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Abstract: One of the major breakthroughs in the problem of control of bilateral teleoperators
with guaranteed stability properties has been the use of scattering signals to transform the
transmission delays into a passive transmission line. Under the reasonable assumption that the
human operator and the contact environment define passive (force to velocity) maps, stability of
the overall system is then ensured. This robust and physically appealing scheme, first proposed
by Anderson and Spong, has ever since dominated the field. In this paper we propose two novel
teleoperation schemes, based on a simple P-Like controller. These schemes do not make use of
the scattering or wave variables. Moreover, under the classical assumption of passivity of the
terminal operators plus a gravity compensation term, we can ensure position coordination of
the master and the slave.
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1. INTRODUCTION

The communication channel that connects the master and
the slave manipulators, in bilateral teleoperation, often
involves large distances or imposes limited data transfer
between the local and the remote sites. Such situations can
result in substantial delays between the time a command
is introduced by the operator and the time the command
is executed by the remote robot. This time-delay affects
the overall stability of the system (Sheridan [1993]).

Anderson and Spong [1989] proposed, in a ground-
breaking work, to send the scattering signals in order to
transform the transmission delays into a passive (virtual)
transmission line. The transmission line is then intercon-
nected with the master and slave robots, which define pas-
sive force to velocity operators, while the human operator
and the contact environment constitute the terminations
to the transmission line. Since power–preserving intercon-
nection of passive systems is again passive L2–stability
of the overall system is ensured under the reasonable
assumption that the human operator and the environment
define passive (force to velocity) maps. This robust and
physically appealing scheme has ever since dominated the
field. 1 See Arcara and Melchiorri [2002] and Hokayem and

⋆ This work has been partially supported by the spanish CICYT
projects: DPI2005-00112 and DPI2007-63665, the FPI program with
reference BES-2006-13393, and also by the mexican CONACyT
grant-169003.
1 See de Rinaldis et al. [2006] for the application of the dual idea,
that is, transform a real transmission line into pure delays, a classical
problem of electrical systems.

Spong [2006] for two interesting survey articles focused on
control of teleoperators.

Position Coordination or Position Drift has been one of
the major drawbacks of the basic scattering/wave variable
method (i.e., the position of the slave does not converge
to the position of the master). The work of Chopra et al.
[2006] shows that this objective is achieved adding a term,
proportional to the delayed position error, on the basic
scattering transformation. Chopra and Spong [2005] have
proposed that if teleoperation is viewed as a synchro-
nization problem, where the objective is to synchronize
the master and slave velocities, asymptotic stability of
the system can be achieved, however, this scheme does
not guarantee position coordination. In their work is also
shown that if using an adaptive Slotine–Li scheme, then,
position coordination can be achieved. In a recent publi-
cation (Lee and Spong [2006]) it is claimed that a Pro-
portional Plus Delayed Derivative scheme, that does not
require scattering transformations, yields also a stable op-
eration including the position coordination. Unfortunately,
the stability analysis hinges upon unverifiable assumptions
on the human and contact environment operators, namely,
that they define L∞–stable maps from velocity to force.
Notice that even the simplest scenario of a linear spring–
damper system does not verify this assumption because
the transfer function from velocity to force contains a
derivative operator that is not L∞–stable.

Namerikawa and Kawada [2006] have considered a sym-
metric teleoperator and they propose a modification to
the scattering–based scheme of Chopra et al. [2006] to
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overcome the need of adding a (twice delayed) term q̇s(t−
2T ) in the slave robots force. Mimicking the derivations of
the stability proof in Chopra et al. [2006]. They claimed
that the closed–loop system is Lyapunov stable and that
velocities and velocity errors asymptotically converge to
zero. In their work it is claimed that the controller im-
poses no restriction on the damping injection, but this
seems to be unreliable because their condition (23) exactly
coincides with the one given in Chopra et al. [2006]. It
is worth mentioning that the Lyapunov–like functions of
Namerikawa and Kawada [2006] and the one used in the
present paper, (7), are not the same. The former contains
an additional term that brings along in the derivative a
negative square of the velocity errors, see equation (16)
in Namerikawa and Kawada [2006] and it relies on the
scattering transformation.

In this paper we prove that indeed it is possible to
achieve stable behavior of teleoperators with a simple P–
like scheme under the classical assumption of passivity of
the terminal operators, providing additional damping (via
velocity feedback) to both manipulator subsystems. Two
schemes are considered: 1) controlling the master and the
slave with the (delayed) position errors and 2) the slave
controlled with the same position error and the master
with the delayed slave’s force. In both cases we prove that
all signals remain bounded and that the velocities belong
to L2 for any passive external interaction. (Furthermore,
velocities converge to zero if the forces applied by the
human and the environment are bounded.) It is also
proved that if adding a gravity compensation (and a mild
assumption on the inertia matrices) we achieve position
coordination. The main contributions of this paper are
gathered in Proposition 1 and Proposition 2 which are an
extension to our prior work in Nuño et al. [2007].

The paper is arranged as follows: Section 2 presents the
dynamic models for the teleoperator; Section 3 analyzes
the first scheme, P-like controller for both manipulators;
the results on controlling the master with force feedback
and the slave with a P-like controller are outlined in
Section 4; finally we present some simulations for both
schemes in Section 5 followed by the conclusions and future
work, Section 7, of this work.

2. MODELING THE N–DOF TELEOPERATOR
SYSTEM

The master and the slave are modeled as a pair of n–degree
of freedom (DOF) serial links with revolute joints. Their
corresponding nonlinear dynamics are described by

Mm(qm)q̈m + Cm(qm, q̇m)q̇m + gm(qm) = τm − τh

Ms(qs)q̈s + Cs(qs, q̇s)q̇s + gs(qs) = τ e − τ s, (1)

where q̈i, q̇i,qi ∈ R
n are the acceleration, velocity and

joint position, respectively. Mi(qi) ∈ R
n×n are the inertia

matrices, Ci(qi, q̇i) ∈ R
n×n the coriolis and centrifugal

effects, defined via the Christoffel symbols of the first
kind, gi ∈ R

n the vectors of gravitational forces, τ i ∈ R
n

are the control signals and τh ∈ R
n, τ e ∈ R

n are the
forces exerted by the human operator and the environment
interaction, respectively. i = m for the master and i = s
for the slave.

In order to analyze the behavior of the teleoperator we
use the following well–known properties of the dynamical
model for robotic manipulators with rotational joints 2 :

P1 Skew-Symmetric property of the Inertia Matrix.
Ṁi(qi) = Ci(qi, q̇i) + C⊤

i (qi, q̇i).
P2 ∃ kui

∈ R
+ such that Ui(qi) ≥ kui

where Ui(qi) is
the potential energy of the manipulator that satisfies

∂Ui(qi)

∂qi

= gi(qi).

P3 ∃ αi, βi ∈ R
+ such that αiI ≥ Mi(qi) ≥ βiI.

P4 For all qi,x,y ∈ R
n, ∃ kci

∈ R such that
|Ci(qi,x)y| ≤ kci

|x||y|, where | · | is the Euclidean
norm.

We assume that the time-delay imposed by the communi-
cation channel is constant on each direction, but it may
differ from one to another. the total round trip time-
delay is equal to Tm + Ts ≥ 0. Also, following standard
considerations, we assume the human operator and the
environment define passive (force to velocity) maps, that
is, there exists κi ∈ R

+ s.t. ∀t ≥ 0,

∫ t

0

q̇⊤

m(σ)τh(σ)dσ ≥ −κm; −

∫ t

0

q̇⊤

s (σ)τ e(σ)dσ ≥ −κs.(2)

3. CONTROL VIA PROPORTIONAL POSITION
ERRORS PLUS DAMPING INJECTION

In this section we propose that the forces applied on both
sides are proportional to the position errors between the
master and the slave plus a damping injection term. The
control laws are then given by 3

τm = Km[qs(t − Ts) − qm] − Bmq̇m

τ s = Ks[qs − qm(t − Tm)] + Bsq̇s
(3)

where Km,Ks, Bm and Bs are positive constants.

Before going through the stability result we present a
lemma that will be instrumental for the analysis without
proof. The proof for this lemma is established with a direct
application of Young’s and Schwartz’s inequalities. The
interested reader may refer to Chopra et al. [2006] for a
version of the proof.

Lemma 1. For any vector signals x,y and any T, α > 0 we
have

2

∫ t

0

x⊤(s)

∫ T

0

y(s − σ)dσds ≤ α‖x‖2
2 +

T 2

α
‖y‖2

2, (4)

where ‖ · ‖2 is the L2 norm of the signal.

Proposition 1. Consider the teleoperator system (1) con-
trolled by (3) with τh, τ e verifying (2). Fix the damping
injection and proportional gains such that

2BmBs > (T 2
m + T 2

s )KmKs, (5)

Then:

(i) Velocities and position error of the teleoperator are
bounded. (i.e., q̇i, qm − qs ∈ L∞) and moreover
q̇i ∈ L2.

2 These properties can be found on advanced robotics books like
Kelly et al. [2005] and Spong et al. [2005].
3 To avoid cluttering the notation we will omit the time argument
of all signals except for the case when it appears delayed.
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(ii) Assume additionally that
A1. The human operator stands still and the slave

robot is not in contact with the environment (i.e.
τh(t) ≡ 0 and τ e(t) ≡ 0).

A2. A gravity compensation term is added to the
controllers, that is,

τm = Km[qs(t − Ts) − qm] − Bmq̇m + gm(qm)

τ s = Ks[qs − qm(t − Tm)] + Bsq̇s − gs(qs).(6)

A3. The terms
∂2M

jk

i

∂qr
i
∂ql

i

are bounded.

Under these conditions, the master and slave veloc-
ities asymptotically converge to zero and position
coordination is achieved, that is

lim
t→∞

|qm(t) − qs(t − Ts)| = 0.

Proof. Consider the following non–negative function

V (qi, q̇i) =
1

2
q̇⊤

mMm(qm)q̇m +
Km

2Ks

q̇⊤

s Ms(qs)q̇s + (7)

+
Km

2
|qm − qs|

2 +

∫ t

0

(q̇⊤

mτh −
Km

Ks

q̇⊤

s τe)dσ +

+ Um(qm) +
Km

Ks

Us(qs) − kum − kus + κm +
Km

Ks

κs

Using (2) and the properties P1, P2 of the robot manip-
ulators, we obtain

V̇ = q̇⊤

m[τm + Km(qm −qs)]−
Km

Ks

q̇⊤

s [τ s + Ks(qm −qs)]

substituting the control laws τ i and noting that

qi(t − Ti) − qi(t) = −

∫ Ti

0

q̇i(t − σ)dσ (8)

we get

1

Km

V̇ =−
Bm

Km

|q̇m|2 −
Bs

Ks

|q̇s|
2 − (9)

− q̇⊤

m

∫ Ts

0

q̇s(t − σ)dσ − q̇⊤

s

∫ Tm

0

q̇m(t − σ)dσ.

We will now invoke Lemma 1 to obtain a bound on the
integral of V̇ . Towards this end, we integrate (9) from 0 to
t and apply Lemma 1 to the third and fourth right hand
terms. This yields

V (t) − V (0) ≤−

[

Bm −
Km

2

(

αm +
T 2

m

αs

)]

‖q̇m‖2
2 −

−Km

[
Bs

Ks

−
1

2

(

αs +
T 2

s

αm

)]

‖q̇s‖
2
2 (10)

Note that Bm > Km

2
[αm +

T 2

m

αs
] and Bs > Ks

2
[αs +

T 2

s

αm
]

have a positive solution for αm and αs if 2BmBs > (T 2
m +

T 2
s )KmKs. That, and the nonnegativity of V allow us to

conclude that q̇i ∈ L2. Furthermore, since V is bounded,
from (7) and Properties P2, P3, we can find that q̇i, qm−
qs ∈ L∞, thus, part (i) of Proposition 1 is proved.

We now proceed to prove (ii). First, we repeat the calcu-

lations done above with the new function Ṽ (qi, q̇i),

Ṽ =
1

2
q̇⊤

mMmq̇m +
Km

2Ks

q̇⊤

s Msq̇s +
Km

2
|qm − qs|

2 +

+

∫ t

0

(q̇⊤

mτh −
Km

Ks

q̇⊤

s τ e)dσ + κm +
Km

Ks

κs, (11)

where we have removed the terms associated to the poten-
tial energy, which satisfies the bound (10). Then, we will
prove that q̇i are uniformly continuous and, since they
belong to L2, will converge to zero. Note that

qm − qs(t − Ts) = qm − qs + qs − qs(t − Ts) (12)

and

qs − qs(t − Ts) =

∫ Ts

0

q̇s(t − σ)dσ ≤ T
1

2

s ‖q̇s‖2 (13)

this bound is obtained applying Schwartz inequality. From
(12), (13), and the facts that q̇s ∈ L2 and qm − qs ∈ L∞,
we conclude that qm − qs(t − Ts) ∈ L∞. Doing similar
computations, we can also show that the signal qm(t −
Tm) − qs ∈ L∞.

Now, under Assumptions A1 and A2 the teleoperator
dynamics (1) take the form

q̈m =−M−1
m [(Bm + Cm) q̇m − Km[qs(t − Ts) − qm]]

q̈s =−M−1
s [(Bs + Cs) q̇s − Ks[qs − qm(t − Tm)]],(14)

where the arguments of Mi and Ci are omitted for simplic-
ity. From the derivations above, and invoking Properties
P3 and P4, we see that q̈i ∈ L∞, which together with
q̇i ∈ L2 ∩ L∞ proves the claim that q̇i → 0.

From (14) and convergence of speeds we note that the
claim of position coordination will be established if we
can prove that q̈i → 0. Towards this end, we will prove
uniform continuity of these signals and use Barbălat’s
Lemma. Differentiating (14) we recover two types of terms:
one consisting of d

dt
M−1

i times a bounded signal and the

second one the product of M−1

i times the derivative of the
term in brackets. For the first term we have

d

dt
M−1

i = −M−1

i ṀiM
−1

i = −M−1

i (Ci + C⊤

i )M−1

i ,

which is bounded because of Properties P3 and P4. The
derivative of the term in brackets is also bounded under
Assumption A.3. 4 Consequently, d

dt
q̈i ∈ L∞ and q̈i

are uniformly continuous. Because of continuity of these
signals the integral exists and is given by

∫ t

0

q̈i(σ)dσ = q̇i(t) − q̇i(0)

Taking the limit as t → ∞ and using the fact that q̇i → 0
we get

∫ ∞

0
q̈i(σ)dσ = −q̇i(0), which is clearly bounded.

Barbălat’s Lemma then allows to conclude that q̈i → 0 as
required. This completes the proof of Proposition 1. ⊳

4. CONTROL VIA PROPORTIONAL POSITION
ERROR AND FORCE FEEDBACK PLUS DAMPING

INJECTION

In this section we prove that we can also control the
teleoperator by reflecting the force generated at the slave
to the master while controlling the slave with a propor-
tional position error term with damping injected to both
manipulators.

4 Assumption A3 ensures the terms
∂2C

jk

i

∂qr
i

∂ql
i

are bounded.
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Proposition 2. Consider the teleoperator system (1) con-
trolled by

τm = τ s(t − Ts) − Bmq̇m

τ s = Ks(qs − qm(t − Tm)) + Bsq̇s
(15)

Fix the damping injection and proportional gains such that

Bm

Ks

>
Ks

B′

s

(T 2
m + T 2

s ) +
1

2

(
Bs

Ks

+ (Tm + Ts)
2 + 1

)

(16)

where B
′

s = Bs − ǫ, for some ǫ > 0.

(i) Velocities and position error of the teleoperator are
bounded. (i.e., q̇i, qm − qs ∈ L∞) and moreover
q̇i ∈ L2.

(ii) Assume additionally that
A1. The human operator stands still and the slave

robot is not in contact with the environment (i.e.
τh(t) ≡ 0 and τ e(t) ≡ 0);

A2. A gravity compensation term is added to the
controllers, that is,

τm = τ

′

s(t − Ts) − Bmq̇m + gm(qm) (17)

τ s = Ks(qs − qm(t − Tm)) + Bsq̇s
︸ ︷︷ ︸

τ
′

s

−gs(qs)

A3. The terms
∂2M

jk

i

∂qr
i
∂ql

i

are bounded.

Under these conditions, the master and slave veloc-
ities asymptotically converge to zero and position
coordination is achieved, that is

lim
t→∞

|qm(t) − qs(t − Ts)| = 0.

Proof. Let us propose the following non-negative function

V (qi, q̇i) =
1

2
q̇⊤

mMm(qm)q̇m +
1

2
q̇⊤

s Ms(qs)q̇s +

+
Ks

2
|qm − qs|

2 +

∫ t

0

(q̇⊤

mτh − q̇⊤

s τe)dσ +

+ Um(qm) + Us(qs) − kum − kus + κm + κs (18)

Using (2) and the properties P1, P2 of the robot manipu-

lators, and evaluating V̇ along the system trajectories we
obtain

V̇ = q̇⊤

m[τm + Ks(qm − qs)] − q̇⊤

s [τ s + Ks(qm − qs)]

substituting the control laws (15), we get

V̇ =−Bm|q̇m|2 − Bs|q̇s|
2 − Ksq̇

⊤

m[qs − qs(t − Ts)] +

+ Bsq̇
⊤

mq̇s(t − Ts) − Ksq̇
⊤

s [qm − qm(t − Tm)] +

+ Ksq̇
⊤

m[qm − qm(t − (Tm + Ts))].

Now, we use (8) to replace the inner products, of the terms
in brackets, by their integrals. Then, we apply the bound

2q̇⊤

mq̇s(t − Ts) ≤ |q̇m|2 + |q̇s(t − Ts)|
2

to the term Bsq̇
⊤
mq̇s(t−Ts), integrate V̇ and invoke Lemma

1 with the constants αm =
B

′

s

2Ks
, αs =

2T 2

s Ks

B
′

s

, and α = 1

for the last right hand term. This yields

V (t) − V (0) ≤ −
1

2
ǫ‖q̇s‖

2

2
−

−

(

2Bm −
2K2

s

B
′

s

(T 2

m + T 2

s ) − Bs − Ks − Ks(Tm + Ts)
2

)

‖q̇m‖2

2
.

It is easy to show that condition (16) ensures that the term
in parenthesis in the right hand side of the inequality is
positive, hence, nonnegativity of V proves that q̇i ∈ L2.
The rest of the proof follows verbatim the steps of the proof
of Proposition 1 with

q̈m =−M−1
m

[

(Bm + Cm)q̇m − τ

′

s(t − Ts)
]

q̈s =−M−1
s [(Bs + Cs)q̇s − Ks(qm(t − Tm) − qs)] .

⊳

5. SIMULATIONS

Stiff Wall

Master
Slave

Controller Controller
Tm

Ts

q1q1

q2
q2

m1
m1 l1l1

m2

m2

l2

l2

Fig. 1. Simulations scheme.

In this section a simulation of the aforementioned teleop-
erator scheme is presented. The master and the slave are
modeled as a pair of 2 DOF serial links (see Fig. 1). The
corresponding nonlinear dynamics follow (1). The inertia
matrix Mi(qi) is given by

Mi(qi) =

[
αi + 2βi cos(q2i

) δi + βi cos(q2i
)

δi + βi cos(q2i
) δi

]

qki
is the articular position of each link with k ∈ {1, 2},

αi = l22i
m2i

+ l21i
(m1i

+ m2i
), βi = l1i

l2i
m2i

and δi =

l22i
m2i

. The lengths for both links l1i
and l2i

, in each
manipulator, are 0.38m. The mass of each link correspond
to m1m

= 3.9473kg, m2m
= 0.6232kg, m1s

= 3.2409kg
and m2s

= 0.3185kg, respectively. These values are the
same of those used in Lee and Spong [2006]. Coriolis and
centrifugal forces are modeled as the vector Ci(qi, q̇i)q̇i

which are

Ci(qi, q̇i)q̇i =

[
−βi sin(q2i

)q̇2
2i
− βi sin(q2i

)q̇1i
q̇2i

βi sin(q2i
)q̇2

1i

]

q̇1i
and q̇2i

are the respective revolute velocities of the two
links. The gravity effects (gi(qi)) for each manipulator are
represented by

gi(qi) =

[
1

l2i

gδi cos(q1i
+ q2i

) + 1

l1i

(αi − δi) cos(q1i
)

1

l2i

gδi cos(q1i
+ q2i

)

]

At this point, it should be addressed that the human
exerts a force on the master manipulator’s tip, and the
slave interaction with the environment is also measured
at the manipulator’s tip. Hence, for the simulations the
following expressions are used τh = J⊤

m(qm)fh and τ e =
J⊤

s (qs)fe, (J⊤

i (qi) is the Jacobian transposed of the robot
manipulator). The controllers for these simulations are
given by (6) and (17). For the first controller the gains
fulfill (6), and are given by Km = 1.3, Ks = 1.7, Bm = 1.1
and Bs = 2.1. For the second Ks = 1.7, Bm = 6 and
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Fig. 2. Simulation of the teleoperator system of Proposi-
tion 1 with Tm = 0.7s and Ts = 0.9s.

Bs = 2.1 which follow (17). The time-delay is set for
the forward path to Tm = 0.7s and for the backward
to Ts = 0.9s. In order to evaluate the stability of the
proposed scheme, a high stiff wall (20000 N

m
) at the

cartesian coordinate, y = 0.3m, has been included in
the environment. The initial conditions for the master
and the slave differ one from the other, qm(0) = [0, 0]T

and qs(0) = [−1/3π,−1/3π]T . Both controllers have been
simulated with the same circumstances. The simulation
has been carried out using MatLab SimuLink TM.

The first scheme (P-like controller at both sites) is depicted
in Figure 2, it is composed by the joint (part a) and
cartesian (part b) space measures. Analyzing the plots we
can clearly see that: the master and slave initial positions
are different; the slave reaches the high stiff wall, located
at y = 0.3m, around 8s and leaves it at 29s; and, around
the 40s the position error converges to 0. Also note that
because we used a non-scattering like scheme there are not
undesired reflections nor oscillations.

The simulations for the scheme presented in Section 4 are
shown in Figure 3, it is also composed by the joint (part a)
and cartesian (part b) space measures. The main difference
between these results and the previous is that, when the
slave interacts with the wall it induces a small oscillation
to the master, around the 10th second.

6. EXPERIMENTS

In order to verify the theoretical results two experiments
have been carried out with an experimental test-bed that
mainly consists of two direct-drive two DOF nonlinear
manipulators. These manipulators are made of aluminium
and are actuated by two pairs of Compumotor DM1015-B
brushless DC motors. Optical encoders are used to mea-
sure the joint position, the joint velocity is digitally esti-
mated and filtered. Two JR3 force-torque sensors, located
at the manipulators end-effectors, are used to measure the
force interaction with the human operator and environ-
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Fig. 3. Simulation of the teleoperator system of Proposi-
tion 2 with Tm = 0.7s and Ts = 0.9s.

ment, respectively. The controllers are implemented using
WinCom 3.3 that enables SimulinkTM models to interact
with external hardware in real time. The sampling time is
set to 4ms. An aluminium wall is located at one side of the
slave in order to test the stability while interacting with
an stiff environment. This setup is depicted in Figure 4.

MasterSlave

Stiff Wall

Fig. 4. Experimental teleoperator located at the Coor-
dinated Science Laboratory, University of Illinois at
Urbana Champaign.

Both experiments experienced a total time-delay of 1.6s
(Tm = 0.7s and Ts = 0.9s), also, an aluminium wall
was located (in cartesian coordinates) at y = 0.39m from
x = 0.5 to 0.8m, for the first experiment, and at y = 0.5m
from x = 0.5 to 0.8m, for the second, respectively. The first
experiment results are depicted in Fig. 5, and its controller
corresponds with the one in Proposition 1, the gains for
this controller were set to: Ks = 8, Bs = 6.5, Km = 15
and Bm = 12.5. The second experiment was carried out
using the statement of Proposition 2, shown in Fig. 6, the
controller’s gains are: Ks = 8, Bs = 6.5 and Bm = 18. In
both experiments it is clearly seen that the position error
is bounded, and moreover it converges to zero when the
human does not move the master.
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Fig. 5. Experiments for the controller in Proposition 1 with
Tm = 0.7s and Ts = 0.9s.
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Fig. 6. Experiments for the controller in Proposition 2 with
Tm = 0.7s and Ts = 0.9s.

7. CONCLUSIONS AND FUTURE WORK

In this paper we have shown that it is possible to con-
trol a bilateral teleoperator with simple P-like schemes
—obviating the need for scattering transformations and
passivity considerations, and moreover, these schemes pro-
vide position error convergence. As shown in the proofs
the key ingredient is the inclusion of damping that should
“dominate” the proportional gains—see (5) and (16)—to
ensure that the velocities are in L2. It is easy to see that
when time-delay increases instability may arise, condition
(5) and (16) inject damping to overcome this situation,
thus, overdamped responses may be obtained for the sake
of position tracking.

We may add that, in order to set the controller gains the
time-delay should be known in advance. This assumption
is not an issue nowadays, the time-delay can be easily
known with some measure software tools (e.g. ping–like
programs). Due to the increase in the use of Internet
communications and its ubiquitous nature, the future
of the control schemes aforementioned is to analyze the
teleoperator dynamics under the influence of variable time-
delays.
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