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Abstract: We revisit a previous high-low gain control idea for a 4 DOF spherical inverted
pendulum using a different approach, inspired by a nested saturation tool proposed by
Marconi and Isidori, that provides explicit tuning rules to deal with certain bounded external
disturbances. The update controller is a robust, decentralized and “global” controller.

1. INTRODUCTION

The pendulum is a cylindrical beam with the length 2L
and the mass m attached to a horizontal plane via a
universal joint that is driven by a planar control force
F

�
= (Fx, Fy) and sliding in the plane (see Fig. 1). The

system has four degrees of freedom with the generalized
coordinates q

�
= (x, y, δ, ε) with the translation ones: (x, y)

and a pair of Euler angles (δ, ε). The whole upper space
denoted by U

�
=

{
(q, q̇) ∈ R8|(δ, ε) ∈

(
−π

2
, π

2

)
×

(
−π

2
, π

2

)}
is

defined as the “global” region. The benchmark problem
is motivated by several practical problems: vector thrusted
rockets hovering in the air, personal transporters (Segway),
jugglers’ balancing problems and laboratory test-benches.
Our aim is to design F such that, for any (q(0), q̇(0)) ∈ U ,
(q(t), q̇(t)) → 0 as t → ∞.

To achieve a “global” stability region, one could use strate-
gies that switched between a local (or non-local) stabilizing
controller and a swing-up strategy (see Albouy and Praly
[2000], Shiriaev [2004]). See Liu et al [2007b] for a way-
point tracking design with switching (see also Liu et al
[2008a] for exact output tracking). Here, we assume that
the pendulum is already swung up above the horizontal
plane. Several non-local continuous stabilizing controllers
(no switching) were proposed for the system Bloch et
al [2001], Liu et al [2008b, 2006]. The controller of
controlled Lagrangians Bloch et al [2001] (see [Liu , 2006b,
Chapter 7] for details) yielded some non-local “bounded”
stabilizing region but it suffered poor robustness using
the parameters we attempted (see Liu et al [2007a]).
A “semi-global” decentralized stabilizing controller was
proposed in Liu et al [2006] (see also Liu et al [2008c])
based on Lyapunov theory of singular perturbed systems.
Although the robustness was guaranteed by an associated
Lyapunov function, it might be deteriorated when a larger
domain of attraction was attempted. In Liu et al [2008b], a
“global” high-low gain control idea that improved Liu et al
[2005] was proposed for the pendulum through identifying
some appropriate upper triangular form, where a high-
gain controller was used to regulate angular dynamics and
a low gain controller was used to regulate the rest of
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Fig. 1. The spherical inverted pendulum

the dynamics by applying the nested saturation tool Teel
[1996]. However, the tuning rules are implicitly dealing
with the disturbance.

In this paper, we redesign the high and low gain controller
Liu et al [2008b] inspired by a robust nested saturation
procedure in [Isidori et al , 2003, Appendix C] and Mar-
coni & Isidori [2001] (see Arcak et al [2001], Kaliora
& Astofi [2004] for different approaches) such that it pro-
vides explicit tuning rules for the design parameters at the
presence of certain bounded disturbances. The controller is
decentralized based on the structure of two interconnected
chains of integrators Liu et al [2006, 2008c]) and yields
a “global” domain of attraction inherit form Liu et al
[2008b]. The effectiveness of the controller is evaluated
through computer simulations.

The paper is organized as follows. In Section 2, we recall
the model and the decoupled dynamics in Liu et al [2006,
2008c]. In Section 3, we present our main result. Some
simulations are given in Section 4. Final observation is
given in Section 5.

Notations: For a piecewise-continuous function u(t) :
[0,∞) → Rm, define ‖u(·)‖a = lim supt→∞ {max1≤i≤m

|ui(t)|} the asymptotic “norm” of u(·). The set of u(t), en-
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dowed with the supremum norm ‖u(·)‖∞ = supt≥0 ‖u(t)‖,
is denoted by Lm

∞. “c(·)” and “s(·)” represent cos(·) and

sin(·) respectively and (x1, x2)
�
= (xT

1 , xT
2 )T is used for

convenience. With respect to (q, q̇), we define a set of new

coordinates for the system: X1
�
= x − 4L

3 δ, X2
�
= y + 4L

3 ε,

X3
�
= ẋ − L(1+ 1

3 c2(ε))

c(δ) δ̇ − Ls(δ)s(ε)( 1
3+c2(δ))

c2(δ)c(ε) ε̇, X4
�
= ẏ +

L( 1
3+c2(δ))

c(δ)c(ε)ε̇ , X5
�
= tan(δ), X6

�
= tan(ε), X7

�
= (1+tan2(δ))δ̇,

X8
�
= (1 + tan2(ε))ε̇.

We refer to a saturation function with a shape like “ /
−
”

as a mapping σ : R → R which enjoys the properties:
(i) σ′(s)

�
= |dσ(s)/ds| ≤ 2 for all s; (ii) sσ(s) > 0 for

all s �= 0, σ(0) = 0; (iii) σ(s) = sgn(s) for |s| ≥ 1; (iv)
|s| < |σ(s)| < 1 for |s| < 1.

2. PRIOR RESULTS

2.1 The Model

We review the equations of motion in Liu et al [2008b,
2006] for our system

D(q) · q̈ + C(q, q̇) · q̇ + G(q) = Q, (1)

where

G(q) =

⎛
⎝ 0

0
−mgLs(δ)c(ε)
−mgLc(δ)s(ε)

⎞
⎠ , Q =

⎛
⎝ Fx + vf1

Fy + vf2
vf3
vf4

⎞
⎠ ,

D(q) = m×⎛
⎜⎝

1 0 −Lc(δ) 0
0 1 −Ls(δ)s(ε) Lc(ε)c(δ)

−Lc(δ) −Ls(δ)s(ε) L2(1 + 1/3c(ε)2) 0

0 Lc(ε)c(δ) 0 L2(1/3 + c2(δ))

⎞
⎟⎠

C(q, q̇) =

⎛
⎜⎝

0 0 mLδ̇s(δ)

0 0 −mL(δ̇s(ε)c(δ) + ε̇c(ε)s(δ))

0 0 −1/3mL2ε̇c(ε)s(ε)

0 0 1/3mL2δ̇c(ε)s(ε) − mL2ε̇c(δ)s(δ)

0

−mL(ε̇s(ε)c(δ) + δ̇c(ε)s(δ))

−1/3mL2δ̇c(ε)s(ε) + mL2ε̇c(δ)s(δ)

−mL2δ̇c(δ)s(δ)

⎞
⎟⎠ ,

with vf = (vf1 , . . . , vf4) a collection of external forces.

2.2 The Decoupled Dynamics

Because D(q) is invertible in U , the dynamics (1) can be
written as follows

q̈
�
=

(
H11

H21

)
F +

(
H12

H22

)
+ D−1(q)vf , (2)

where Hij , i = 1, 2 and j = 1, 2, with the arguments (q, q̇)
are nonlinear terms derived from (1) and H21 ∈ R2×2 is
invertible on U (see Liu et al [2008b] for the entries). The
following result converts the dynamics (2) with vf = 0 to
two perturbed chains of integrators.

Lemma 2.1. Liu et al [2006, 2008c] Apply a mapping
T : (q, q̇) ∈ U 	→ X ∈ R8 defined as X

�
= (X1, . . . , X8) and,

then, take a feedback transformation

F = H−1
21

(
H−1

31 (u − H32) − H22

)
(3)

where u ∈ R2 is the new control variable,

H31
�
=

(
1 + tan2(δ) 0

0 1 + tan2(ε)

)
, H32

�
=

(
2δ̇2δ(1 + tan2(δ))

2ε̇2ε(1 + tan2(ε))

)
such that the system (2) with vf = 0 converts to

{
Ẋ1 = X3 + ϕ1(X5, X6, X7, X8)

Ẋ3 = X5 + ϕ3(X5, X6, X7, X8)

Ẋ5 = X7 , Ẋ7 = u1

(4)

{
Ẋ2 = X4 + ϕ2(X5, X6, X7, X8)

Ẋ4 = X6 + ϕ4(X5, X6, X7, X8)

Ẋ6 = X8 , Ẋ8 = u2

(5)

where let s
�
= (X5, . . . , X8)

ϕ1(s) =
L

g

⎛
⎝

⎛
⎝− 4

3(1 + X2
5 )

+

(
1 + 1

3(1+X2
6 )

)
(1 + X2

5 )1/2

⎞
⎠X7+

⎛
⎝−X5X6(1 + X2

5 )1/2

(
1
3

+ 1
1+X2

5

)
1 + X2

6

⎞
⎠X8

⎞
⎠ ,

ϕ2(s) =
L

g

(
1

(1 + X2
6 )

(
4

3
− 1

3(1 + X2
5 )1/2

− 1

(1 + X2
5 )3/2

)
X8

)
,

ϕ3(s) = X5

(√
1 + X2

6 − 1

)
+

L

g

(
X5X2

8

(
(4 + X2

5 )(1 + X2
6 ) − 3

)
3(1 + X2

6 )2(1 + X2
5 )1/2

+

2X5X2
7 (2 + X2

6 )

3(1 + (X5)2)3/2(1 + X2
6 )

− X8X7X6(1 + 2X2
5 )(4 + X2

5 )

3(1 + X2
5 )3/2(1 + X2

6 )

)
,

ϕ4(s) =
L

g

⎛
⎝

⎛
⎝X2

8X6(1 + X2
5 )1/2

(
1
3

+ 1
1+X2

5

)
(1 + X2

6 )3/2

⎞
⎠

+

X7X8X5

(
1
3

+ 1
1+X2

5

)
(1 + X2

5 )1/2(1 + X2
6 )1/2

− X2
7X6

3(1 + X2
5 )3/2(1 + x2

6)1/2

⎞
⎠ ,

and lim‖s‖→0
‖ϕi(s)‖

‖s‖ = 0, i = 1, . . . , 4, that is, ϕi(s)
are high order terms about s. For convenience, we let
xa

�
= (X1, X3, X5, X7) and xb

�
= (X2, X4, X6, X8) and

rewrite (4) and (5) as

ẋa = fa(xa, xb) + (0, 0, 0, u1)T (6)

ẋb = fb(xa, xb) + (0, 0, 0, u2)T (7)

where fa(·) and fb(·) are uncontrolled dynamics, u1 and
u2 are actual intermediate control signal,
Remark 1. In Lemma 2.1, we first apply a change of
coordinates that annihilates F in the dynamics of (X1, X3)
and (X2, X4) without any restriction on F . So, it holds
at the presence of the matched disturbance (vf1 , vf2).
However, at the presence of the whole D−1(q)vf (D−1(q) is
non-singular), (2) should convert to (6) and (7) plus some
vanishing, lossy pertubation terms in a form p1(X) ·p2(vf )
with p2(vf )|vf =0 = 0 and ‖p1(X)‖∞ < ∞ for ‖X‖∞ < ∞.
To capture the effect of disturbance, we let the transformed
system (6) and (7)
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ẋa = fa(xa, xb) + (0, v̄a2, 0, v̄a4 + u1)T (8)

ẋb = fb(xa, xb) + (0, v̄b2, 0, v̄b4 + u2)T (9)

where the new terms: v̄a2, v̄b2, v̄a4, and v̄b4 are unmodelled
dynamics. Because the new terms vanish as vf = 0, we
assume that they are bounded with respect to a special
class vf such as ‖p1(X) · p2(vf )‖∞ < d for X ∈ R8 and a
scalar d.

3. MAIN RESULT

With reference to (8) and (9), our control objective is
reduced to assign a high-low gain control function to
(u1, u2) such that the close loop system is ISS from the
disturbances with restriction.

By referring to system (8)-(9), we choose the control laws
u1 = −KP (KDX7 + X5 + Λ1), (10)

u2 = −KP (KDX8 + X6 + Λ2), (11)

with
Λ1 = λ2σ

(
K2

λ2

(
X3 + λ1σ

(
K1

λ1
X1

)))
,

Λ2 = λ2σ

(
K2

λ2

(
X4 + λ1σ

(
K1

λ1
X2

)))
,

where KP , KD, Ki, λi are positive design parameters. It
can be shown that the previous control laws can be tuned
so as to achieve ISS of the closed-loop system without
restrictions on the initial state, arbitrary large restrictions
on the inputs (v̄a,4, v̄b,4) and sufficiently small restrictions
on the inputs (v̄a,2, v̄b,2). This is precisely stated in the
next proposition.

Proposition 3.1. Let Δ be a positive arbitrary number. Let
the control laws be chosen as in (10)-(11) with (λi,Ki),
i = 1, 2 chosen so that

λ1 = ελ�
1 , λ2 = ε2λ�

2 , K1 = εK�
1 , K2 = εK�

2 (12)
where ε is a positive design parameters and (λ�

i ,K
�
i ) are

such that
λ�
2

K�
2

<
λ�
1

4
, 24

K�
1

K�
2

<
1

6
,

v�
1,M ≤ λ�

1

4
, v�

2,M + 4K�
1λ�

1 <
λ�
2

4

(13)

for some positive (v�
1,M , v�

2,M ). Then there exist K�
D >

0, ε� > 0, KP (KD, ε, Δ) such that for all positive
KD ≤ K�

D, ε ≤ ε� and KP ≥ K�
P , system (8)-

(9) in closed-loop with (10)-(11) is ISS with restrictions
(ε2v�

1,M/4,Δ, ε2v�
1,M/4, Δ) on the inputs (v̄a,2, v̄a,4, v̄b,2, v̄b,4)

and no restriction on the initial state.

Remark 2. As shown in Marconi & Isidori [2001], it is
always possible to choose the variables (λ�

i ,K
�
i ) so that

(13) hold for some positive (v�
1,M , v�

2,M ). As a matter of
fact, take

λ�
1 = κc1 , K�

1 = κ	 , λ�
2 = κ2c2 , K�

2 = κ	2 (14)
with

c2 =
ν 	2

4
c1 , (15)

where κ, c1 and ν are arbitrary positive coefficients with
0 < ν < 1 and 	 is a positive design parameter. This
particular choice renders the first two inequalities in (13)
fulfilled for any 	 > 0 by inspection. Furthermore, simple
computations show that also the last two inequalities in

(13) are satisfied for sufficiently small vi,M if 	 is chosen
sufficiently large. �

In the next part of the section we prove the previous
proposition. The idea is to study the feedback intercon-
nection of systems (8) and (9) controlled via u1 and u2
by means of small gain arguments. Instrumental in the
stability analysis is the study of the ISS properties of a
system of the form

η̇1 = η2 + h1(η3, η4) + v1

η̇2 = η3 + h2(η3, η4) + v2

η̇3 = η4

η̇4 = −KP (KDη4 + η3 + Λ) + v3

Λ = λ2σ

(
K2

λ2

(
η2 + λ1σ

(
K1

λ1
η1

))) (16)

with inputs (v1, v2, v3) in which h1(·, ·) and h2(·, ·) are
higher order functions of their arguments vanishing at the
origin.

The main asymptotic properties of system (16) are pre-
sented in the next two claims.
Claim 1. Consider system

η̇3 = η4

η̇4 = −KP (KDη4 + η3 + Λ) + v3
(17)

with inputs (Λ, v3). For any KD > 0 there exist a γ > 0
and a K�

P such that for any KP ≥ K�
P , system (17) is ISS

with respect to the inputs (Λ, v3) without restrictions and
with asymptotic gain (γ, γ/KP ), namely

‖(η3, η4)‖a ≤ γ

KP
max{KP ‖Λ‖∞, ‖v3‖∞)} .

Proof Consider the change of variables η4 	→ η̃4 := η4 +
η3/KD which transforms system (17) into

η̇3 = − 1

KD
η3 + η̃4

˙̃η4 = −KP (KD η̃4 + Λ) + v3 − 1

K2
D

η3 +
1

KD
η̃4

From this the result follows by standard Lyapunov argu-
ments which, for sake of compactness, are not repeated.

Note that, as a consequence of the previous claim which
states ultimate boundedness of the state (η3, η4), it is pos-
sible to argue the existence of a positive number LH and
time T such that ‖hi(η3(t), η4(t))‖ ≤ LH‖(η3(t), η4(t))‖
for all t ≥ T , with LH an upper bound of the Lipschitz
constants of the functions hi(·). Indeed, from now on, we
shall take advantage of the previous bound in our analysis
(by assuming, without loss of generality, that T = 0).

Claim 2. Consider system (16) and let (λi,Ki), i = 1, 2
be chosen so that (12)-(13) are fulfilled for some positive
(v�

1,M , v�
2,M ). Then there exist K�

D > 0 and ε� > 0 and,
for any positive KD ≤ K�

D, ε ≤ ε� and Δ, there exists a
K�

P (KD, Δ, ε) > 0 such that for any KP ≥ K�
P system (16)

is ISS with restrictions (ε v�
1,M

2 , ε2
v�
2,M

2 , Δ) on the inputs
(v1, v2, v3), no restrictions on the initial state, and with
the following asymptotic bounds on the state

‖η1‖a ≤ ρ max{1

ε
‖v1‖∞ 1

ε2
‖v2‖∞ 1

ε2KP
‖v3‖∞}

‖η2‖a ≤ ρ max{‖v1‖∞ 1

ε
‖v2‖∞ 1

εKP
‖v3‖∞}

‖(η3, η4)‖a ≤ ρ max{ε‖v1‖∞ ‖v2‖∞ 1

KP
‖v3‖∞}

(18)
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where ρ is a fixed positive number.

Proof Consider the change of variables

η1 �→ z1 = η1 η2 �→ z2 = η2 + λ1σ(
K1

λ1
η1)

η3 �→ z3 = η3 + λ2σ(
K2

λ2
z2) η4 �→ z4 = η4 +

1

KD
z3 .

System (16) in the new coordinates can be seen as the
interconnection of two subsystems. The first is a system of
the form

ż1 = −λ1σ(
K1

λ1
z1) + z2 + h1(−λ2σ(

K2

λ2
z2), 0)

+Δh1(z3, z4, t, KD) + v1

ż2 = −λ2σ(
K2

λ2
z2) + K1σ′(·)ż1 + h2(−λ2σ(

K2

λ2
z2), 0)

+z3 + Δh2(z3, z4, t, KD) + v2

(19)

with inputs (Δh1(z3, z4, t, KD), z3 + Δh2(z3, z4, t, KD))
and (v1, v2) and output

yz := K2σ′(
K2

λ2
z2)[ż2 − z3 − Δh2(z3, z4, t, KD)−

K1σ′(·)Δh1(z3, z4, t, KD)]

where Δhi, i = 1, 2, are higher order functions vanishing
at (z3, z4) = (0, 0) for all t and KD defined as 1

Δhi(z3, z4, t, KD) := hi(z3 − λ2σ(
K2

λ2
z2(t)), z4 − 1

KD
z3)

−hi(−λ2σ(
K2

λ2
z2(t)), 0) .

The second subsystem is a system of the form

ż3 = − 1

KD
z3 + z4 − K2σ′(·)L(z3, z4, t, KD) + yz

ż4 = −KP KDz4 +
1

KD

[
− 1

KD
z3 + z4−

K2σ′(·)L(z3, z4, t, KD) + yz

]
+ v3

(20)

with inputs (yz, v3) and output (z3, z4) where L(·) is a
Locally Lipschitz function vanishing at (z3, z4) = (0, 0)
defined as

L(z3, z4, t, KD) := z3 + Δh2(z3, z4, t, KD)+
K1σ′(·)Δh1(z3, z4, t, KD) .

Note that, by definition, it is possible to argue the
existence of a fixed positive constant L̄ such that ‖L(·)‖ ≤
L̄‖( z3

KD
, z4)‖. As far as the first subsystem is concerned,

the arguments in Isidori et al [2003] can be used to prove
that there exists an ε�

1 > 0 such that for all positive
ε ≤ ε�

1 such a system is ISS with restrictions (ε v�
1,M

2 , ε2
v�
2,M

2 )

and (εv�
1,M

2 , ε2
v�
2,M

2 ) on the inputs (Δh1(·), z3 + Δh2(·))
and (v1, v2), no restrictions on the initial state and the
following asymptotic bounds on the states

‖z1‖a ≤ c1 max{ 1

K1
‖Δh1‖a,

1

K1K2
‖z3 + Δh2‖a,

1

K1
‖v1‖a ,

1

K1K2
‖v2‖a}

‖z2‖a ≤ c2 max{K1

K2
‖Δh1‖a,

1

K2
‖z3 + Δh2‖a,

K1

K2
‖v1‖a ,

1

K2
‖v2‖a}

with c1, c2 fixed positive numbers. In particular, by defi-
nition of yz and by bearing in mind the definition of sat-
1 Note that, by taking advantage from the definition of saturation
function, the z2 entry in Δhi

is considered as a time-varying bounded
signal.

uration function and (12), it turns out that the following
asymptotic bound on yz can be computed

‖yz‖a ≤ c3 max{ε‖Δh1‖a , ‖z3 + Δh2‖a , ε‖v1‖a , ‖v2‖a}
≤ c3 max{ε‖Δh1‖a , 2‖z3‖a, 2‖Δh2‖a ,

ε‖v1‖a , ‖v2‖a}
(21)

where c3 is a fixed positive number. Furthermore, the fol-
lowing bound on yz can be computed (in the computation
it is argued that |z2| ≤ λ2/K2 otherwise σ′(K2z2/λ2) ≡ 0
by definition of saturation function)

‖yz‖∞ ≤ K2 [λ2 + Lhλ2 + ‖v2‖∞+

K1(λ1 +
λ2

K2
+ Lhλ2 + ‖v1‖∞)

]
≤ Γ1ε2 + Γ2ε3 + Γ4ε4 + Γ5ε2‖v1‖∞ + Γ6ε‖v2‖∞

(22)

where Lh is un upper bound of the Lipschitz constants of
h1(·, 0) and h2(·, 0) and Γi > 0 are fixed positive numbers.
This, in turn, implies that

(‖v1‖∞ , ‖v2‖∞) ≤ (ε
v�
1,M

2
, ε2

v�
2,M

2
) ⇒ ‖yz‖∞ ≤ Rε2 (23)

for some fixed R > 0.

As far as the second subsystem (20) is concerned, standard
ISS Lyapunov arguments can be used to prove that there
exists an ε�

2 > 0 and, for any γ > 0, there exists a
K�

D(γ) > 0 and a K�
P (KD, γ) > 0 such that for any

positive KD ≤ K�
D(γ), KP ≥ K�

P (KD, γ) and 2 ε ≤ ε�
2 the

system in question is ISS without any kind of restriction
and with the following asymptotic bound on the state

‖(z3, z4)‖a ≤ γ max{‖yz‖a ,
1

KP
‖v3‖a} . (24)

By the previous results it is possible to carry out the
stability analysis of the overall system (19), (20) by means
of small gain arguments as addressed in the following.

First of all we observe that system (16) has not finite
escape time as it behaves as a linear system driven by
bounded inputs (to this respect the terms h1(·) and h2(·)
can be regarded as bounded inputs due to claim 1 as
‖Λ‖ ≤ λ2 by definition of saturation function).

We prove now that the restrictions (εv�
1,M/2, ε2v�

2,M/2) on
the inputs (Δh1, z3 + Δh2) of system (19) are fulfilled in
finite time and that the small gain conditions associated
to the interconnection (19), (20) are satisfied for a proper
tuning of the design parameters. To this purpose note that,
in order to have the restrictions fulfilled in finite time, it is
sufficient to prove that (assuming without loss of generality
that ε < 1)

‖z3‖a ≤ ε2
v�
2,M

8
‖Δhi‖a ≤ ε2

min{v�
1,M , v�

2,M}
8

:= rε2 . (25)

We analyze the overall system by focusing first on the
interconnection taking place through the input z3 of (19)
and yz of (20). Fix γ > 0 so that γ ≤ v�

2,M

8R and γ ≤ 1
2c3

and K�
D(γ), K�

P1(KD, γ) and ε�
2 according to the previous

considerations so that for any positive KD ≤ K�
D(γ),

KP ≥ K�
P1(KD, γ) and ε ≤ ε�

2 the bound (24) holds true.
This fact, along with (21) and (23) (and by using ‖z3‖ ≤
‖(z3, z4)‖) yield that the small gain condition linked to the
input z3 of (19) is satisfied and the first inequality in (25)
is fulfilled provided that ε ≤ min{ε�

1, ε�
2}, ‖v3‖∞ ≤ Δ and

2 The small value of ε is required to get rid of the presence of KD

in the definition of L.
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KP ≥ max{K�
P1 K�

P2} with K�
P2 ≥ 8γΔ

ε2v�
2,M

where Δ is an
arbitrary positive number.

From now on, we consider the design parameter KD fixed
once for all so that KD ≥ K�

D(γ) and we pass to analyze
the interconnection thorough the inputs (Δh1, Δh2) of
(19) and yz of (20). To this respect note that the fact
that the functions Δhi(·) are higher order, imply that for
any ν > 0 there exists a δν > 0 such that ‖(z3, z4)‖ ≤ δν

⇒ ‖Δi(z3, z4)‖ ≤ ν‖(z3, z4)‖, i = 1, 2 . Now fix ν > 0 so
that ν ≤ min{ r

γR , 1
2c3γ } and δν accordingly. Furthermore,

with Δ an arbitrary positive number, let ε�
3 ≤ δν

2Rγ and
K�

P3(ε) ≥ max{2γΔ
δν

, νγΔ
ε2r } . By bearing in mind (21),

(23) and (24) and assuming without loss of generality
ε ≤ 1, it turns out that for all ε ≤ min{ε�

1, ε�
2, ε�

3}
and KP ≥ max{K�

P1, K�
P2(ε)} the second relation (25) is

satisfied (namely the restriction on the inputs (Δh1,Δh2)
of (19) are fulfilled in finite time) and the small gain
conditions linked to the inputs (Δh1, Δh2) of (19) are
fulfilled.

According to the results in Isidori et al [2003], the pre-
vious considerations guarantee that the overall system
is ISS with restrictions (εv�

1,M

2 , ε2
v�
2,M

2 ,Δ) on the inputs
(v1, v2, v3) and asymptotic bound which, by gain compo-
sition, by bearing in mind the definition of the zi and of
saturation function, can be estimated as in (18) (end proof
Claim 2).

The results in Claim 1 and Claim 2 contain all what is
needed to prove Proposition 3.1. To this purpose note,
first of all, that claim 1, applied respectively to the last
two equations of (8) and (9) with u1 and u2 chosen as
in (10)-(11), yields that the state variable (X5, X7) and
(X6, X8) are ultimately bounded and

‖(X5, X7)‖a ≤ γ̄ max{ε2,
Δ

KP
}

‖(X6, X8)‖a ≤ γ̄ max{ε2,
Δ

KP
}

(26)

for some positive γ̄. This guarantees that system (8)-(9)
does not have finite escape time as it behaves as a linear
system driven by bounded inputs.

By bearing in mind these facts, note that system (8)-(9)
can be interpreted as the feedback interconnection of a
first subsystem

Ẋ1 = X3 + ϕ1(X5, 0, X7, 0) + Δϕ1(X6, X8, t)

Ẋ3 = X5 + ϕ3(X5, 0, X7, 0) + Δϕ3(X6, X8, t) + v̄a2

Ẋ5 = X7

Ẋ7 = u1 + v̄a4

(27)

with 3 Δϕi(X6, X8, t) = ϕi(X5(t), X6, X7(t), X8) −
ϕi(X5(t), 0, X7(t), 0), i = 1, 3, which is regarded as a
system with inputs (Δϕ1, Δϕ3) and (v̄a2, v̄a4) and output
(X5, X7), and a second subsystem

Ẋ2 = X4 + ϕ2(0, X6, 0, X8) + Δϕ2(X5, X7, t)

Ẋ4 = X6 + ϕ4(0, X6, 0, X8) + Δϕ4(X5, X7, t) + v̄b2

Ẋ6 = X8

Ẋ8 = u2 + v̄b4

(28)

with Δϕi(X5, X7, t) = ϕi(X5, X6(t), X7, X8(t)) −ϕi(0,
X6(t), 0, X8(t)), i = 2, 4, which is regarded as a sys-
3 Note that, by ultimate boundedness of last two state variables of
(8), the (X5, X7) entries in Δϕi can be regarded as time-varying
bounded ”exogenous” signals.

tem with inputs (Δϕ2,Δϕ4) and (v̄b2, v̄b4) and output
(X6, X8). Note that Δϕi(·, ·, t) are higher order functions
in their arguments for all t ≥ 0 and vanishing at the
origin. We shall study such a interconnection by small gain
arguments. To this respect note that either system (27)
and (28) are described in the form (16) with ηi = X2i−1,
hi(·) = ϕ2i−1, v1 = Δϕ1 + va1, v2 = Δϕ3 and v3 = va4

in the case of system (27) and ηi = X2i, hi(·) = ϕ2i,
v1 = Δϕ2 + vb1, v2 = Δϕ4 and v3 = vb4 in the case
of system (28). Thus, by the previous claim 2, it follows
that there exist K�

D > 0 and ε�
1 > 0 and, for all positive

KD ≤ K�
D, ε ≤ ε�

1 and Δ, a K�
P1(KD, Δ, ε) such that for

any KP ≥ K�
P1 the two subsystems are ISS with the same

restrictions (ε v�
1,M

2 , ε2
v�
2,M

2 ,Δ) on the inputs (Δϕ1,Δϕ3 +
va2, va4) and (Δϕ2,Δϕ4 + vb2, vb4), no restrictions on the
initial state and the following asymptotic bounds hold true

‖(X5, X7)‖a ≤ ρ max{ε‖Δϕ1‖a, ‖Δϕ3 + va2‖a,
1

KP
‖va4‖a}

≤ ρ̄ max{ε‖Δϕ1‖a , ‖Δϕ3‖a , ‖va2‖a ,
1

KP
‖va4‖a}

‖(X6, X8)‖a ≤ ρ̄ max{ε‖Δϕ2‖a , ‖Δϕ4‖ , ‖vb2‖a ,
1

KP
‖vb4‖a} .

(29)
where ρ̄ is a fixed positive number. In the final part

of the section we prove that, by a proper choice of the
design parameters, the restrictions of two subsystems are
fulfilled in finite time and that the small gain conditions
are satisfied. To this purpose note that the restrictions are
fulfilled in finite time if ‖v̄j2‖∞ ≤ ε2v�

1,M/4, ‖v̄j4‖∞ ≤ Δ,
j = a, b, and (assuming without loss of generality ε < 1)

‖Δϕi‖a ≤ ε2

8
max{v�

1,M , v�
2,M} := rε2 i = 1, . . . , 4 . (30)

Since Δϕi are higher order, it follows that for any ν > 0
there exists a δν > 0 such that ‖(X5+i, X7+i)‖ ≤ δν

⇒ ‖Δϕ2−i(·)‖ ≤ ν‖(X5+i, X7+i)‖ and ‖Δϕ4−i(·)‖ ≤
ν‖(X5+i, X7+i)‖, i = 0, 1. Now fix ν so that ν ≤ min{ r

γ̄ , ρ̄}
and δv accordingly. Furthermore let ε�

2 = δν

2γ̄ , K�
P2(ε) =

max{ γ̄Δν
rε2 , 2γ̄Δ

δν
} . By bearing in mind (26) and (29), it

turns out that for any positive ε ≤ min{ε�
1, ε�

2} and KP ≥
max{K�

P1, K�
P2} relations (30) are satisfied (namely the

restrictions are fulfilled in finite time) and the small gain
conditions are satisfied. From this, the claim of Proposition
3.1 follows by means of the appropriate small gain theorem
(see, for instance, Isidori et al [2003]).

4. SIMULATION RESULTS

By going through the proof of the main result in the previ-
ous section, it is possible to identify a practical procedure
for tuning the design parameters which articulates in the
following five steps:

(1) Fix (λ�
i ,K

�
i ) in such a way that (13) is satisfied by

using the design procedure described in the remark
just after the proposition.

(2) Choose (λi,Ki) as in (12) in terms of the design
parameter ε yet to be chosen.

(3) Compute the value of K�
D and preliminary values

for K�
P and ε� by working on system (20) (see the

reasonings in the proof of Claim 2). In particular
K�

D must be sufficiently small and, accordingly, K�
P

sufficiently large so that system (20) has a sufficiently
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Fig. 2. Simulation results of the closed loop system (1)
under certain disturbances

small asymptotic gain γ. From a practical viewpoint
one should simulate system (20) by calibrating the
design parameters until the asymptotic effect of the
inputs (yz, v3) (which could be taken constant in
this calibration phase) on the state is sufficiently
small. The function hi in system (20) should be taken
according to the consideration after (28).

(4) Once obtained ISS of system (20) with “small”
asymptotic gains, move to the interconnection (19)-
(20). Alternatively it is possible to simulate system
(27) by considering the term Δϕ1 and Δϕ3 as exoge-
nous small (i.e. whose amplitude decreases with ε2)
inputs. By possibly decreasing further KD and ε and,
accordingly, increasing KP it is possible to obtain ISS
of the overall interconnection as proved in Claim 2.
From now the value of KD is fixed.

(5) Complete the design by decreasing ε and, accordingly,
increasing KP by making the overall system (27)-(28)
ISS.

A detailed tuning example is not given here due to the
space limitation.

Fig. 2 shows a simulation result under some small external
disturbances and a set of initial conditions: x = 100(m),
ẋ = 1(m/s), y = −100(m), ẏ = 1(m/s), δ = −1(rad),
δ̇ = 1(rad/s), ε = 1(rad), ε̇ = 1(rad/s) (starting from a
non-local domain).
Remark 3. The simulation result is similar to Liu et al
[2008b]. Practically, it is very hard to quantify how much
is improved from the original design since they are based
on a similar design idea. In fact, our main contribution here
is to make the tuning rules more explicit, in particular, in
dealing with the disturbances. Besides the similarity, the
specific design procedure of the low gain part here is in a
flavor of combining the backstepping tool with saturations
(see the proof of Claim 2) while the corresponding part in
Liu et al [2008b] is derived by directly applying classical
forwarding tool Teel [1996].

5. CONCLUSION

The modified high and low gain controller proposed here
improves the original design in Liu et al [2008b] as follows:
less layers in nested saturations are used; explicit tuning
rules are provided to deal with the disturbances.
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