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Abstract: Theoretical study of complex systems receives more and more attention as most
sciences broaden their perspectives. The paper first briefly overviews a few important complexity
approaches, then it presents a triple-level model for describing and analyzing collaborating
enterprises. The environment is treated as a stochastic process, the core topology of the
collaboration is represented by a graph and, finally, the dynamic behavior of collaborating
enterprises is modeled as a Complex Adaptive System (CAS). Complexity measures for the
different sub-models are suggested, some complexity drivers are investigated and it is argued
that the resulted model can be effectively analyzed by simulation. Copyright c© 2008 IFAC
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1. INTRODUCTION

The need to be able to measure the complexity of a system,
structure or problem and to obtain bounds and quantita-
tive relations for complexity arises in more and more sci-
ences: besides computer science and engineering, the tra-
ditional branches of mathematics, physics, chemistry, biol-
ogy and social sciences are also confronted more and more
frequently with this problem (Lovász and Gács, 1999).

The paper focuses on the complexity of collaborative en-
terprises. Though, collaborations promise a better survival
in the globlazied market, the lack of problemoriented com-
prehension concerning the required systems setup often
cause these collaborations to fail. This results in a very
high failure rate that is near 50% (Schuh et al., 2006).

The main aim of the paper is to present a model of collab-
orating enterprises. Such systems are usually concurrent
and distributed the components of which are complex
systems themselves, thus, they are “systems of systems”
(Kotov, 1997). If a model can describe and measure com-
plexity in them, it could help identifying complexity drivers
in diverse types of collaboration structures. Such a model
could also serve as a basis and common ground for fur-
ther complexity management research and, hence, it could
help to develop decision support systems for designing
and controlling enterprise networks. For example, these
kinds of models could help the theoretical foundations of
managing collaborations, such as supply chains, working
in uncertain, dynamic environments with often incomplete
data. Consequently, they are of high practical importance.

Since there is a huge literature on complexity studies in
different sciences (mostly in mathematics and computer
science) and these researches have well-established models

and theories, we try to apply as much from their contribu-
tions as possible: our description model is separated into
three different abstraction levels and they are modeled by
fundamental theories, such as stochastic processes, net-
work theory, and the theory of complex adaptive systems.

The structure of the paper is as follows. First, some im-
portant complexity approaches will be briefly considered.
Then, we turn our attention to the multi-level complex-
ity model. In order to model the dynamic and uncer-
tain behavior of the environment we will apply stochastic
processes (series of multivariate random variables). Next,
we will investigate quasi-static models of collaboration
networks. We will apply network theory in order to model
the basic network connections between enterprises that de-
scribe the core topology of collaborations. Finally, we will
give a dynamic model of collaborative enterprises with the
aid of Complex Adaptive Systems (CAS). This CAS model
could be applied to design a simulation system that could
help analyzing the dynamic structures of collaborations.

2. WHAT IS “COMPLEXITY”?

The meaning of the word “complexity” is vague, ambigu-
ous, there is no universal, precise (e.g., formal) definition
of it. Yet, there are approaches especially in mathemat-
ics and computer science which aim at defining special
forms of complexity. Every serious, long-term research
must have strong theoretical basis, therefore, if we want to
define, analyze and manage complexity arising in collabo-
rative enterprise networks we should consider the previous
definitions of complexity. In this section we provide a
brief overview of some important classical complexity ap-
proaches mostly from mathematics and computer science.
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Since Alan Turing introduced his mathematical machines
(viz., the Turing-machines) in 1930s, they became a fun-
damental tool for analyzing algorithms and combinato-
rial optimization problems. According to the theory of
computational complexity, complexity is measured by the
quantity of computational resources used up by a partic-
ular task. There are several complexity measures which
are associated with algorithms (Lovász and Gács, 1999),
e.g., time-complexity, space-complexity and, for distrib-
uted systems, communication-complexity. According to
complexity of problems the two most important classes
of problems are P and NP . By definition, a P -problem is
a decision problem that can be solved by a deterministic
Turing-machine in polynomial time . An NP -problem can
be solved by a nondeterministic Turing-machine in poly-
nomial time. Roughly, problems in P are ”easy” problems,
while problems in NP are considered as ”hard”. Naturally,
this classification is a simplification. It is easy to see that
any P -problem is also an NP -problem. However, the ques-
tion whenever P = NP is currently the most important
undecided problem of computational complexity theory.
This problem is named as one of the seven “millennium
problems” of the Clay Mathematics Institute in the mem-
ory of Hilbert’s celebrated open mathematical questions.

Information complexity, viz. entropy, tries to measure
the randomness or disorder of objects. This approach
was suggested by Claude Shannon, who in 1948 intro-
duced entropy to communication-theory. Entropy provides
a measure of the amount of information associated with
the occurrence of given states. It has key importance
in information- and code-theory, however, it can be also
applied to measure other complex systems, e.g., graphs
or networks. Note that Shannon himself borrowed the
concept of entropy from physics (viz. thermodynamics and
statistical mechanics), and used the Boltzmann-Gibbs for-
mulation of entropy. An intuitive understanding of infor-
mation entropy relates to the amount of uncertainty about
an event associated with a given probability distribution.

In 1960s Solomonoff, Kolmogorov and Chatin (indepen-
dently) introduced a complexity concept which is often
called algorithmic information complexity. The name it-
self indicates that it has close connections to computa-
tional complexity and entropy. Given a universal Turing-
machine, the Kolmogorov complexity of a (bit)string (de-
scription) is the length of the shortest program that gener-
ates the description and halts. In other words Kolmogorov
defined the complexity of a structure as the length of
its shortest description (namely, on a universal Turing
machine). A structure is simple if it can be described
by a short program, and is complex if there is no such
short description, e.g., a random string whose shortest
description is specifying it bit-by-bit. If some, fairly sim-
ple, assumptions are made on the used universal Turing-
machine then the complexity of a structure (or string) will
only slightly depend on the used reference machine.

Krohn and Rhodes introduced a complexity definition in
the 1960s that aims at measuring the complexity of ab-
stract algebraic structures, such as groups and semigroups
with the concepts of homomorphisms and wreath prod-
ucts. In computer science, the Krohn-Rhodes theory gave
new, unexpected methods to build any finite state automa-
ton using series-parallel emulation by simple components.

In the second half of the 20th century it became more and
more important to measure the complexity of structures
in natural sciences (e.g., in chemistry and biology). The
theory of topological complexity addresses this problem and
applies graph theory as its basis. There are several mea-
sures to define the complexity of a graph: e.g., there are
symmetry-based measures, which often apply the concept
of entropy, other measures include: average- or normalized-
edge complexity, subgraph count, overall connectivity, to-
tal walk count, and others based on adjacency and dis-
tance. Some of them are investigated in Section 3.2.

One of the newest complexity approaches is the theory
of Complex Adaptive Systems (CASs). It has deep roots in
the interdisciplinary field of multi-agent systems, however,
the term ”complex adaptive systems” itself was coined at
the interdisciplinary Santa Fe Institute (SFI), by John H.
Holland, Murray Gell-Mann and others (Holland, 1992;
Holland, 1995). John H. Holland is one of the inventors of
evolutionary computation and genetic algorithms. Nobel
Prize laureate Murray Gell-Mann discovered quarks. As
CASs are especially important for our enterprise network
model, they are investigated more deeply in Section 3.3.

The recent EU funded project “Coll-Plexity” (Collabora-
tions as Complex Systems) was called to life with the pur-
pose of defining a Generic Model of Complexity (GeMoC)
that is applicable for modeling collaborating enterprises in
production industry and R&D (Schuh et al., 2006).

During the Coll-Plexity project several abstract complex-
ity drivers were identified that could cause problems in
collaboration networks. These drivers are as follows

(1) Uncertainty (e.g., limited information)
(2) Dynamics (e.g., sudden or constant changes)
(3) Multiplicity (e.g., a large number of participating

elements and influencing factors)
(4) Variety (e.g., many types of elements)
(5) Interactions (e.g., communication loads)
(6) Interdependencies (e.g., feedback loops)

According to the approach of the Coll-Plexity project,
a system is called complicated if it has any of the six
properties above, e.g., if it has a large number of elements
or it has significant uncertainty. On the other hand, a
complex system must have the first two properties and at
least one of the last four. Formally, it can be written as[

(1) ∧ (2)
]
∧

[
(3) ∨ (4) ∨ (5) ∨ (6)

]
. (1)

Note that these complexity drivers are abstract, for ex-
ample, the issues of people, culture, politics, geography or
weather can all be regarded as different influencing factors.

3. THE COMPLEXITY MODEL

This section aims at describing our abstract, multi-level
model for collaborative enterprises. It contains three sub-
models: the model of the environment (applying stochas-
tic processes), the enterprise network model (built upon
network and graph theory) and the collaboration model
(modeled as a complex adaptive system). We also investi-
gate which complexity measures can be applied and which
complexity drivers are addressed by the sub-models. The
conceptual overview of the model can be found in Fig. 1.
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3.1 Environment Model

Our main aim is to create an effective complexity model
for collaborative enterprises. In order to do this we also
need an environment model, since the environment affects
and drives the collaboration. According to our view, the
environment includes all factors that somehow influence
the collaboration, e.g., the customers, the political and
economical situation, the geography, the weather, etc.
However, to keep the complexity of the model in a man-
ageable level, we apply a very abstract environment model:
the uncertain behavior of the environment is described by
a multivariate random variable and, since the environment
can change over time, we consider a sequence of such vari-
ables, one for each observable time step. These sequences
are called stochastic processes (Papoulis and Pillai, 2001).

Stochastic processes are standard models used in statistics,
signal processing, machine learning and financial mathe-
matics. They consist of a sequence of random variables,

X1, X2, . . . , Xt−1, Xt, Xt+1, . . . , (2)

where each Xt is a random variable, a measurable function
Xt : Ω → S from the sample space Ω of a probability
measure space 〈Ω,F , P 〉 to a measurable space of possible
outcomes S. They describe an event which is uncertain
from the viewpoint of the observer. Multivariate random
variables have vector output, namely, they render several
values to an element of the sample space. Random vari-
ables can be adequately described by their distributions.

The analysis of a stochastic process can be simplified if
we make different assumptions on the distributions of the
random variables. For example, a stochastic process can be
assumed to be stationary which means that each Xt has
the same distribution. One of the most simplifying, but
often applied, assumptions is if we treat all variables as
independent from each other but we also assume that they
all have the same distribution. This property is abbrevi-
ated as “i.i.d.” (independent and identically-distributed).

Another potential simplifying assumption concerning sto-
chastic processes is the Markov property. In probability
theory, a stochastic process has the Markov property if
the conditional probability distribution of future states of
the process is conditionally independent of the past states
given the present state. More precisely, a stochastic process
(Xt)

∞

t=1 has the Markov property if for all t we have

P (Xt = x | Xt−1) =

= P (Xt = x | Xt−1, Xt−2, . . . , X1). (3)

Even if the process that describes the behavior of the
environment is non-Markov, it is appropriate to consider it
as an approximation to a Markov process, since it greatly
facilitates the theoretical analysis of the process.

Our proposed model for the environment is that we should
consider it as stochastic process. This process can be
assumed to be stationary or Markovian. In that case we
do not concern with the inner structure and the internal
dependencies of the environment, we mostly treat the
environment as a black box, however, we still have a formal
statistical model to work with. According to our model, at
each observable time t the state of the environment can be
described by a multivariate random variable, Xt, such as

Network

Collaboration

Environment

?

1

3

2

I. Environment Model ~ Stochastic Processes

III. Collaboration Model ~ Complex Adaptive Systems

II. Enterprise Network Model ~ Graph and Network Theory

Complexity Drivers:
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- Variety

Complexity Drivers:
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- Multiplicity
- Interactions
- Interdependencies
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Fig. 1. Conceptual overview of the proposed model

Xt : Ω →

⎡
⎢⎢⎣

Xt,1

Xt,2

...
Xt,n

⎤
⎥⎥⎦ , (4)

where each Xt,i is a single valued random variable that de-
scribes a particular aspect of the environment that we want
to take into account. For example, the number of requests,
the number of products that the customers have ordered,
due dates, the trustiness of the customers, external costs,
the economical situation (e.g., interest and currency rates,
asset prices), the weather (e.g., temperature) or even the
social, the cultural and the political situation.

For example, a classical approach to model the evolution of
asset prices Vt over time is to treat them as a continuous-
time diffusion process, which can be written in the form
of the following stochastic differential equation

dVt

Vt

= μdt + σdWt, (5)

where V0 > 0, μ is a drift parameter, σ > 0 is a volatility
parameter, and W is a standard Brownian motion. Price
Vt can be calculated directly by applying Ito’s lemma,

Vt = V0 exp(mt + σWt), (6)

where m = μ− 1

2
σ2, which simplifies the investigations.

Regarding measuring the complexity of random variables,
the concept of entropy can be applied (Shannon, 1948).
The (differential) entropy of random variable X is

h[X] = −

∫
∞

−∞

f(x) log2 f(x) dx, (7)

where f is the probability density function of X. The
concept of entropy measures how much information (or
disorder) there is in a signal or in an event.

Note that the probability distribution of a random variable
can be estimated using accumulated historical, statistical
data (at least if the stochastic process was stationary).
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3.2 Enterprise Network Model

Now, we turn our attention to model the core topology of
an enterprise network. We will assume that this topology
is quasi-static or slowly varying, hence it can be adequately
modeled by network theory. The dynamic elements of the
network are investigated in the collaboration sub-model.

The basis of modern network theory (Barabási and Al-
bert, 1999; Barabási, 2002; Newman, 2003) and, hence,
the basis of network- or topological-complexity is graph-
theory, which is one of the fundamental theories in discrete
mathematics. Its history goes back to Euler’s celebrated
solution of the Königsberg bridge problem in 1735.

Formally, a graph G = 〈V,E〉 consists of a set of vertices
(or nodes) denoted by V = {v1, . . . , vn} and a set of edges,
E ⊆ V × V . We call two vertices vi, vj ∈ V adjacent if
〈vi, vj〉 ∈ E. Sometime weights and labels (e.g., colors) are
also associated with the vertices and the edges.

The adjacency matrix of graph G is an n × n matrix,
A(G) = [aij ]

n

i,j=1
where aij is 1 if there is an edge between

vertices vi and vj , otherwise it is 0. The degree of a vertex
is the number of edges connecting it to other vertices.
For directed graphs, a vertex has in and out degrees, as
well. A path in the graph is a sequence of adjacent edges
between two vertices without traversing any intermediate
vertex twice. The length of a path is the number of edges
that the path uses. A distance of two vertices is the
length of the shortest path between them. The distance
matrix, D(G) = [dij ]

n

i,j=1
, of graph G is defined as dij is

the distance of vertices vi and vj . Naturally, in case of
undirected graphs both A(G) and D(G) are symmetrical.

The elements of graphs can be naturally associated with
the elements of an enterprise network, at least regarding
its core topology, e.g., an association could be as follows

• Vertices ∼ companies or functionalities
• Edges ∼ connections between companies;

functionality associations (e.g., supplier)
• Vertex labels ∼ production competences
• Vertex weights ∼ production capabilities
• Edge labels ∼ connection, contract type
• Edge weights ∼ collaboration strength
• Colors, labels ∼ roles, types, strengths

In Fig. 2, e.g., a directed, colored, vertex and edge la-
beled graph representation of a real production network is
shown. The actual names of the companies are omitted.

An advantage of this approach is that there are plenty
of off-the-shelf complexity measures available for graphs
(Brochev and Rouvray, 2006). In what follows, we overview
some of these measures that could be applied to measure
the topological complexity of a collaboration network.

There are adjacency related measures, such as total ad-
jacency, Adj(G), or average vertex degree, Avd(G) =
Adj(G)/n, or connectedness, Conn(G) = Adj(G)/n2,

Adj(G) =

n∑
i=1

n∑
j=1

aij . (8)

Similarly to the above definitions, one can define total
graph distance, Dist(G) =

∑
i

∑
j dij , average vertex

Fig. 2. Static representation of a real production network

distance, Avdist(G) = Dist(G)/n and average degree of
vertex-vertex separation, Advvs(G) = Dist(G)/n2.

The complexity of a graph can also be expressed by the
total number of subgraphs. The number of all subgraphs
containing two edges has an important role in chemistry
and it has a special name, called Platt’s index. This index
was used to measure molecular complexity. The number
of subgraphs containing three edges are called Gordon-
Scantleburry index. Later, total subgraph count was in-
troduced to measure the complexity of a graph, where
subgraphs of all sizes (even the graph itself) was counted.
In case of large networks, often subgraphs containing less
then x, e.g., x = 3, edges are counted in practice, in order
to avoid combinatorial explosion. Using subgraphs, one
can also define the overall connectivity index of a graph as
a sum of all adjacencies of all k-th order subgraphs.

Vertex degree distribution applies the concept of entropy,

V dd(G) =
n∑

i=1

ai log2 ai where ai =
n∑

j=1

aij . (9)

This complexity measure has the property that it increases
with the connectivity and with other complexity factors,
such as, the number of branches, cycles or cliques.

An alternative way to define complexity is to count all
paths from any vertex to any other vertex, called total
walk count. Note that there could be only finite number
of possible walks. A natural extension of this measure is
when (edge or vertex) weights are also taken into account.
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Networks with high complexity are characterized by both
high vertex-vertex connectedness and small vertex-vertex
separation, as well. The A/D index of a graph is defined
as the ratio of total adjacency and the total distance,

(A/D)(G) =
Adj(G)

Dist(G)
. (10)

A refinement of this measure is the B-index that is de-
fined as the sum of all b-values, bi = ai/di. It has an
advantage over the A/D index that it has less sensitivity
to degredancy and more sensitivity to local topology.

3.3 Collaboration Model

Probably the most important elements of an enterprise
collaboration are dynamic and, therefore, hard to model
and analyze. In this section we suggest modeling the
dynamic behavior of an enterprise network as a CAS.

Complex Adaptive Systems (CASs) constitute a new para-
digm (Holland, 1992; Holland, 1995) with the goal to study
the structures and dynamics of systems and the question,
how the adaptability of the system creates complexity.

A CAS can be considered as a Multi-Agent System (MAS)
with seven basic elements in which “a major part of the
environment of any given adaptive agent consists of other
adaptive agents, so that a portion of any agent’s efforts
at adaptation is spent adapting to other adaptive agents”.
Agents may represent any entity with self-orientation, such
as cells, species, individuals, firms or nations.

Holland postulates seven basic elements that characterize
a CAS, four of which are properties, the others are mecha-
nisms (Holland, 1995): aggregation, flows, nonlinearity, di-
versity, tagging, internal models, building blocks. The first
four concepts represent certain characters of agents, are
very important in the adaptation and evolution process,
while the other three concepts are mechanisms of agents
for communicating with each other and their environment.

Environmental conditions are changing, due to the agents’
interactions as they compete and cooperate for the same
resources or for achieving a given goal. This, in turn,
changes the behavior of the agents themselves. The most
remarkable phenomenon exhibited by a CAS is the emer-
gence of highly structured collective behavior over time
from the interactions of simple subsystems, usually, with-
out any centralized control (Ueda et al., 2001). The emer-
gence of a complex adaptive behavior from the local inter-
actions is demonstrated in Fig. 3. Emergence concerning
organizations was studied by (Kurtz and Snowden, 2003).
The typical characteristics of a CAS include dynamics
involving interrelated spatial and temporal effects, corre-
lations over long length- and time-scales, strongly coupled
degrees of freedom and non-interchangeable system ele-
ments, to name only the most important ones. Both the
CAS and its environment simultaneously co-evolve in or-
der to maintain themselves in a state of quasi-equilibrium.

CASs constitute a natural framework to model production
structures (Monostori and Csáji, 2007), e.g., collaborative
enterprises, and to investigate complexity drivers in them.
An enterprise can be associated with an agent that in-
teracts with other agents in an uncertain and changing

Fig. 3. Emergence in Complex Adaptive Systems

environment. Note that there are already a variety of MAS
based production control approaches (Csáji et al., 2006).

At the same time, a problem that we have to face is that
even if we can describe a collaboration network as a CAS,
it would be very hard to formally analyze a system like
that. However, computer-based simulations can be applied
to evaluate and test these systems. Simulations can help
observing and investigating, e.g., how (potentially simple)
individual behavior rules can emerge and give rise to
complex (and often unpredictable) collective behavior. Ad-
ditionally, the stability of these kinds of systems together
with the effects of uncertainties (such as the lack of precise
market forecasts, as well as personal contacts and cultural
dependencies) could also be evaluated by simulations. This
kind of experimental approach has several advantages,
such as: it can effectively help a what-if analysis; it can
support statistical evaluation of cooperation structures;
hence, it can be used as a design or decision support tool.

In designing CAS, non-linear phenomena, incomplete data
and knowledge, a combinatorial explosion of states, dy-
namic changes in environment and the frame problem are
some notable examples of difficulties to be faced. The
central question is realizing an artifactual system that
achieves its purpose in unpredictable conditions. Complex
systems, however, exhibit patterns of behavior that can be
considered archetypal or prototypical. In order to manage
such systems an appropriate balance between control and
emergence must be found (Choi et al., 2001).

The difficulty in understanding the effects of individual
characteristics of the agents on their collective behavior
underlines the importance of using simulation as primary
tool for designing and optimizing such systems. In this
respect, the proper balance between simulation and theory
is to be aimed (Surana et al., 2005). Our further research
activities will also go in this direction.

4. CONCLUSION

Managing a network of collaborative enterprises is a hard
task and, according to the current situation, the potential
failure rate is very high (Schuh et al., 2006). Therefore,
it is important to experimentally and theoretically study
collaborations, since later these researches can lead to

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13837



effective complexity management techniques as well as
design tools and decision support systems. In order to
investigate networks of collaborative enterprises, first, an
adequate model should be found. If the model could mea-
sure complexity it would also help identifying complexity
drivers in different kinds of collaboration structures.

During the paper we have argued that, based on computer
science and mathematics, a collaboration network descrip-
tion model can be made. We suggested three different sub-
models for modeling different parts of the problem.

The most abstract part of our system is the environment.
In order to keep the complexity of the proposed model in
a manageable level, we have to satisfy with a very rough
model of those phenomena that we do not want to inves-
tigate in a detailed way, but still effect the collaboration.
For example, the macro economy, the customers, the cul-
ture, the politics, the geography, the weather. We suggest
modeling them as a multivariate random variable with po-
tentially different marginal distributions. Each component
of the variable can describe one particular aspect of the
environment. Since the environment can change over time,
it should be treated as a stochastic process, namely, as a
sequence of (multivariate) random variables. In order to
simplify the analysis, this process can be assumed to be
stationary or Markovian. Even though, in this manner, the
environment is almost treated as a black box, its complex-
ity can still be measured, e.g., by information entropy.

Some parts of collaboration can be treated as quasi-static
and, therefore, can be adequately described by static mod-
els, such as graph theory. Network and graph theory is
well-developed and is one of the most important parts of
discrete mathematics. Companies (or their functionalities)
can be associated with graph vertices while the edges can
represent connections or relations between these compa-
nies (such as potential cooperations). The properties of
the companies can be encoded into the labels of the nodes;
the features of the connections (such as physical distance
or trustiness) can be incorporated in the edge weights.
Non-numerical values can also be taken into account, e.g.,
in the edge labels. This approach also has the advantage
that there are a lot of graph related complexity measures
available that can be applied to measure the complexity
of an enterprise network, at least the static parts of it.

Finally, the dynamic parts of the cooperation can be mod-
eled as a Complex Adaptive System (CAS). Since our main
aim is to investigate collaborations between enterprises,
to keep the model as simple as possible, we only roughly
model the internal structure of the companies such as their
resources (viz., factories, stores or transportation fleets) or
their decision mechanisms (e.g., their managers). There-
fore, agents are primarily associated with enterprises. Each
agent can have its own goal and the ability to cooperate
with other agents. Even if the strategy or behavior rule
of each agent is simple, a complex adaptive behavior can
emerge from local interactions. The analysis of such sys-
tems can be achieved through computer-based simulations
that, later, could also become the basis of a collaboration
network design or a decision support tool for managers.

Consequently, the paper proposed a triple-level model that
offers a simple yet effective approach for modeling collab-
orative enterprises. The suggested model also offers com-

plexity measures that could help investigating potential
problems in networks of collaborating enterprises.
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Csáji, B. Cs., L. Monostori and B. Kádár (2006). Rein-
forcement learning in a distributed market-based pro-
duction control system. Advanced Engineering Infor-
matics 20, 279–288.

Holland, J.H. (1992). Complex adaptive systems. Daedalus
pp. 17–30.

Holland, J.H. (1995). Hidden Order: How Adaptation
Builds Complexity. Helix Books, Addison-Wesley.

Kotov, V. (1997). Systems-of-systems as communicating
structures. Technical report. Hewlett Packard Com-
puter Systems Laboratory.

Kurtz, C. F. and D. J. Snowden (2003). The new dynam-
ics of strategy: Sense-making in a complex and com-
plicated world. IBM Systems Journal 32(3), 462–483.
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