameter H 6= 1/2 is not a semimartingale,
the stochastic calculus for a Brownian motion, or more
generally for a continuous square integrable martingale, is
not applicable. However, a stochastic calculus for a frac-
tional Brownian motion particularly for H ∈ (1/2, 1) has
been developed (e.g. Alòs and Nualart [2003], Decreusefond
and Üstünel [1999], Duncan et al. [2000, 2006], Nualart
[2003]) which preserves some of the properties for the
(Itô) stochastic calculus for Brownian motion. A few of
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the properties of this stochastic calculus for a fractional
Brownian motion with H ∈ (1/2, 1) are reviewed now.

Let H ∈ (1/2, 1) be fixed and B be a fractional Brownian
motion with Hurst parameter H. For the applications in
this paper, only a few results from a stochastic calculus
are necessary. Let f : [0, T ] → R be a Borel measurable
function. If f satisfies

|f |2L2
H

= ρ(H)
∫ T

0

(
u1/2−H(s)

∣∣∣IH−1/2
T−

(
uH−1/2f

)
(s)
∣∣∣)2

ds

< ∞

then f ∈ L2
H and

∫ T

0
f dB is a zero mean Gaussian random

variable with second moment

E

(∫ T

0

f dB

)2
 = |f |2L2

H
(2)

where ua(s) = sa for a > 0 and s ≥ 0, I
H−1/2
T− is a fractional

integral defined almost everywhere and given by(
I

H−1/2
T− f

)
(x) =

1
Γ(α)

∫ T

x

f(t)
(t− x)3/2−H

dt (3)

for x ∈ [0, T ), f ∈ L1([0, T ]) and Γ(·) is the gamma function
and

ρ(H) =
HΓ(H + 1/2)Γ(3/2−H)

Γ(2− 2H)
.

The inverse operator of the fractional integral IH−1/2, is
called the fractional derivative, I1/2−H , and can be given
in its Weyl representation as

(I1/2−H
T− F )(x) =

1
Γ(3/2−H)

(
f(x)

(T − x)H−1/2

+ (H − 1/2)
∫ T

x

f(s)− f(x)
(s− x)H+1/2

ds

)
. (4)

A stochastic integral with respect to a fractional Brownian
motion B for H ∈ (1/2, 1) can also be defined for
a stochastic integrand (e.g. Alòs and Nualart [2003],
Decreusefond and Üstünel [1999], Duncan et al. [2000,
2006], Nualart [2003]). The integral is a zero mean random
variable with an explicit expression for the second moment.

Now the linear-quadratic control problem is reviewed. Let
(X(t), t ≥ 0) be the real-valued process that satisfies the
stochastic differential equation

dX(t) = α0X(t) dt + bU(t) dt + dB(t)
X(t) = X0

(5)

where X0 is a constant, (B(t), t ≥ 0) is a standard fractional
Brownian motion with the Hurst parameter H ∈ (1/2, 1),
α0 ∈ [a1, a2] where a2 < 0, b ∈ R \ {0}.
For t ≥ 0, let Ft be the P -completion of the sub-σ-algebra
σ(B(u), 0 ≤ u ≤ t). The family of sub-σ-algebras (Ft, t ≥ 0)
is called the filtration associated with (B(t), t ≥ 0). Let
(U(t), t ≥ 0) be a process adapted to (Ft, t ≥ 0). It is
known that the filtration generated by (X(t), t ≥ 0) is
the same as the filtration generated by (B(t), t ≥ 0). The
process U in (5) is adapted to the filtration (Ft, t ≥ 0) such
that (5) has one and only one solution.

Consider the optimal control problem where the state X
satisfies (5) and the ergodic (or average cost per unit time)
cost function J is

J(U) = lim sup
T→∞

1
T

∫ T

0

(
qX2(t) + rU2(t)

)
dt (6)

where q > 0 and r > 0 are constants. The family U of
admissible controls is all (Ft) adapted processes such that
(5) has one and only one solution.

To introduce some notation, recall the well-known solution
with H = 1/2, that is (B(t), t ≥ 0) is a standard Brownian
motion. An optimal control is U∗ given by

U∗(t) = − b

r
ρ0X

∗(t) (7)

where (X∗(t), t ≥ 0) is the solution of (5) with the control
U∗, ρ0 is the unique positive solution of the scalar algebraic
Riccati equation

b2

r
ρ2 − 2aρ− q = 0 (8)

so
ρ0 =

r

b2
[α0 + δ0] (9)

δ0 =

√
α2

0 +
b2

r
q . (10)

Furthermore,
J(U∗) = ρ0 a.s. (11)

The following result is given in Kleptsyna et al. [2005] and
solves the analogous control problem for H ∈ (1/2, 1).
Theorem 1. Let (U∗(t), t ≥ 0) be the control given by

U∗(t) = − b

r
ρ0[X∗(t) + V ∗(t)] (12)

V ∗(t) =
∫ t

0

δ0V
∗(s) ds

+
∫ t

0

[
k(t, s)− 1

]
(dX∗(s)− α0X

∗(s)− bU∗(s)) ds

=
∫ ∞

t

e−δ0(s−t) dB(s | t)

(13)
where (X∗(t), t ≥ 0) is the solution of (5) with the
admissible control (U∗(t), t ≥ 0), ρ0 and δ0 are given in (9)
and (10) respectively, and

k(t, s) = −c−1
H s1/2−H d

ds

∫ t

s

(r − s)1/2−Hγ(r, r) dr

γ(t, s) = δest

∫ ∞

t

eδ0KH(τ, s) dτ

KH(t, s) = H(2H − 1)
∫ τ

s

rH−1/2(r − s)H−3/2 dr .

B(s | t) = E[B(s) | Ft]

= B(t) +
∫ t

0

u1/2−H(I1/2−H
t− (IH−1/2

s− 1[t,s))) dB

= B(t) +
∫ t

0

u1/2−H(IH−1/2
s− uH−1/21(t,s)) dW (14)

where cH is a constant that only depends on H, ua(s) = sa

for s ≥ 0, IH−1/2 is the fractional integral (3), I1/2−H

is the fractional derivative (4) and (W (t), t ≥ 0) is a
standard Brownian motion (Wiener process) associated
with (B(t), t ≥ 0) (e.g. Duncan [2006]).
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Then the control U∗ is optimal in U and the optimal cost
is

J(U∗) = λ a.s. (15)
where

λ =
qΓ(2H + 1)

2δ2H
0

[
1 +

δ0 + α0

δ0 − α0
sinπH

]
. (16)

If α0 is unknown, then it is important to find a family of
strongly consistent estimators of the unknown parameter
α0 in (5). A method is used in Duncan and Pasik-Duncan
[2001, 2002] that is called pseudo-least squares because it
uses the least squares estimate for α0 assuming H = 1/2,
that is, B is a standard Brownian motion in (5). It is
shown in Duncan and Pasik-Duncan [2001, 2002] that the
family of estimators (α̂(t), t ≥ 0) is strongly consistent for
H ∈ (1/2, 1) where

α̂(t) = α0 +

∫ t

0
X0(s) dB(s)∫ t

0
(X0(s))2 ds

(17)

where
dX0(t) = α0X

0(t) dt + dB(t)
X0(0) = X0

(18)

This family of estimators can be obtained from (5) by
removing the control term. The family of estimators α̂ is
modified here using the fact that α0 ∈ [a1, a2] as

α(t) = α̂(t)1[a1,a2](α̂(t))
+ a11(−∞,a1)(α̂(t)) + a21(a2,∞)(α̂(t)) (19)

for t ≥ 0. α̂(0) is chosen arbitrarily in [a1, a2].

The solution of the stochastic equation (5) is obtained by
the usual variation of parameters method and is given by

X(t) = eα0tX0 +
∫ t

0

eα0(t−s) (U(s) ds + dB(s)) . (20)

For the optimal control (U∗(t), t ≥ 0), the corresponding
solution (X∗(t), t ≥ 0) can be expressed as

X∗(t) = e−δ0tX0

+
∫ t

0

e−δ0(t−s)[−(α0 + δ0)V ∗(s) ds + dB(s)] ,

where

dX∗(t) = α0X
∗(t) dt− b2

r
ρ0[X∗(t) + V ∗(t)] dt + dB(t)

= −δ0X
∗(t) dt− (α0 + δ0)V ∗(t) dt + dB(t) .

(21)

An adaptive control (U∧(t), t ≥ 0), is obtained from the
certainty equivalence principle, that is, at time t, the
estimate α(t) is assumed to be the correct value for the
parameter. Thus the stochastic equation for the system (5)
with the control U∧ is

dX∧(t) = (α0 − α(t)− δ(t))X∧(t) dt

− bρ(t)
r

V ∧(t) dt + dB(t)

= (−α0 − α(t)− δ(t))X∧ dt

− (α(t) + δ(t))V ∧(t) dt + dB(t)
X∧(0) = X0

(22)

and

δ(t) =

√
α2(t) +

b2

r
q (23)

U∧(t) = −bρ(t)
r

[X∧(t) + V ∧(t)] (24)

ρ(t) =
r

b2
[α(t) + δ(t)] (25)

V ∧(t) =
∫ t

0

δ̃(s)V ∧(s) ds

+
∫ t

0

[k̃(t, s)− 1]

[dX∧(s)− α(s)X∧(s) ds− bU∧(s) ds]

=
∫ t

0

δ̃(s)V ∧(s) ds

+
∫ t

0

[k̃(t, s)− 1][dB(s) + (α0 − α(t))X∧(s) ds]

(26)

δ̃(t) = δ(t) + α(t)− α0 (27)

and k̃ denotes the use of δ̃ instead of δ0 in k. Note that
δ(t) ≥ −α(t) + c for some c > 0 and all t ≥ 0 so that

α0 − α(t)− δ(t) < −c .

The solution of the stochastic equation (22) is

X∧(t) = e
−
∫ t

0
δ̂
X0

+
∫ t

0

e
−
∫ t

s
δ̂[−(α(s) + δ(s)]V ∧(s) ds + dB(s)] .

The following result states that the adaptive control
(U∧(t), t ≥ 0) is self-optimizing in L2(P ), that is, the
family of average costs converge in L2(P ) to the optimal
average cost (15).
Theorem 2. Let the scalar-valued control system satisfy the
equation (5). Let (α(t), t ≥ 0) be the family of estimators
of α0 given by (19), let (U∧(t), t ≥ 0) be the associated
adaptive control in (24), and let (X∧(t), t ≥ 0) be the
solution of (5) with the control U∧. Then

lim
t→∞

1
t
E

∫ t

0

|U∗(s)− U∧(s)|2 ds = 0 (28)

and

lim
t→∞

1
t
E

∫ t

0

|X∗(s)−X∧(s)|2 ds = 0 (29)

so

lim
t→∞

1
t
E

∫ t

0

(
q(X∧(s))2 + r(U∧(s))2

)
ds = λ (30)

where λ is given in (16).

Proof. Initially, it is verified that

lim
t→∞

1
t
E

∫ t

0

|U∗(s)− U∧(s)|2 ds = 0 .

U∗(t)− U∧(t) = −(α0 + δ0))[X∗(t) + V ∗(t)]
+ (α(t) + δ(t))[X∧(t) + V ∧(t)] . (31)

Consider the following terms on the right-hand side of the
(31):
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−(α0 + δ0)V ∗(t) + (α(t) + δ(t))V ∧(t)
= (α0 + δ0)(V ∧(t)− V ∗(t))

+ (α(t) + δ(t)− α0 − δ0)V ∧(t)
= (α(t) + δ(t))(V ∧(t)− V ∗(t))

+ (α(t) + δ(t)− α0 − δ0)V ∗(t) .

(32)

Using the Dominated Convergence Theorem, it is straight-
forward to verify that

lim
t→∞

1
t
E

∫ t

0

|(α(s) + δ(s)− α0 − δ0)V ∗(s)|2 ds = 0 .

For the other term that arises in (32), it suffices to consider

E

∫ t

0

|V ∗(s)− V ∧(s)|2 ds . (33)

Since α0 is unknown, dB(t) cannot be obtained from
dX∧(t). However, there is the equality

dX∧(t)− U∧(t) dt− α(t)X(t) dt = dB(t)
+ (α0 − α(t))X∧(t) dt . (34)

Let δ̃(t) be given by

δ̃(t) = δ(t) + α(t)− α0 . (35)

Using (34) and (35) it follows that (26) can be expressed
as

V ∧(t) =
∫ ∞

t

e
−
∫ τ

t
δ̂
dB(τ | t)

+
∫ ∞

t

e
−
∫ τ

t
δ̃
E[(α0 − α(s))X̂(s) | Ft] ds . (36)

Initially an upper bound is provided for the second term
in the right hand side of (36).∣∣∣∣∫ ∞

t

e
−
∫ τ

t
δ̃
E[(α0 − α(s))X̂(s) | Ft] ds

∣∣∣∣
−
∣∣∣∣∫ ∞

t

e
−
∫ τ

t
δ̃
∫ t

0

u1/2−H(I1/2−H
t− (IH−1/2

s− uH−1/21[t,s)))

(α0 − α(s)X∧(s)) ds|

≤
∫ ∞

t

e
−
∫ τ

t
δ̃

∣∣∣∣∫ t

0

u1/2−H(I1/2−H
t− (IH−1/2

s− uH−1/21[t,s)))

(α0 − α(s)X∧(s))| ds

≤
∫ ∞

t

e
−
∫ τ

t
δ̃

∣∣∣∣∫ t

0

u1/2−H(I1/2−H
t− (IH−1/2

s− uH−1/21[t,s)))

(α0 − α(s)X∧(s))|2 ds

≤
∫ ∞

t

e
−
∫ s

t
δ̃ |(α0 − α(s))X∧(s)|2 ds .

The next to the last inequality uses Jensen’s inequality
and the last inequality follows because the prediction
(projection) of ((α0 − α(s)X(s), s ≥ 0) is replaced by the
true process.

It can be shown by a comparison with another stochastic
differential equation (e.g. (18)) that

E
[
(X∧(t))2

]
≤ K

for all τ ≥ 0. Using the Dominated Convergence Theorem
and Jensen’s inequality, it follows that

E

∫ ∞

s

∣∣∣e−c(τ−s)X∧(τ)
∣∣∣2 dτ ≤ M .

Thus

lim
t→∞

1
t
E

∫ t

0

∣∣∣∣∫ ∞

s

e

∫ τ

s
δ̃(α0 − α(τ))X∧(τ) dτ

∣∣∣∣2 ds = 0 .

Now consider the other term that arises in (33), that is

E

∫ t

0

∣∣∣∣∫ ∞

s

(
e
−
∫ λ

s
δ̂ − eδ0(τ−s)

)
dB(τ | s)

∣∣∣∣2 ds

The term I
H−1/2
τ− is a fractional integral given by

I
H−1/2
τ− (uH−1/21[s,τ ])(r)

=
1

Γ(H − 1/2)

∫ τ

r

qH−1/21[s,τ ](q)
(q − r)3/2−H

dq

=
1

Γ(H − 1/2)

∫ τ

s

qH−1/2

(q − r)3/2−H
dq . (37)

An elementary upper bound for (37) is obtained as follows:∣∣∣IH−1/2
τ− (uH−1/21[s,τ ])(r)

∣∣∣
≤ 1

Γ(H − 1/2)
τH−1/2

∫ τ

s

(q − r)H−3/2 dq

=
1

Γ(H + 1/2)
τH−1/2

H − 1/2

[
(τ − r)H− 1

2 − (s− r)H− 1
2

]
.

(38)

Now using (26),∫ ∞

0

(
e
−
∫ λ

s
δ̂ − eδ0(τ−s)

)
dB(τ | s)

=
∫ ∞

s

(
e
−
∫ λ

s
δ̂ − eδ0(τ−s)

)
· ∂

∂τ

∫ s

0

r1/2−H
(
I

H−1/2
τ− uH−1/21[s,τ ]

)
(r) dW (r) dτ .

(39)

Fix t and s ∈ (0, t) and perform an integration by parts
for the integration on the right-hand side of (39) to obtain(

e
−
∫ τ

s
δ̃ − eδ0(τ−s)

)
·
(∫ s

0

r1/2−H
(
I

H−1/2
τ− δ̃H−1/21[s,τ ]

)
(r) dW (r)

) ∣∣τ=∞
τ=s

−
∫ ∞

s

(
e
−
∫ τ

s
δ̃(−δ̃(τ))− eδ0(τ−s)(−δ0)

)
·
∫ s

0

r1/2−H
(
I

H−1/2
τ− uH−1/21[s,τ ]

)
(r) dW (r) dτ

= −
∫ ∞

s

(
e
−
∫ λ

s
δ̃(−δ̃(τ))− eδ0(τ−s)(−δ0)

)
·
∫ s

0

r1/2−H
(
I

H−1/2
τ− uH−1/21[s,τ ]

)
(r) dW (r) dτ . (40)

The first two terms on the left-hand side of (40) are zero,
resulting in this equality. The term for τ = ∞ is easily
verified to be zero by a limit computation. Use a stochastic
Fubini theorem for an ordinary integral and a stochastic
integral with respect to a standard Brownian motion to
rewrite the order of integration on the right-hand side of
(40) and compute the expectation as
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E

∣∣∣∣∫ s

0

∫ ∞

s

(
−δ(τ)e−

∫ τ

s
δ̃ + δ0e

δ0(τ−s)

)
r1/2−H

·
(
I

H−1/2
τ− UH−1/21[s,τ ]

)
(r) dτ dW (r)

∣∣∣2
= E

∫ s

0

∣∣∣∣∫ ∞

s

(
−δ̃(τ)e−

∫ τ

s
δ̃ + δ0e

δ0(τ−s)

)
r1/2−H

·
(
I

H−1/2
τ− uH−1/21[s,τ ]

)
(r) dτ

∣∣∣2 dr . (41)

Consider the integrand on the right-hand side for the
integral with respect to r and let A(·) be this integrand

A(s) =
∣∣∣∣∫ ∞

s

(
−δ̃(τ)e−

∫ τ

s
δ̃ + δ0e

δ0(τ−s)

)
r1/2−H

·
(
I

H−1/2
τ− UH−1/21[s,τ ]

)
(r) dτ

∣∣∣2
≤ K

∫ ∞

s

∣∣∣∣(−δ̃(τ)e−
∫ τ

s
δ̃ + δ0e

δ0(τ−s)

)
·
[
(τ − r)H−1/2 − (s− r)H−1/2

]∣∣∣ dτ ≤ M (42)

where the inequality (38) is used and K and M are
constants. By the Dominated Convergence Theorem,

lim
s→∞

A(s) = 0 a.s.

and

lim
s→∞

EA(s) = 0 .

It follows directly that

lim
t→∞

1
t
E

∫ t

0

∣∣∣∣∫ ∞

s

(
e
−
∫ τ

s
δ̃ − eδ0(τ−s)

)
dB(τ | s)

∣∣∣∣2 ds = 0.

(43)

Now, consider the term

E

∫ t

0

|X∧(s)−X∗(s)|2 ds . (44)

A stochastic equation is obtained for X∧ −X∗ as

d(X∧(t)−X∗(t)) = (α0 − α(t)− δ(t))X∧(t) dt

+ δ0X
∗(t) dt− (α(t) + δ(t))V ∧(t) dt

+ (α0 + δ0)V ∗(t) dt

= (α0 − α(t)− δ(t))(X∧(t)−X∗(t)) dt

+ (α0 − α(t)− δ(t) + δ0)X∗(t) dt

− (α(t) + δ(t))V ∧(t) dt + (α0 + δ0)V ∗(t) dt . (45)
Thus

X∧(t)−X∗(t)

=
∫ t

0

e
−
∫ t

s
δ̃(α0 − α(t)− δ(t) + δ0)X∗(s) ds

−
∫ t

0

e
−
∫ t

s
δ̃[(α(s) + δ(s))V ∧(s)− (α0 + δ0)V ∗(s) ds .

(46)
Now consider (44). The first term on the right-hand side
above substituted into (44) has limit zero by the inequality
for δ̃. Since

(α0 + δ0)V ∗(t)− (α(t) + δ(t))V ∧(t)
= (α0 + δ0 − α(t)− δ(t))V ∗(t)

− (α(t) + δ(t))(V ∧(t)− V ∗(t)) ,

the second term in (46) substituted in (44) has limit zero
by the above results to verify that

lim
t→∞

1
t
E

∫ t

0

|V ∧(s)− V ∗(s)|2 ds = 0 .

This completes the proof of the equality (30).

Clearly it is important to solve a linear quadratic control
problem for a multi-dimensional version of (5) and then to
solve a corresponding adaptive control problem. Further-
more, even for this scalar problem it is desirable to replace
the L2(P ) convergence in (30) by almost sure convergence.
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