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Abstract: This paper presents a model predictive approach for obstacle avoidance of car-
like unmanned ground vehicles (UGVs). An optimal tracking problem while avoiding obstacles
in unknown environments is formulated in terms of cost minimization under constraints.
Information on obstacles can be incorporated online in the nonlinear model predictive framework
and kinematic constraints are treated by Karush-Kuhn-Tucker (KKT) condition. The overall
problem is solved real-time with nonlinear programming. This approach is applied to car-like
robots including tire models while explicitly considering the dimension of the UGV rather than
treating it as a dimensionless cart model. Two kinds of potential-like terms are employed in
the cost function for obstacles avoidance. The first term is to consider the distance between the
UGV and the obstacle, and the second one is to consider the parallax information of the UGV
about the obstacles. Simulation results show that both two approaches can make safe steering
in a simple environment, but in a complex environment such as an urban area, the approach
based on the modified parallax (MP) was more successful in the view of the computation time
and safe steering.

1. INTRODUCTION

UGVs are employed in various military, reconnaissance
and materials handling applications. Often UGVs are
commanded to perform pre-defined maneuvers or to follow
a pre-planned path designated by an off-line mission-level
planning algorithm. But many of these applications require
a UGV to move in unknown environments with dynamic
and physical constraints.

In this paper, we present a model predictive method for
active steering control of a UGV based on successive on-
line optimization of the nonholonomic UGV dynamics. In
order to use this approach as a local obstacle avoidance
planner for the UGV shown in Fig. 1, we use a bicycle
model to predict the future evolution of the system.

Many local obstacle avoidance schemes use purely reactive
methods based on sensor inputs (Rimon et al [1992],
Fox et al [1997], Simmon [1996], Minguez et al [2000]).
Some take into account the dynamics and kinematics
constraints (Ulrich et al [2000]). These approaches are
computationally efficient, but the vehicle can get stuck in
local minima, sometimes the discretization of the world
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Fig. 1. UGV in consideration, its mass, momentum of
inertia, length and width are 807 kg, 429.649 kgm2,
2.150 m, and 1.290 m, respectively.

is required, or the full dynamics cannot be incorporated.
In Arras et al [2002], the dimension of the vehicle was
considered with a reduced dynamic window. But at high
speed, this approach is not easy for applications.

Recently, predictive active steering control for autonomous
vehicle systems was studied (Borrelli et al [2005], Falcone
et al [2007]), with a tire model (Bakker et al [1987]). In
these work, the autonomous vehicle was directed to follow
the given reference which is assumed to be collision-free
and achievable. In the case of unknown environments, it
is difficult to acquire such a safe pre-defined reference.
And the dimension of the vehicle is not considered. If
the environments are complex and narrow, like an urban
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environment, the dimension of the vehicle becomes very
critical.

This paper considers the on-line obstacles avoidance as
well as navigation toward the destination. If the vehicle
runs into an unknown environment on the way to target
point, controller predicts a future path and solves an
optimization problem to plan collision-free trajectories
toward the destination. Nonlinear model predictive control
has been used to generate safe trajectories for unmanned
aerial vehicles (Kim et al [2002]), but without considering
the dimension of the vehicle, and at a lower sampling
rate. In the current paper, both the critical safe distance
from the obstacles and the critical modified parallax of
the vehicle corresponding to the speed of the polygonal
UGV are considered, which improves the performance
while reducing the computation time.

2. VEHICLE MODEL

We use a bicycle model which has the yaw degrees of
freedom, in combination with a tire model, to describe
the UGV dynamics.
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Fig. 2. A schematic diagram of the bicycle model.

We will use the following notation throughout this paper:
(·)f front wheel
(·)r rear wheel
(·)x x-axis of the vehicle’s body coordinate
(·)y y-axis of the vehicle’s body coordinate
(·)s side direction
(·)l longitudinal direction
(·)k time step
(·)ref reference tracking signals

This nomenclature refers to the robot model depicted in
Fig. 2. v is the velocity vector of the center of gravity of
the vehicle with respect to the vehicle’s frame. α and β
denote the slip angle of tires and the vehicle, respectively,
defined as the angle between the velocity vector and their
longitudinal axes. δ is the steering angle of a tire and ψ
denotes the attitude of the vehicle with respect to the
inertial frame. Lf and Lr denote the distance from the
front axle to the center of gravity of the vehicle and from
the rear axle to the center of gravity of the vehicle. In this
paper, we consider front-wheel steering vehicle.

2.1 UGVs model

For the UGVs model, motion of the vehicle will be a
function of the forces Fx, Fy and momentum Mz exerted
on the center of gravity of the UGV (Wollherr [2002]).
Equation (1) describes dynamics of the robot, where m is
the mass of the robot.

mv(β̇ + ψ̇) = −Fx sin β + Fy cos β,
mv̇ = Fx cos β + Fy sin β,

Izzψ̈ = Mz

(1)

Setting up the equilibrium of forces and momentum yields
(2), where Fsf , Fsr, Flf , Flr are side and longitudinal tire
forces exerted on each tire.

[
Fx

Fy

Mz

]
=

[
− sin δ 0
cos δ 1

Lf cos δ Lr

] [
Fsf

Fsr

]
+

[
cos δ 1
sin δ 0

Lf sin δ 0

] [
Flf

Flr

]

(2)

Tire forces (detailed in Bakker et al [1987]) for each tire
are given by

Fl = fl(α, s, µ, Fz) , Fs = fs(α, s, µ, Fz) (3)

where s is the slip ratio defined as

s =





rw

vl

− 1 , if vl > rw, v 6= 0 for breaking ,

1 −
vl

rw
, if vl < rw, w 6= 0 for driving .

(4)

where, vl is the longitudinal velocity of the tire. And the
tire slip angles αf , αr are the function of β , ψ̇ , v as (5):

αf = δf − tan−1

(
v sin β + Lf ψ̇

v cos β

)
,

αr = − tan−1

(
v sin β − Lrψ̇

v cos β

)
.

(5)

The parameter µ in (3) represents the road friction coeffi-
cient and Fz is the total vertical load of the vehicle. The
vehicle’s equations of motion in the inertial frame are

Ẋ = v cos β cos ψ − v sin β sinψ,

Ẏ = v cos β sin ψ + v sinβ cos ψ.
(6)

3. MODEL PREDICTIVE CONTROL PROBLEM

Since model predictive algorithm is solved in a discrete
time domain, the system dynamics are discretized as
(7)(Kim et al [2002]),

ξ(k + 1) = fdt
s,µ(ξ(k), u(k)) ,

η(k + 1) = h(η(k)) .
(7)

where the state variables and input are ξ = [ β ψ ψ̇ X Y ]T

and u = δf respectively, and the output vector is η =
[ X Y ]T

3.1 Optimization algorithm

Equation (8) is the cost function, with the additional
constraint terms on physical limits and penalty function
for collision-free planning.
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J = φ(η̃N ) +
N−1∑

k=0

(
L(η̃k, uk,△uk) +

∑

i

µiS
i
klik

+PF obs
k + PF

goal
k

)
(8)

where, i = △u, u, αf , αr and,

φ(η̃N ) =
1

2
η̃T

NP0η̃N (9)

L(η̃k, uk,△uk) =
1

2
η̃T

k Qη̃k +
1

2
△uT

k R△uk +
1

2
uT

k Tuk (10)

∑

i

µiS
i
klik = µuSu

k luk + µ△uS
△u
k l

△u
k +

µαS
αf

k l
αf

k + µαSαr

k lαr

k

(11)

where N is the horizon-length. ηk, η̃k and △uk are
formulated as ηk = Cξk , η̃k = ηk,ref − ηk , △uk = uk −
uk−1 and µi (i = △u, u, αf , αr) are KKT variables.
P0, Q,R, T are weighting parameters. The fourth and fifth
terms of (8) are potential-like functions to guide the UGV
into the destination avoiding obstacles. The potential-
like function for obstacles avoidance is constructed with
consideration of the polygonal UGVs. We constructed that
potential-like function with two different approach. The
first one is based on the distance between the vehicle
and the obstacles. And the second one is based on the
parallax information of the vehicle about the obstacles.
Details about these approaches will be given in Sec. 3.2.
The following equation is the potential-like function to
guide the UGV toward the target point.

PF
goal
k = Kgoal · ||qk − qgoal||

2 (12)

qk, qgoal are XY coordinate of the center of gravity of
the robot and location of the destination in the inertial
frame. Equation (9) penalizes the deviation at the final
stage. The first term of (10) is the penalty on the deviation
from the desired trajectory. The second term penalizes the
large control signal difference. And the last term is for the
sake of driving in a straight line rather than a curve line.
Equation (11) contains penalty on the larger values than
the fixed saturation values, defined as the following.

S
△u
k = |△uk| − △usat Su

k = |uk| − usat

S
αf

k = |αf,k| − αsat Sαr

k = |αr,k| − αsat

(13)

lik =

{
0 , if Si

k < 0 ,
1 , else .

(14)

where i : △u, u, αf , αr. These terms are formulated
as constraints in the model predictive framework. KKT
variables mean the weights of the penalty about constraint
violation of the state variables and steering input. Since
there exists a trade-off in choosing each KKT variable, we
assign their values by comparing the order of magnitude
of Si

k (i = △u, u, αf , αr). The online optimization was
solved using the augmented lagrangian approach(Kim et al
[2002]). Fig. 3 shows the architecture of control flow of the
UGVs in unknown environment.

3.2 Potential-like function for obstacle avoidance

For obstacles avoidance of the polygonal vehicle, laser
scanners are attached in the front, the left side and
the right side with limited sensor range as following the
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Fig. 3. Architecture of local planner for obstacle avoidance
in unknown environment.

Fig. 4(a). We need not detect the rear side of the vehicle
because we only control the front steering angle at a
high speed, although the proposed approach can be easily
generalized for the backward motion.
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Fig. 4. (a) The UGV is assumed rectangular. The sensor
range can be divided into three regions. (the front,
the left side and the right side) (b) The red rectangle
is the UGV. The green line is the trajectory of the
UGV. The obstacles in the binary map are expressed
as black dots. The red dots are the detected obstacles
within the fixed sensor range.

Obstacles only within the sensor range are represented as
a binary map, and the vehicle has to avoid obstacles with
this limited information (see Fig. 4(b)). For constructing
the potential-like function to avoid the obstacles, the
following two approaches are considered.

1. Approach based on the minimum distance Normally
for point mass dynamics, potential-like functions for ob-
stacles avoidance are based on the distance between the
UGV and the obstacles. In Kim et al [2002], a potential-like
function for successful obstacle avoidance of a rotor-craft
based unmanned aerial vehicles(UAVs) is based on the
minimum distance between the vehicle and the detected
obstacles without considering a speed of the vehicle. If
then, there can be a lot of endeavor for tuning weighting
parameters, because control becomes harder as the speed
of a vehicle increases. As an extension of Kim et al [2002],
the following potential-like function based on the minimum
distance from obstacles can be constructed.(Yoon et al
[2007a], Yoon et al [2007b] )

PF obs
k = Kobs

dcf

dmin + ǫ

dmin = ||qUGV
k − qobs

k ||min (15)

dcf = Kcd · v

where qUGV
k ∈ QUGV and qobs

k ∈ Qobs. QUGV and Qobs

are the sets whose elements are the locations of the
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Fig. 5. Modified parallax values corresponding to the
dimension, attitude and slip angle of the vehicle

sensor spots around the UGV and the location of the
detected obstacle, respectively. dcf is the critical minimum
distance that varies with the speed of the vehicle. ǫ is for
nonsingularity.

Equation (15) incorporates the speed information, but
the UGV in consideration is nonholonomic model. And
obstacles located in front are more dangerous than those
located in the side of the UGV at the same distance. The
approach based on the minimum distance from obstacles
cannot reflect this different threat with respect to the
location of obstacles. Due to this characteristics of the
UGV, optimization process can be difficult and take a long
computation time. In the worst case, successful obstacle
avoidance may be unsuccessful.

2. Approach based on the parallax information To com-
plement the above drawback, another potential-like func-
tion, which is based on the MP for consideration of the
dimension of the UGV, is constructed.

Let θf and θr denote the parallax values from the front
sides of the UGV’s body to an obstacle in the front
sensing range, and from the rear side of the UGV’s body
to an obstacle in the side sensing range, respectively(see
Fig. 5). The four side angles(θf,l, θf,r, θr,l and θr,r), can
be calculated with the geometric consideration:

θf,l = tan−1

(
px − L

2

w
2
− py

)
, θf,r = tan−1

(
px − L

2

w
2

+ py

)

θr,l = tan−1

(
qx + L

2

w
2
− qy

)
, θr,r = tan−1

(
qx + L

2

w
2

+ qy

) (16)

px, py and qx, qy are coordinates of the detected obstacle
location with respect to the UGV’s frame in forward and
side sensing range, respectively. These values reflect the
dimension of the vehicle, but not the information of of the
sideslip angle of each vertex of the vehicle. So we need to
consider the sideslip angles of the all vertices of the vehicle.

We modify θf and θr to θ̃f and θ̃r, in order to solve this
issue for forward and side obstacle avoidance, as explained
below.

The sideslip angles of the four vertices(βf,l, βf,r, βr,l, βr,r)
and the speeds(vf,l, vf,r, vr,l, vr,r) satisfy the following
relationships:

X − axis Y − axis

vf,l cos βf,l = v cos β −
w

2
ψ̇, vf,l sin βf,l = v sin β +

L

2
ψ̇

vf,r cos βf,r = v cos β +
w

2
ψ̇, vf,r sin βf,r = v sin β +

L

2
ψ̇

vr,l cos βr,l = v cos β −
w

2
ψ̇, vr,l sin βr,l = v sinβ −

L

2
ψ̇

vr,r cos βr,r = v cos β +
w

2
ψ̇, vr,r sin βr,r = v sin β −

L

2
ψ̇

From the above equations, β·,· can be obtained as the

following function of the v, β, ψ̇:

βf,l = tan−1

(
v sin β + L

2
ψ̇

v cos β − w
2
ψ̇

)

βf,r = tan−1

(
v sin β + L

2
ψ̇

v cos β + w
2
ψ̇

)

βr,l = tan−1

(
v sin β − L

2
ψ̇

v cos β − w
2
ψ̇

)

βr,r = tan−1

(
v sin β − L

2
ψ̇

v cos β + w
2
ψ̇

)

(17)

And px, py, qx, qy are functions of ψ, X, Y as the following:

[
Px

Py

1

]
=

[
cos ψ − sin ψ X
sin ψ cos ψ Y

0 0 1

][
px

py

1

]
(18)

where Px, Py and Qx, Qy are coordinates of obstacles with
respect to the inertial frame. X and Y are location of the
center of gravity of the vehicle in the inertial frame. Then
px, py, px, py will be,

px = (Px − X) cos ψ + (Py − Y ) sin ψ
py = (Py − Y ) cos ψ + (−Px + X) sin ψ
qx = (Qx − X) cos ψ + (Qy − Y ) sin ψ
qy = (Qy − Y ) cos ψ + (−Qx + X) sin ψ

(19)

Using the above (16) and (18), the modified parallax values

θ̃f and θ̃f are defined as the following:

θ̃f = π − [(θf,l − βf,l) + (θf,r + βf,r)]

θ̃r = π − [(θr,l − βr,l) + (θr,r + βr,r)]
(20)

To avoid the obstacles safely, these MP values need to be
small. Now, let p and q represent the location of the ob-
stacles with the largest MP among the detected obstacles
within the forward and side sensing range, respectively,
represented in the vehicle’s coordinate frame. Then the
potential-like function at step k is defined as the following:
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PF obs
k =





0 nothing,

Kobs exp

(
θ̃f

θcf (v)

)
p exists,

Kobs exp

(
θ̃r

θcr(v)

)
q exists,

Kobs exp

(
θ̃f

θcf (v)
+

θ̃r

θcr(v)

)
p, q exist.

(21)

θcf (v) and θcr(v) are the critical MP values which are the
function of v. They have to be decreased as the speed of
the UGV increases, so we define them as

θcf =
Kcf

v
, θcr =

Kcr

v

4. SIMULATION RESULTS

To validate the performance of the suggested approach
for obstacles avoidance, simulations were performed. An
UGV is supposed to follow the straight line connecting the
known start and the goal points with the initial speed of
4 m/s. But on the way to the destination, the UGV notices
the obstacles and replans to avoid them. Initially the
UGV was located at [5 m, 5 m] in the inertial coordinate
frame while heading east. To compare the two approaches
described in Sec. 3.2, two scenarios are tested. The first
scenario is navigation in a simple area composed of two
circular obstacles. And in the second scenario, an urban
area which is composed of many structures and narrow
lanes was assumed. The sensor range was assumed 5 m,
and the following parameters were used.

horizon length(N) 15
sample time (△t) 0.05 sec
steering angles −30 ◦ ≤ δf ≤ 30 ◦

changes of steering angles −3 ◦ ≤ ∆δf ≤ 3 ◦

slip angle of a tire −4 ◦ ≤ α· ≤ 4 ◦

4.1 Circular obstacles

In this scenario, the environment contains two circular
obstacles.

In Fig. 6 (a)-(g), the blue curve is the result from using
MP, and the red is the result from using distance from
the obstacles. As can be seen in Fig. 6(a) performances in
terms of collision-free navigation are satisfactory in both
cases. In Fig. 6 (b), (f), (g), the black dotted lines are the
saturation values for the corresponding variables and the
plots show those variables are kept within the saturation
values.

Approach tr tcpu γmean

MP 33.55 sec 17.2640 sec 1.6613 m
Distance 33.60 sec 124.2945 sec 1.4624 m

From Fig. 6 it seems that there exists no clear difference
between the two approaches. But in the view of the com-
putational efficiency, the approach based on the MP was
better. From the above table, the time(tr) until the UGV
arrives at its own target point is similar, but computation
time(tcpu) contrasts sharply about seven times. γmean is
the mean deviation from the reference path.
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Fig. 6. (a) The trajectories of the UGVs. (b) steering
angle commands. (c) sideslip angles of the UGVs. (d)
heading angles. (e) rate of the heading angles. (f) slip
angles of the front wheel. (g) slip angles of the rear
wheel. In each plot, the blue is from the approach
based on the MP, and the red is from the approach
based on the distance.

4.2 Urban environment

In this scenario, UGV is supposed to navigate in the
urban area. In this area, many rectangular structures exist.
Polygonal obstacles are often more difficult to avoid than
circular obstacles due to their sharp edges while tracking
the given reference.

As can be seen in Fig. 7(a), only the approach based on
the MP avoided the obstacles successfully. As mentioned
in Sec. 3.2, in a complex area, with the information of
distance from obstacles only it is not easy to pick out the
most dangerous obstacle. Moreover, the most dangerous
obstacle can change with respect to the heading of the
UGV. If the approach based on the pure MP of the UGV
is applied, the heading of the UGV cannot be considered.
Since we modified the MP using the heading of the UGV,
the most dangerous obstacle can be picked out efficiently.
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Fig. 7. (a) The trajectories of the UGVs. (b) steering
angle commands. (c) sideslip angles of the UGVs. (d)
heading angles. (e) rate of heading angles. (f) slip
angles of the front wheel. (g) slip angles of the rear
wheel. In each plot, the blue is from the approach
based on the modified MP, and the red is from the
approach based on the distance.

Approach tr tcpu γmean

MP 38.50 sec 17.9411 sec 3.1103 m
Distance (17.25 sec) 214.9126 sec 3.3717 m

The above table shows superiority of the approach based
on the modified MP. tr of (17.25 sec) means that the
minimum-distance approach failed after 17.25 sec. On
the other hand, the maximum-MP approach successfully
finished the navigation about twice faster than the real
time.

5. CONCLUSION

A model predictive approach for obstacles avoidance of a
car-like robot was presented. An optimal problem while
avoiding obstacles was formulated in terms of cost mini-
mization under constraints. We solved this with nonlinear
programming and the constraints were incorporated as a
penalty function with KKT variables. For obstacles avoid-

ance with consideration of the dimension of the UGV, two
kinds of potential-like functions are proposed. The first
one is based on the minimum distance from the obstacle.
And the other is based on the MP considered with the
dimension and the heading of the UGV. Simulation results
show that the approach with the modified MP is superior
especially in a complex environment. By incorporating
both the velocity and heading information of the UGV,
the proposed approach can efficiently avoid the collision.
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