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Abstract: This paper formally defines a class of multibody rectifier systems that captures the essential
aspects of animal locomotion, and formulates an optimal locomotion problem to find a set of harmonic
inputs that minimizes a quadratic objective function subject to an equality constraint on the average
velocity. Our main result shows that the global optimum is given in terms of a generalized eigenvalue
of a pair of Hermitian matrices, with a minimizer characterized by the associated eigenvector. Thus,
an optimal harmonic gait can be computed efficiently even for hyper-redundant rectifiers with a large
number of variables. We provide case studies for two specific rectifiers; (i) a chain of multiple links
mimicking snakes, leeches, and other slender animals, and (ii) a disk-mass system that captures the
rectifying dynamics in the simplest way. We examine optimal gaits for three types of objective functions,
consisting of input power, input torque, and shape derivative. We compare the multilink results against
natural motions observed in leeches, and discuss what optimality criteria appear to be used in nature.
Analytical results are obtained for the disk-mass system, providing insights into optimal gaits.
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1. INTRODUCTION

Animals use “gaits,” or distinct sets of rhythmic body move-
ments,to produce a nonzero average velocity through the in-
teraction with their environment. Thus, animal locomotion can
generally be viewed as mechanical rectification, converting
rhythmic motion into a biased velocity. A fundamental control
problem in the design of a robotic locomotor is to determine a
gait that can generate a desired velocity for a given mechanical
configuration. Clearly, there can be many gaits that satisfy the
velocity constraint, and it is important to find the one that
optimizes a quantity such as input power. Moreover, when the
number of actuators is less than the number of shape variables,
it is essential to ensure achievability of a gait through the given
set of actuators.

Optimal gaits for robotic locomotors have been investigated
in literature. One approach is based on biological inspirations,
wherein a particular gait, observed in animal locomotion, is pa-
rameterized and examined for optimality with respect to a cost
function. Optimizations are typically performed via gridding of
the parameter space and numerical simulations. This type of
approach has been taken to search for optimal gaits for robots
that mimic human walking (Chevallereau and Aoustin, 2001),
snake crawling (Saito et al., 2002), and anguilliform swimming
(McIsaac and Ostrowski, 2003). Methods such as these might
obtain an optimal parameter set within the particular gait exam-
ined, but may miss globally optimal gaits that differ from what
is observed in biology.

Other approaches to find optimal gaits are based on some
standard formulations of optimal control problems and vari-
ous combinations of existing optimization methods. A popu-
lar method is to expand the signals over a finite set of basis
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functions, reducing the problem to a parametric optimization.
Cortes et al. (2001) used this method to find an optimal gait
for eel swimming, where the necessary condition for optimal-
ity was solved using Newton iteration. Saidouni and Besson-
net (2003) also used this method for biped walking with the
aid of sequential quadratic programming. Another well known
method is to apply the calculus of variations to reduce the opti-
mization to a two-point boundary-value problem. This method
has been used by Ostrowski et al. (2000) for nonholonomic
locomotion systems, by Bessonnet et al. (2004) for a seven-link
biped robot, and by Hicks and Ito (2005) for shape actuated
locomotion systems. While it would be ideal to have global
solutions to general optimal control problems, all of the existing
methods solve conditions for local optimality. Hence, the solu-
tion depends on the initial condition of the numerical search in
general, and hence can be far from the global optimum.

In this paper, we take a different approach. Instead of finding
a locally optimal solution to a general locomotion problem, we
provide a globally optimal solution to an approximate locomo-
tion problem. In this way, potential nonoptimality is not hidden
behind the numerical optimization procedure, but is explicit in
the problem formulation. The process to compute the solution
is fast and stable. Hence, our method can be applied to hyper-
redundant rectifier systems with many degrees of freedom. An-
other advantage is that an optimal gait is found within those
achievable by the given set of actuators. This feature is espe-
cially important for systems that have less actuators than the
number of shape variables because not all gaits are achievable
by a small number of actuators.

To this end, we first characterize a general class of dynamic
rectifier systems that captures the essential aspects of animal
locomotion, and then approximate the system by assuming
small perturbations around a nominal posture. The resulting
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model extracts the rectifier dynamics as a bilinear term of the
shape variables and their derivatives. An optimal locomotion
problem is formulated for the bilinear rectifier where an inte-
gral quadratic function is minimized over the set of harmonic
inputs, subject to an equality constraint on the average velocity.
The problem is reduced to a finite dimensional, constrained,
nonconvex quadratic optimization over the input phasor and
frequency. We then show that the globally optimal solution can
be found by calculating the generalized eigenvalues of a pair of
Hermitian matrices and by sweeping over the frequency.

We provide two case studies. One is undulatory locomotion
of a chain of multiple links, which is a model for snake
crawling or leech/lamprey swimming. We find optimal gaits
that minimize the input power, input torque, or shape derivative,
and compare with an observed motion in biology. The other
is a disk-mass system that captures the rectifier dynamics in
the simplest manner. Analytical solutions are obtained for this
simple case, which is used to make some general observations
through analogy to more complex rectifiers.

2. RECTIFIER SYSTEMS

The following sections describe the general equations of mo-
tion, their approximations, and specific examples.

2.1 General equations of motion

Consider the class of multilink systems given by

Jθ θ̈ + Gθ θ̇
2 + RT

θγ(Rθ θ̇ + Nθv) = Bu,

mv̇ + N T
θγ(Rθ θ̇ + Nθv) = 0,

(1)

where θ(t) ∈ Rn are the link angles, v(t) ∈ Rk is the velocity
of the center of gravity, u(t) ∈ Rℓ are the torque inputs at

selected joints, and θ̇2 denotes the vector whose ith entry is

θ̇2
i . The coefficient matrices Jθ, Gθ , Rθ, and Nθ depend on

θ, and m is the total mass of the system. The terms Jθθ̈ +
Gθ θ̇

2 are standard in multilink systems. The terms involving
γ(·) are related to the interactive forces (and torques) from the
surrounding environment, such as frictions and fluid forces, as

well as damping effects at the body joints. The quantity Rθθ̇ +
Nθv is the vector of relative velocities on which the interactive
forces depend, and the function γ : Rp → Rp is a possibly
nonlinear, diagonal mapping that generates the force resulting
from the relative motion. Each diagonal entry of γ typically
satisfies the sector condition γi(x)x > 0 for nonzero x.

This class of systems captures the essential dynamics of animal
locomotion with continuous interactions with the environment.
For instance, the dynamics of snake crawling, leech and manta
ray swimming, and possibly flapping flight of birds and insects
are captured by (1). Roughly speaking, the first equation in (1)
describes how the body shape θ changes in response to the
joint torque input u, while the second governs how the local
shape change θ translates into the global velocity v through
the interaction with the environment. The intended operation
of the system is locomotion, that is, a sustained steady forward
velocity v through rhythmic body movements. We call such
systems mechanical rectifiers as they convert periodic torque
(or force) inputs to a biased velocity.

We assume that the system (1) possesses a nominal posture
η ∈ R

n, which satisfies

RT
ηγ(Nηv) = 0, N T

ηγ(Nηv) ∈ V, ∀ v ∈ V,

where V is a straight line in R
k indicating the direction of

locomotion. This means that a body starting from a nominal
posture with velocity v ∈ V would keep its body shape and
direction of locomotion when there is no input u. The line V

often coincides with the axis of symmetry for the multilink
body. For instance, a nominal posture for a snake is a straight
configuration and V is the line containing the body. Without
loss of generality, we assume that V is aligned with the vector
e1 ∈ Rk whose first entry is one and the rest are zeros.

We attempt to analyze the behavior of the original system
(1) through an approximate model that is simple enough to
give insights for, and yet captures the essential dynamics of,
mechanical rectification. To this end, we restrict our attention
to those systems for which it is reasonable to approximate the
interactive force by a linear function (through such methods as
standard linearization and describing function), i.e., γ(x) ∼=
Γx for a constant matrix Γ. Furthermore, we consider small
amplitude oscillation about a nominal posture ϑ := θ − η, and
exploit the following approximations:

Jθ = J + O(ϑ), RT
θΓRθ = D + O(ϑ),

RT
θΓNθ = E(ϑ) + O(ϑ2), N T

θΓNθ = C(ϑ) + O(ϑ3),

where J and D are constant, E(ϑ) and C(ϑ) are first and
second order in ϑ, respectively. By the definition of a nominal
posture, we have E(0)e1 = 0 and C(0)e1 ∈ V. For simplicity,
we assume that E(ϑ)w = 0 for all ϑ ∈ Rn and w in the or-
thogonal complement of V, which is satisfied for the particular
rectifier systems described in the next subsections. The function
E(ϑ) can then be expressed as E(ϑ) = [ Λϑ 0 ] for some square
asymmetric matrix Λ. We now linearize the first equation in (1)
in terms of ϑ. However, we choose not to linearize the second
equation as the essential mechanism of rectification will be lost
by such approximation. Instead, we keep up to the second order
terms in ϑ. With these approximations, the original system (1)
reduces to the following:

Jϑ̈ + Dϑ̇ + v1Λϑ = Bu,

mv̇ + C(ϑ)v + e1(ϑ̇
TΛϑ) = 0,

(2)

where v1 := eT
1v is the locomotion speed.

This model appears to be the simplest model to capture the
essential dynamics of the mechanical rectifier. The fundamental
component of the rectifying dynamics can be captured by a

bilinear term of the form ϑ̇TΛϑ, but not by a linear term. In

particular, the integral of ϑ̇TΛϑ over one cycle is nonzero due
to the asymmetry of Λ, so that periodic body movements can
generate a thrust for locomotion. The dynamics of the body
oscillations is captured by a linear model with the slowly time-
varying, asymmetric stiffness matrix v1Λ that depends on the
locomotion speed v1.

2.2 Undulatory locomotor

This section describes an example of rectifier systems. The
body of slender animals that undulate for locomotion, such as
crawling snake (Hirose, 1993; Saito et al., 2002), and swim-
ming leech and lamprey (Bowtell and Williams, 1991; Ekeberg,
1993), can be modeled by a chain of n rigid links as shown in
Fig. 1. The undulatory motions are typically in a plane (k = 2),
e.g., horizontal plane for snakes and vertical plane for leeches.
The body is free to move in the plane and is actuated at every
joint by torque input u ∈ Rℓ with ℓ = n − 1.
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The key property for mechanical rectification is the difference
in the tangential and normal components of the interactive force
from the environment acting on each link. In particular, the
normal force tends to be much larger than the tangential force.
This is true for snake crawling on the ground (Hirose, 1993) as
well as for slender-body swimming (Taylor, 1952; McMillen
and Holmes, 2006). The simplest way to capture this property,
which is often adequate for at least qualitative analyses, is to
approximate the tangential and normal forces on each link (fti

and fni
) by linear functions of the respective components of

the relative velocity between the link and environment (vti
and

vni
). That is, for the ith link,

fti
= cti

vti
, fni

= cni
vni

, (3)

where cti
and cni

are constants such that cti
≪ cni

.

The equations of motion for the link chain subject to the
environmental force (3) are given by (1) with the definitions
(Saito et al., 2002)

Jθ := J + SθHSθ + CθHCθ, Gθ := SθHCθ − CθHSθ,

Rθ :=

[

ΩθLθ

I

]

, Nθ :=

[

ΩθE
0

]

, m :=

n
∑

i=1

mi,

Lθ :=

[

FSθ

−FCθ

]

, Ωθ :=

[

Cθ Sθ

−Sθ Cθ

]

, E :=

[

e 0
0 e

]

,

Sθ := diag(sin θ1, . . . , sin θn), e := [ 1 . . . 1 ]
T
∈ R

n,
Cθ := diag(cos θ1, . . . , cos θn), J := diag(J1, . . . , Jn),
H := LA(BTM−1B)−1ATL, M := diag(m1, . . . , mn),
F := M−1B(BTM−1B)−1ATL, L := diag(ℓ1, . . . , ℓn),
Ct := diag(ct1 , . . . , ctn

), Cn := diag(cn1
, . . . , cnn

),
γ(x) := Γx, Γ := diag(Ct, Cn, CnL2/3),

A :=







1 1
. . .

. . .

1 1







T

, B :=







1 −1
. . .

. . .

1 −1







T

,

where A, B ∈ Rn×(n−1), θ ∈ Rn, u ∈ Rn−1, and v ∈ R2.

To focus on the essential dynamics, we consider the case where
the links are identical; mi = mo, ℓi = ℓo, Ji = Jo := moℓ

2
o/3,

cti
= ct, and cni

= cn for all i. We set the nominal posture η to
be zero. Assuming that the perturbation of θ from the nominal
posture is small in amplitude, the equations of motion become
of the form given by (2) with the definitions

J := JoI + H, D := cn(F TF + (ℓ2
o/3)I)

Λ := (cn − ct)F
T, C(ϑ) :=

[

nct + cnϑTϑ (ct − cn)eTϑ
(ct − cn)eTϑ ncn + ctϑ

Tϑ

]

.

As noted earlier, the propulsive force due to rhythmic body

movements is captured by the term ϑ̇TΛϑ in (2). If cn = ct,
then no such force is generated and no undulation pattern leads
to locomotion. If cn ≫ ct as in many animals, nonzero net
momentum is generated over one cycle due to asymmetry of Λ.

1

y

x

42l

2
φ

2

θ

θ
(x ,y )

(x ,y )

1 1

2 2

Fig. 1. Multilink chain system

2.3 Simple mechanical rectifier

A very simple model, as shown in Fig. 2, which consists of a
spinning disk with moment of inertia J , driven by the friction of
a point mass m sliding on its surface, contains all the essential
elements of the locomotion problem. The point mass receives a
controlling force u and represents the dynamics of an organisms
body. The friction force between point mass and disk, which is
proportional to the relative velocity with constant c, represents
the interaction of the body with the environment, and the
angular velocity of the disk ̟ represents the locomotion speed.
We call this system a simple mechanical rectifier (SMR) since
periodic movements of the mass can be rectified to yield disk
rotation in a fixed direction on average.

The equation of motion is given by

mρ̈ + (c + d)ρ̇ + c̟Sρ = u,
J ˙̟ + (a + cρTρ)̟ + cρ̇TSρ = 0,

(4)

where ρ(t) ∈ R2 is the coordinate of the point mass, and

S :=

[

0 1
−1 0

]

.

The dρ̇ term represents the energy loss associated with the
actuation of the point mass by input u, and a̟ is the frictional
torque at the disk bearing. Clearly, (4) is of the form (2) where
ρ and ̟ correspond to ϑ and v, respectively. Note that the
nominal posture (ρ = 0) for SMR is when the mass is at the
disk center.

To examine the mechanism of rectification, let us consider
the case where the disc inertia J is so large that ̟ may be
considered constant over a cycle. In this case, the standard
averaging technique yields

̟ ∼= α
/

∫ T

0

(a/c + ‖ρ‖2)dt,

α := −

∫ T

0

ρ̇TSρ dt =

∫ T

0

(ρ1ρ̇2 − ρ2ρ̇1)dt,

where T is the cycle period of the mass movement. Note that α
is a half of the area enclosed by the orbit of the mass trajectory
ρ(t), which is defined positive when the orbit goes counter-
clockwise. For the same size of mass motion as measured by
α, faster rotation is achieved if the mass motion occurs near the
disk center so that ρ, and hence the denominator, is small. For
this reason, it makes sense to choose the nominal posture at the
disk center. The term ρ1ρ̇2 − ρ2ρ̇1 is the Lie bracket [ρ1, ρ2],
representing a canonical form of rectifying dynamics studied
by Brockett (2003) in the context of nonholonomic systems
control.

y

m

ρ

ω

u

x

Fig. 2. Simple mechanical rectifier
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3. OPTIMAL LOCOMOTION

In this section, we formulate an optimal locomotion problem
for the mechanical rectifier (2) and provide a solution.

3.1 Problem formulation

We consider the optimal locomotion problem of minimizing a
quadratic cost function over the set of T -periodic signals ST ,
subject to the constraint that the average speed of locomotion is
vo. The problem is formulated as

min
T ∈ R+

v, ϑ, u ∈ ST

1

T

∫ T

0

[

ϑ̇
u

]T

Π

[

ϑ̇
u

]

dt

s.t.















1

T

∫ T

0

vdt = voe1,

Jϑ̈ + Dϑ̇ + v1Λϑ = Bu,

mv̇ + C(ϑ)v + (ϑ̇TΛϑ)e1 = 0,

(5)

where Π is a given symmetric matrix.

The objective function is quadratic in ϑ̇ and u, and has many
physical interpretations depending on the choice of Π. Some
possible physical quantities captured in this framework include
input power, input torque, and rate of body shape change,
and are summarized in the table below, where φ := BTθ is
the vector of relative link angles. The average value over one
period is taken for input power, and mean-square values for
the other two quantities. The method for solving the problem,
presented below, can readily be extended to include ϑ terms in
the quadratic objective function, but we choose not to do so for
brevity.

Table 1. Objective functions specified by Π

Quantity Objective Integral Π

Input Power 1

T

∫

T

0
φ̇Tudt 1

2

[

0 B

BT
0

]

Input Torque 1

T

∫

T

0
‖u‖2dt

[

0 0

0 I

]

Shape Change Rate 1

T

∫

T

0
‖φ̇‖2dt

[

BBT
0

0 0

]

For tractability, we shall reformulate the problem in (5) by
restricting the underlying class of periodic signals and ap-
proximating some constraints. In particular, the search for the
optimal gait is confined to the class of T -periodic, unbiased,
harmonic signals HT . Assuming that the dynamics of v is much
slower than ϑ, we take the average of the third constraint in
(5) over one cycle, with v regarded as constant. Solving for v,
equating the result with the target velocity voe1, and rearrang-
ing, we have

∫ T

0

(

C(ϑ)e1vo + (ϑ̇TΛϑ)e1

)

dt = 0.

The second row block (of dimension k − 1) of this vector con-
straint is approximately satisfied due to the defining properties
of the nominal posture and the small ϑ assumption. Hence, we
consider only the first row of the constraint. The problem is now
reformulated as

min
T ∈ R+

ϑ, u ∈ HT

1

T

∫ T

0

[

ϑ̇
u

]T

Π

[

ϑ̇
u

]

dt

s.t.











∫ T

0

(

c(ϑ)vo + ϑ̇TΛϑ
)

dt = 0,

Jϑ̈ + Dϑ̇ + voΛϑ = Bu

(6)

where c(ϑ) := eT
1C(ϑ)e1.

3.2 Harmonic solution

This section presents an exact solution to the problem in (6).
The following lemma reduces the problem to a constrained
quadratic optimization.

Lemma 1. Consider the minimization problem given by (6).
Let the quadratic function c(ϑ) be expressed as c(ϑ) = ϑT

Cϑ+
b

Tϑ + a and define

Xω :=

[

jωPω

I

]∗

Π

[

jωPω

I

]

,

Yω := P ∗

ω

(

j(ω/vo)(Λ − ΛT) − 2C
)

Pω/(4a),
Pω := (voΛ + jωD − ω2J)−1B.

(7)

Then the problem is equivalent to

min
ω∈R, û∈Cℓ

{ û∗Xωû : û∗Yω û = 1 }. (8)

In (8), the vector û is the phasor of the input signal u(t).
Hence, once (8) is solved for a minimizer (ω, û), the optimal
sinusoidal input for (6) can be found as u(t) = ℜ[ûejωt].
To solve the problem in (8), one may optimize over û for
a fixed ω, and repeat this process for various values of ω,
numerically sweeping the frequency axis. In this case, each
problem for a given ω is a static quadratic optimization, which
is nonconvex in general because Xω and Yω are possibly
indefinite. Nonconvex optimizations are often hard to solve, but
for this particular problem, we have a complete solution.

Lemma 2. Let Hermitian matrices X and Y be given and
consider

min
q∈Cℓ

{ q∗Xq : q∗Y q = 1 }. (9)

The constraint is feasible if and only if the largest eigenvalue
of Y is positive. In this case, the objective function is bounded
below on the feasible set if and only if the following (convex)
set is nonempty:

L := { λ ∈ R : X ≥ λY }.

The largest element λo of L is well defined and is a generalized
eigenvalue of (X, Y ). The minimum value of (9) is equal to λo.
An optimizer qo is given by an eigenvector of the pair (X, Y )
associated with the generalized eigenvalue λo, normalized so
that q∗oY qo = 1.

Based on Lemma 2, a solution to (9) can be found by computing
the generalized eigenvalues of (X, Y ). If the constraint is
feasible and objective function is bounded, then one (or more)
of the generalized eigenvalues must be real and satisfy X ≥
λY . The largest of such generalized eigenvalues is λo. If λo

is not repeated, then it has one-dimensional eigenspace. In this
case, every eigenvector qo satisfies q∗oY qo > 0 and hence can
be normalized so that q∗oY qo = 1. This qo is an optimizer of (9).
If λo is repeated, then the dimension of the eigenspace is more
than one and q∗oY qo can be nonpositive for some eigenvector.
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However, Lemma 2 guarantees that at least one of them gives
positive q∗oY qo and hence is a solution after the normalization.

Combining Lemmas 1 and 2, we immediately have the follow-
ing result that solves the problem in (6).

Theorem 3. Consider the rectifier system given in (2) and the
optimal locomotion problem in (6). Define Xω, Yω, and Pω by
(7). Let σ be the optimal value of the objective function. Then
we have

σ = min
ω∈R

max
λ∈R

{ λ : Xω ≥ λYω } . (10)

Let ωo and λo be the optimizers. Then, the optimal period is
T = 2π/ωo, and the optimal input and body angles are given
by

u(t) = ℜ[qoe
jωot], ϑ(t) = ℜ[Pωo

qoe
jωot],

where qo ∈ Cℓ is an eigenvector of the pair (Xωo
, Yωo

)
associated with the generalized eigenvalue λo, normalized to
satisfy q∗oYωo

qo = 1.

The problem in (10) can be solved by generalized eigenvalue
computation plus a line search. In particular, for a fixed ω,
the solution λ to the maximization is given in terms of a
generalized eigenvalue of (X, Y ) as described in the paragraph
below Lemma 2. Sweeping over ω by gridding the frequency
axis, we have an optimal solution.

4. CASE STUDIES

The following subsections illustrate the optimal locomotions
for specific examples.

4.1 Undulatory locomotor

We use the system given by (2) with parameter definitions in
Section 2.2 to model leech swimming behavior. A leech swims
by undulating its slender body in a vertical plane, propagating
waves from head to tail just like crawling snakes. Based on
experimental data of a medium size leech (Chen and Friesen,
2007), the model parameters are fixed as follows:

n = 18, vo = −0.157 m/s, m = 0.0011 kg,

ℓ = 0.1073 m, cn = 0.8ℓo N · s/m, ct = 0.1ℓo N · s/m,

where n is the number of links used for modeling, vo is the
observed average swim speed (negative sign indicates that the
leech swam to the left), m and ℓ are the total mass and length,
cn and ct are the drag coefficients for the tangential and normal
fluid forces, and ℓo := ℓ/(2n) and mo := m/n. The leech
body has a slightly larger density than water, but we assume for
simplicity that it is neutrally buoyant.

We have solved the optimal locomotion problem in (6) with the
objective functions summarized in Table 1. For each case, the
problem is reformulated as in (8). Figure 3 shows the minimum
of ûXωû over û satisfying ûYωû = 1, as a function of the
frequency ω. Each function turned out to be quasi-convex and
have a unique global minimum, for this particular example.
The optimal undulation frequencies are found to be 25.6 rad/s
(power), 86.9 rad/s (torque), and 21.2 rad/s (shape), whereas the
frequency observed for the particular leech used for modeling
was 17.0 rad/s.

The optimal body shapes are shown in Fig. 4. During swim-
ming, the live leech exhibited about 250o phase lag from head
to tail, and roughly uniform (but slightly increasing toward

the tail) amplitudes over the body around 10o. The resulting
body shape was fairly close to the one for the minimum shape
derivative depicted in Fig. 4. Hence, it is tempting to conclude
that the shape derivative, rather than the power or torque, may
be closely related to the quantity that actual leeches minimize.
However, the SMR example in the next subsection indicates
that more careful examinations would be necessary before
reaching such a conclusion.
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Fig. 3. Objective function vs. frequency ω: power in mW, torque
in (g·mm)2, shape derivative in (deg/ms)2.
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Fig. 4. Optimal body shapes (snapshots during swimming at an
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4.2 Simple mechanical rectifier

We shall apply Theorem 3 to the simple mechanical rectifier de-
scribed by (4) to find two optimal gaits that minimize the input
power and shape derivative, respectively, while maintaining the
average angular velocity ̟o. In particular, we consider

σ := min
T ∈ R+

ρ, u ∈ HT

1

T

∫ T

0

f(ρ̇, u)dt

s.t.







∫ T

0

(

(a + cρTρ)̟o + cρ̇TSρ
)

dt = 0,

mρ̈ + (c + d)ρ̇ + ̟ocSρ = u,

(11)
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where f(ρ̇, u) := ρ̇Tu (input power) or ‖ρ̇‖2 (“shape” deriva-
tive). The result is summarized as follows.

Proposition 4. Consider the simple mechanical rectifier in (4)
and the optimal locomotion problem in (11). The globally
optimal solution is characterized by

ρ(t) = α

[

cosωt
sin ωt

]

,

where ρ, α, and associated optimal cost σ, are given by Table 2
with ac := a/c and dc := d/c.

Table 2. Optimal parameters for SMR locomotion

Input Power Shape Derivative

σ 2adc

(

1 +

√

1 +
1

dc

)2

̟2
o 8ac̟2

o

α

√

ac

√

1 +
1

dc

√
ac

ω

(

1 +

√

dc

1 + dc

)

̟o 2̟o

The optimal orbit of the mass, ρ(t), is circular; ρ1(t) and ρ2(t)
have the same amplitude, and the former leads the latter by
90o. This property is independent of the system parameters
and the desired speed ̟o, but is determined by the structure of
the rectifying dynamics as an eigenvector of S. In the general
context, this suggests that the most fundamental mechanism
for optimal gait selection is embedded in the eigenvectors of
S := (Λ − ΛT)/2. More specifically, the eigenvector of jS
associated with the maximum eigenvalue determines the basic
gait, which maximizes the average propulsion over one cycle

1

T

∫ T

0

(−ϑ̇TΛϑ)dt = jωϑ̂∗
Sϑ̂/2

for given frequency ω and amplitude ‖ϑ̂‖.

We notice from Table 2 that the optimal frequency ω is propor-
tional to the desired speed ̟o, which makes physical sense. On
the other hand, the optimal amplitude α is independent of ̟o,
but scales with the square root of a/c. The parameters a and
c roughly correspond to ct and cn in the undulatory locomotor,
respectively. Hence, the fact that the ρ orbit is larger when a/c is
larger, is analogous, for instance, to the fact that snakes undulate
with larger amplitude on ice than on grounds.

Finally, we note that the optimal α and ω for the minimum input
power approach that for the minimum shape derivative as d/c
tends to infinity. If the cost (power loss) for the mass motion
itself is much larger than the cost for driving the disk, then
the minimum power gait tends to minimize the mass motion.
Generalizing the idea for the undulatory locomotor, we expect
that the optimal gaits from the input power and shape deriva-
tive minimizations would become similar if the joint frictions
(ignored in our study) were large. In fact, this expectation
turned out to be true, and moreover, optimal gaits from input
torque minimization also approached the optimal shape deriva-
tive case. Thus, the choice of the objective functions among
those in Table 1 is not important and all cases give similar
results when the joint frictions are large.

5. CONCLUSION

We have formulated a locomotion problem for a class of
mechanical rectifier systems to search for an optimal gait to
achieve a given speed of locomotion on average. The problem
is reduced to a generalized eigenvalue problem with frequency
sweep, which can be solved efficiently. Unlike most, if not all,
of existing approaches, our result provides a globally optimal
solution. The key is not to compromise the solution by aiming
for local optimality, but to reformulate the problem for tractabil-
ity, in terms of a simplified model capturing the essential recti-
fier dynamics, with a restriction to harmonic driving inputs. The
optimal harmonic gait thus obtained can be used as a reference
signal for closed-loop control. Moreover, it can also be used, if
desired, as an initial condition for the existing local algorithms
to refine the gait for a more complex, fully nonlinear model of
the rectifier dynamics.
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