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1. INTRODUCTION

We view a linear system as defined by its behavior, a family of
trajectories, rather than a transfer function. All relevant system
properties, such as controllability, stabilizability, observability,
and detectability, are defined in terms of the behavior. Control
is restricting the plant behavior by intersecting it with the
controller behavior.

The behavior of a linear time-invariant differential system is
defined as the set of solutions of a system of linear constant-
coefficient differential equations. However, these behaviors can
be represented in many other ways, for example, as the set
of solutions of a system of equations involving a differential
operator in a matrix of rational functions, rather than in a matrix
of polynomials. The representation of behaviors in terms of
rational symbols turns out to be an effective representation that
leads to a parametrization of the set of stabilizing controllers.

In the classical approach (Kučera (1975); Youla et al. (1976);
Vidyasagar (1985)), systems with the same transfer function
are identified. By taking a trajectory-based definition of a
system, the behavioral point of view is able to effectively keep
track of all trajectories, also of the non-controllable ones.

The present paper serves as a tutorial introduction to representa-
tions of linear time-invariant differential systems using rational
symbols and to the parametrization of stabilizing controllers as
an illustration of the use of rational symbols. It is an adaptation
of earlier papers (Willems and Yamamoto (2007a,b, 2008)) on
this topic.

A few words about the notation and nomenclature used. We
use standard symbols for the sets R,N,Z, and C. C+ :={

s ∈ C
∣∣ Re(s)≥ 0

}
denotes the closed right-half of the com-

plex plane. We use Rn, Rn×m, etc. for vectors and matrices.
When the number of rows or columns is immaterial (but fi-
nite), we use the notation •, •×•, etc. Of course, when we then
add, multiply, or equate vectors or matrices, we assume that
the dimensions are compatible. C ∞(R,Rn) denotes the set of
infinitely differentiable functions from R to Rn. The symbol I
denotes the identity matrix, and 0 the zero matrix. When we
want to emphasize the dimension, we write In and 0n1×n2 . A
matrix is said to be of full row rank if its rank is equal to the

number of rows. Full column rank is defined analogously. As
usual, det(A), rank(A), image(A), and ker(A) denote, respec-
tively, the determinant, rank, image and kernel of an operator or
a matrix A. For a square matrix A, diag(A) denotes the diagonal
matrix consisting of the diagonal entries of A.

R [ξ ] denotes the set of polynomials with real coefficients in
the indeterminate ξ , and R(ξ ) denotes the set of real rational
functions in the indeterminate ξ . R [ξ ] is a ring and R [ξ ]n a
finitely generated R [ξ ]-module. R(ξ ) is a field and R(ξ )n is
an n-dimensional R(ξ )-vector space. The polynomials p1, p2 ∈
R [ξ ] are said to be coprime if they have no common zeros.
p ∈ R [ξ ] is said to be Hurwitz if it has no zeros in C+. The
relative degree of f ∈ R(ξ ) , f = n/d, with n,d ∈ R [ξ ], is the
degree of the denominator d minus the degree of the numerator
n; f ∈ R(ξ ) is said to be proper if the relative degree is ≥ 0,
strictly proper if the relative degree is > 0, and biproper if the
relative degree is equal to 0. The rational function f ∈ R(ξ ),
f = n/d, with n,d ∈ R [ξ ] coprime, is said to be stable if d is
Hurwitz, and miniphase if n and d are both Hurwitz.

We only discuss the main ideas. Details and proofs may be
found in Willems and Yamamoto (2007a). The results can
easily be adapted to other stability domains, but in this article,
we only consider the Hurwitz domain for concreteness.

2. RATIONAL SYMBOLS

We consider behaviors B ⊆ (R•)R that are the set of solutions
of a system of linear-constant coefficient differential equations.
In other words, B is the solution set of

R
( d

dt

)
w = 0, (1)

where R ∈ R [ξ ]•×•. We shall deal with infinitely differentiable
solutions only. Hence (1) defines the dynamical system Σ =
(R,R•,B) with

B =
{

w ∈ C ∞ (R,R•)
∣∣ R

( d
dt

)
w = 0

}
.

We call this system (or its behavior) a linear time-invariant
differential system. Note that we may as well denote this be-
havior as B = ker

(
R

( d
dt

))
, since B is actually the kernel of

the differential operator

R
( d

dt

)
: C ∞(R,Rcolumn dimension(R))→C ∞(R,Rrow dimension(R)).
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We denote the set of linear time-invariant differential systems or
their behaviors by L • and by L w when the number of variables
is w.

We extend the above definition of a behavior defined by a
differential equation involving a polynomial matrix to a ‘dif-
ferential equation’ involving a matrix of rational functions. In
order to do so, we first recall the terminology of factoring a
matrix of rational functions in terms of polynomial matrices.
The pair (P,Q) is said to be a left factorization over R [ξ ] of
M ∈ R(ξ )n1×n2 if (i) P ∈ R [ξ ]n1×n1 and Q ∈ R [ξ ]n1×n2 , (ii)
det(P) 6= 0, and (iii) M = P−1Q. (P,Q) is said to be a left-
coprime factorization over R [ξ ] of M if, in addition, (iv) P
and Q are left coprime over R [ξ ]. Recall that P and Q are
said to be left coprime over R [ξ ] if for every factorization
[P Q] = F

[
P′ Q′] with F ∈ R [ξ ]n1×n1 ,F is R [ξ ]-unimodular.

It is easy to see that a left-coprime factorization over R [ξ ] of
M ∈R(ξ )n1×n2 is unique up to premultiplication of P and Q by
an R [ξ ]-unimodular polynomial matrix U ∈ R[ξ ]n1×n1 .

Consider the system of ‘differential equations’

G
( d

dt

)
w = 0, (2)

with G ∈ R(ξ )•×•, called the symbol of (2). Since G is a
matrix of rational functions, it is not clear when w : R → R•

is a solution of (2). This is not a matter of smoothness, but a
matter of giving a meaning to the equality, since G

( d
dt

)
is not a

differential operator, and not even a map.

We define solutions as follows. Let (P,Q) be a left-coprime
matrix factorization over R [ξ ] of G = P−1Q. Define

[[w : R→ R• is a solution of (2) ]] :⇔ [[Q
( d

dt

)
w = 0 ]].

Hence (2) defines the system

Σ =
(
R,R•,ker

(
Q

( d
dt

)))
∈L •.

It follows from this definition that G
( d

dt

)
is not a map on

C ∞ (R,R•). Rather, w 7→ G
( d

dt

)
w is the point-to-set map

that associates with w ∈ C ∞ (R,R•) the set v′ + v, with v′ ∈
C ∞ (R,R•) a particular solution of P

( d
dt

)
v′ = Q

( d
dt

)
w and

v ∈ C ∞ (R,R•) any function that satisfies P
( d

dt

)
v = 0. This set

of v’s is a finite-dimensional linear subspace of C ∞ (R,R•) of
dimension equal to the degree of det(P). Hence, if P is not an
R [ξ ]-unimodular polynomial matrix, equivalently, if G is not a
polynomial matrix, G

( d
dt

)
is not a point-to-point map. Viewing

G
( d

dt

)
as a point-to set map leads to the definition of its kernel

as
ker

(
G

( d
dt

))
:= {w ∈ C ∞ (R,R•) | 0 ∈ G

( d
dt

)
w},

i.e. ker
(
G

( d
dt

))
consists of the set of solutions of (2), and of

its image as

image
(
G

( d
dt

))
:= {v ∈ C ∞ (R,R•) | v ∈ G

( d
dt

)
w

for some w ∈ C ∞ (R,R•)}.
Hence (2) defines the system

Σ =
(
R,R•,ker

(
G

( d
dt

)))
:=

(
R,R•,ker

(
Q

( d
dt

)))
∈L •.

Note, therefore, that each system defined by (2) using a rational
symbol has by definition a behavior defined by a polynomial
symbol. Also the behaviors defined by G1 = P−1

1 Q and G2 =
P−1

2 Q are the same, as long as P1 and Q as well as P2 and Q are

left coprime over R. Hence the denominators of G have a minor
influence on the behavior of (2).

Three main theorems in the theory of linear time-invariant
differential systems are

(1) the elimination theorem,
(2) the one-to-one relation between annihilators and submod-

ules or subspaces,
(3) the equivalence of controllability and existence of an

image representation.

The elimination theorem states that if B ∈L w1+w2 , then

B1 := {w1 ∈ C ∞ (R,Rw1) | ∃w2 ∈ C ∞ (R,Rw2)

such that (w1,w2) ∈B}
belongs to L w1 . In other words, L • is closed under projec-
tion. The elimination theorem implies that L • is closed under
addition, intersection, projection, and under action and inverse
action with F

( d
dt

)
, where F ∈ R(ξ )•×•.

3. INPUT, OUTPUT, AND STATE CARDINALITY

The integer invariants w,m,p,n are maps from L • to Z+ that
play an important role in the theory of linear time-invariant
differential systems. Intuitively,

w (B) equals the number of variables in B,
m(B) equals the number of input variables in B,
p(B) equals the number of output variables in B, and
n(B) equals the number of state variables in B.

The integer invariant w is defined by
[[w (B) := w]] ⇐⇒ [[B ∈L w ]].

The other integer invariants are most easily captured by means
of representations. A behavior B ∈L • admits an input/output
representation

P
( d

dt

)
y = Q

( d
dt

)
u, w = Π

[
u
y

]
(3)

with P ∈ R(ξ )p(B)×p(B), det(P) 6= 0, Q ∈ R(ξ )p(B)×m(B),
and Π ∈ Rw(B)×w(B) a permutation matrix. This input/output
representation of B defines m(B) and p(B) uniquely. It
follows from the conditions on P and Q that u is free, that is,
that for any u∈C ∞(R,Rm(B)), there exists a y∈C ∞(R,Rp(B))
such that P

( d
dt

)
y = Q

( d
dt

)
u. The permutation matrix Π shows

how the input and output components are derived from the
components of w, and results in an input/output partition of w.

The matrix G = P−1Q ∈ R(ξ )p(B)×m(B) is called the transfer
function corresponding to this input/output partition. In fact,
it is possible to choose this partition such that G is proper. It
is worth mentioning that in general P

( d
dt

)
y = Q

( d
dt

)
u has a

different behavior than y = P−1Q
( d

dt

)
u. The difference is due

to the fact that B may not be controllable, as discussed in the
next section.

A behavior B ∈L • also admits an observable input/state/output
representation

d
dt x = Ax+Bu, y = Cx+Du, w = Π

[
u
y

]
, (4)

with A ∈ Rn(B)×n(B), B ∈ Rn(B)×m(B), C ∈ Rp(B)×n(B), D ∈
Rp(B)×m(B), Π∈Rw(B)×w(B) a permutation matrix, and (A,C)
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an observable pair of matrices. By eliminating x, the (u,y)-
behavior defines an linear time-invariant differential system,
with behavior denoted by B′. This behavior is related to B
by B = ΠB′. It can be shown that this input/state/output rep-
resentation of B, including the observability of (A,C), defines
m(B) ,p(B) , and n(B) uniquely.

4. CONTROLLABILITY, STABILIZABILITY,
OBSERVABILITY, AND DETECTABILITY

The behavior B ∈ L • is said to be controllable if for all
w1,w2 ∈ B, there exists T ≥ 0 and w ∈ B, such that w(t) =
w1(t) for t < 0, and w(t) = w2(t −T ) for t ≥ T . B is said to
be stabilizable if for all w ∈B, there exists w′ ∈B, such that
w′(t) = w(t) for t < 0 and w′(t)→ 0 as t → ∞.

In other words, controllability means that it is possible to switch
between any two trajectories in the behavior, and stabilizability
means that every trajectory can be steered to zero asymptoti-
cally.

Until now, we have dealt with representations involving only
the variables w. However, many models, such as first principles
models obtained by interconnection and state models, include
auxiliary variables in addition to the variables the model aims
at. We call the latter manifest variables, and the auxiliary
variables latent variables. In the context of rational models, this
leads to the model class

R
( d

dt

)
w = M

( d
dt

)
` (5)

with R,M ∈R(ξ )•×•. By the elimination theorem, the manifest
behavior of (5), defined as
{w ∈ C ∞ (R,R•)

∣∣ ∃` ∈ C ∞ (R,R•)such that (5) holds},
belongs to L •.

The latent variable system (5) is said to be observable if,
whenever (w, `1) and (w, `2) satisfy (5), then `1 = `2. (5) is said
to be detectable if, whenever (w, `1) and (w, `2) satisfy (5), then
`1(t)− `2(t)→ 0 as t → ∞.

In other words, observability means that the latent variable
trajectory can be deduced from the manifest variable trajectory,
and detectability means that the latent variable trajectory can be
deduced from the manifest variable trajectory asymptotically.
The notions of observability and detectability apply to more
general situations, but here we use them only in the context of
latent variable systems.

It is easy to derive tests to verify these properties in terms of
kernel representations and the zeros of the associated symbol.
We first recall the notion of poles and zeros of a matrix of
rational functions.

M ∈ R(ξ )n1×n2 can be brought into a simple canonical form,
called the Smith-McMillan form by pre- and postmultipli-
cation by R [ξ ]-unimodular polynomial matrices. Let M ∈
R(ξ )n1×n2 . There exist U ∈ R [ξ ]n1×n1 ,V ∈ R [ξ ]n2×n2 , both
R [ξ ]-unimodular, Π ∈ R [ξ ]n1×n1 , and Z ∈ R [ξ ]n1×n2 such that
M = UΠ−1ZV, with

Π = diag(π1,π2, · · · ,πn1) ,

Z =
[
diag(ζ1,ζ2, · · · ,ζr) 0r×(n2−r)

0(n1−r)×r 0(n1−r)×(n2−r)

]
with ζ1,ζ2, · · · ,ζr,π1,π2, · · · ,πn1 non-zero monic elements of
R [ξ ], the pairs ζk,πk coprime for k = 1,2, . . . ,r, πk = 1 for

k = r+ 1,r+ 2 . . . ,n1, and with ζk−1 a factor of ζk and πk

a factor of πk−1, for k = 2, · · · ,r. Of course, r = rank(M).
The roots of the πk’s (hence of π1, disregarding multiplicity
issues) are called the poles of M, and those of the ζk’s (hence of
ζr, disregarding multiplicity issues) are called the zeros of M.
When M ∈ R [ξ ]•×•, the πk’s are absent (they are equal to 1).
We then speak of the Smith form.
Proposition 1.

• (2) is controllable if and only if G has no zeros.
• (2) is stabilizable if and only if G has no zeros in C+.
• (5) is observable if and only if M has full column rank and

has no zeros.
• (5) is detectable if and only if M has full column rank and

has no zeros in C+.

�

Consider the following special case of (5)

w = M
( d

dt

)
` (6)

with M ∈ R(ξ )•×•. Note that, with M
( d

dt

)
viewed as a

point-to-set map, the manifest behavior of (6) is equal to
image

(
M

( d
dt

))
. The behavior (6) is hence called an image

representation of its manifest behavior. In the observable case,
that is, if M is of full column rank and has no zeros, M has
a polynomial left inverse, and hence (6) defines a differential
operator mapping w to `. In other words, in the observable case,
there exists an F ∈R [ξ ]•×• such that (6) has the representation

w = M
( d

dt

)
`, ` = F

( d
dt

)
w.

The well-known relation between controllability and image
representations for polynomial symbols remains valid in the
rational case.
Theorem 2. The following are equivalent for B ∈L •.

(1) B is controllable.
(2) B admits an image representation (6) with M ∈R(ξ )•×•.
(3) B admits an observable image representation (6) with

M ∈ R(ξ )•×•.

�

Let B ∈L •. The controllable part of B is defined as

Bcontrollable := {w ∈B
∣∣ ∀ t0, t1 ∈ R, t0 ≤ t1,

∃w′ ∈B with compact support such that
w(t) = w′(t) for t0 ≤ t ≤ t1}.

In other words, Bcontrollable consists of the trajectories in B
that can be steered to zero in finite time. It is easy to see that
Bcontrollable ∈L • and that it is controllable. In fact, Bcontrollable
is the largest controllable behavior contained in B.

The controllable part induces an equivalence relation on L •,
called controllability equivalence, by setting

[[B′ ∼controllability B′′]] :⇔ [[B′
controllable = B′′

controllable]].

It is easy to prove that B′ ∼controllability B′′ if and only if
B′ and B′′ have the same compact support trajectories, or,
for that matter, the same square integrable trajectories. Each
equivalence class modulo controllability contains exactly one
controllable behavior. This controllable behavior is contained
in all the other behaviors that belong to the equivalence class
modulo controllability.
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The system G
( d

dt

)
w = 0, where G ∈ R(ξ )•×•, and

F
( d

dt

)
G

( d
dt

)
w = 0 are controllability equivalent if F ∈R(ξ )•×•

is square and nonsingular. In particular, two input/output sys-
tems (3) have the same transfer function if and only if they are
controllability equivalent.

If G1,G2 ∈ R(ξ )•×• have full row rank, then the behavior
defined by G1

( d
dt

)
w = 0 is equal to the behavior defined by

G2
( d

dt

)
w = 0 if there exists a R [ξ ]-unimodular matrix U ∈

R [ξ ]•×• such that G2 = UG1. On the other hand, the behavior
defined by G1

( d
dt

)
w = 0 has the same controllable part as the

behavior defined by G2
( d

dt

)
w = 0 if and only if there exists an

F ∈ R(ξ )•×•, square and nonsingular, such that G2 = FG1. If
G1 and G2 are full row rank polynomial matrices, then equality
of the behaviors holds if and only if G2 = UG1. This illustrates
the subtle distinction between equations that have the same
behavior, versus behaviors that are controllability equivalent.

5. RATIONAL ANNIHILATORS

Obviously, for n ∈ R(ξ )• and w ∈ C ∞ (R,R•), the statements
n
( d

dt

)>
w = 0, and, hence, for B ∈L •, n

( d
dt

)>
B = 0, mean-

ing n
( d

dt

)>
w = 0 for all w∈B, are well-defined, since we have

given a meaning to (2).

Call n ∈ R [ξ ]• a polynomial annihilator of B ∈ L • if
n
( d

dt

)>
B = 0, and call n ∈ R(ξ )• a rational annihilator of

B ∈L • if n
( d

dt

)>
B = 0.

Denote the set of polynomial and of rational annihilators of
B ∈L • by B⊥R[ξ ] and B⊥R(ξ ) , respectively. It is well known
that for B ∈L w, B⊥R[ξ ] is an R [ξ ]-module, indeed, a finitely
generated one, since all R [ξ ]-submodules of R [ξ ]w are finitely
generated. However, B⊥R(ξ ) is also an R [ξ ]-module, but a
submodule of R(ξ )w viewed as an R [ξ ]-module (rather than
as an R(ξ )-vector space). The R [ξ ]-submodules of R(ξ )w are
not necessarily finitely generated.

The question occurs when B⊥R(ξ ) is a vector space. This
question has a nice answer, given in the following theorem.
Theorem 3. Let B ∈L w.

(1) B⊥R(ξ ) is an R [ξ ]-submodule of R(ξ )w.
(2) B⊥R(ξ ) is an R(ξ )-vector subspace of R(ξ )w if and only

if B is controllable.
(3) Denote the R [ξ ]-submodules of R [ξ ]w by Mw. There is a

bijective correspondence between L w and Mw, given by

B ∈L w 7→B⊥R[ξ ] ∈Mw,

M ∈Mw 7→ {w ∈ C ∞ (R,Rw)
∣∣ n

( d
dt

)>
w = 0 ∀n ∈M}.

(4) Denote the linear R(ξ )-subspaces of R(ξ )w by Lw. There
is a bijective correspondence between L w

controllable, the
controllable elements of L w, and Lw given by

B ∈L w
controllable 7→B⊥R(ξ ) ∈ Lw,

L ∈ Lw 7→ {w ∈ C ∞ (R,Rw)
∣∣ n

( d
dt

)>
w = 0 ∀n ∈ L}.

�

This theorem shows a precise sense in which a linear time-
invariant system can be identified by a module, and a con-
trollable linear time-invariant differential system (an infinite

dimensional subspace of C ∞ (R,Rw) whenever B 6= {0}) can
be identified with a finite-dimensional vector space (of dimen-
sion p(B)). Indeed, through the polynomial annihilators, L w

is in one-to-one correspondence with the R [ξ ]-submodules of
R [ξ ]w, and, through the rational annihilators, L w

controllable is in
one-to-one correspondence with the R(ξ )-subspaces of R(ξ )w.

Consider the system B ∈ L w and its rational annihilators
B⊥R(ξ ) . In general, this is an R [ξ ]-submodule, but not R(ξ )-
vector subspace of R(ξ )w. Its polynomial elements, B⊥R[ξ ]

always form an R [ξ ]-submodule over R [ξ ]w, and this module
determines B uniquely. Therefore, B⊥R(ξ ) also determines B

uniquely. Moreover, B⊥R(ξ ) forms an R(ξ )-vector space if and
only if B is controllable. More generally, the R(ξ )-span of

B⊥R(ξ ) is exactly B
⊥R(ξ )
controllable. Therefore the R(ξ )-span of the

rational annihilators of two systems are the same if and only if
they have the same controllable part. We state this formally.

Theorem 4. Let B1 be given by G1
( d

dt

)
w = 0 and B2 by

G2
( d

dt

)
w = 0, with G1,G2 ∈ R(ξ )•×w. The rows of G1 and

G2 span the same R [ξ ]-submodule of R(ξ )w if and only if
B1 = B2. The rows of G1 and G2 span the same R(ξ )-vector
subspace of R(ξ )w if and only if B1 and B2 have the same
controllable part, that is, if and only if B1 ∼controllable B2. �

6. LEFT-PRIME REPRESENTATIONS

In order to express system properties and to parametrize the
set of stabilizing controllers effectively, we need to consider
representations with matrices of rational functions over certain
special rings. We now introduce the relevant subrings of R(ξ ).

(1) R(ξ ) itself, the rational functions,
(2) R [ξ ], the polynomials,
(3) R(ξ )P , the set elements of R(ξ ) that are proper,
(4) R(ξ )S , the set elements of R(ξ ) that are stable,
(5) R(ξ )PS = R(ξ )P ∩R(ξ )S , the proper stable rational

functions.

We can think of these subrings in terms of poles. Indeed, these
subrings are characterized by, respectively, arbitrary poles, no
finite poles, no poles at {∞}, no poles in C+, and no poles in
C+ ∪{∞}. It is easy to identify the unimodular elements (that
is, the elements that have an inverse in the ring) of these rings.
They consist of, respectively, the non-zero elements, the non-
zero constants, the biproper elements, the miniphase elements,
and the biproper miniphase elements of R(ξ ).

We also consider matrices over these rings. Call an element of
R(ξ )•×• proper, stable, or proper stable if each of its entries
is. The square matrices over these rings are unimodular if
and only if the determinant is unimodular. For M ∈ R(ξ )•×•P ,
define M∞ := limx∈R,x→∞ M(x). Call the matrix M ∈ R(ξ )n×nP

biproper if it has an inverse in R(ξ )n×nP , that is, if det(M∞) 6=
0, and call M ∈ R(ξ )n×nS miniphase if it has an inverse in
R(ξ )n×nS , that is, if det(M∞) 6= 0 is miniphase.

Let R denote any of the rings R(ξ ), R [ξ ], R(ξ )P , R(ξ )S ,
R(ξ )PS . M ∈ Rn1×n2 is said to be left prime over R if for
every factorization of M the form M = FM′ with F ∈ Rn1×n1

and M′ ∈ Rn1×n2 , F is unimodular over R. It is easy to
characterize the left-prime elements. M ∈ R(ξ )n1×n2 is left
prime over R if and only if
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(1) M is of full row rank when R = R(ξ ),
(2) M ∈R [ξ ]n1×n2 and M(λ ) is of full row rank for all λ ∈C

when R = R [ξ ],
(3) M ∈ R(ξ )n1×n2

P and M∞ is of full row rank when R =
R(ξ )P ,

(4) M is of full row rank and has no poles and no zeros in C+
when R = R(ξ )S ,

(5) M ∈ R(ξ )n1×n2
P , M∞ is of full row rank, and M has no

poles and no zeros in C+, when R = R(ξ )PS .

Controllability and stabilizability can be linked to the existence
of left-prime representations over these subrings of R(ξ ).

(1) B ∈ L • admits a representation (1) with R of full row
rank, and a representation (2) with G of full row rank and
G ∈ R(ξ )•×•PS , that is, with all its elements proper and
stable, meaning that they have no poles in C+.

(2) B admits a representation (2) with G left prime over
R(ξ ), that is, with G of full row rank.

(3) B is controllable if and only if it admits a representation
(2) with G left prime over R(ξ ), that is, G has full row
rank and has no zeros.

(4) B is controllable if and only if it admits a representation
(1) with R ∈ R [ξ ]•×• left prime over R [ξ ], that is, with
R(λ ) of full row rank for all λ ∈ C.

(5) B is controllable if and only if it admits a representation
(2) that is left prime over R(ξ )P , that is, all elements of
G are proper and G∞ of full row rank, and G has no zeros.

(6) B admits a representation (2) with G left prime over
R(ξ )P , that is, all elements of G are proper and G∞ has
full row rank.

(7) B is stabilizable if and only if it admits a representation
(2) with G ∈ R(ξ )•×•S left prime over R(ξ )S , that is, G
has full row rank and no poles and no zeros in C+.

(8) B is stabilizable if and only if it admits a representation
(2) with G ∈ R(ξ )•×•PS left prime over R(ξ )PS , that is,
G∞ has full row rank and G has no poles and no zeros in
C+.

These results illustrate how system properties can be translated
into properties of rational symbols. Roughly speaking, every
B ∈ L • has a full row rank polynomial and a full row rank
proper and/or stable representation. As long as we allow a non-
empty region where to put the poles, we can obtain a represen-
tation with a rational symbol with poles confined to that region.
The zeros of the representation are more significant. No zeros
correspond to controllability. No unstable zeros correspond to
stabilizability. In Willems and Yamamoto (2007a) an elemen-
tary proof is given that does not involve complicated algebraic
arguments of the characterization of stabilizability in terms of
a representation that is left-prime over the ring of proper stable
rational functions. Analogous results can also be obtained for
image representations.

Note that a left-prime representation over R(ξ )PS exists if
and only if the behavior is stabilizable. This result can be com-
pared with the classical result obtained by Vidyasagar in his
book Vidyasagar (1985), where the aim is to obtain a proper
stable left-prime representation of a system that is given as a
transfer function, y = F

( d
dt

)
u, where F ∈ R(ξ )p×m. This sys-

tem is a special case of (2) with G = [Ip −F ], and, since it has
no zeros, y = F

( d
dt

)
u is controllable, and hence stabilizable.

Therefore, a system defined by a transfer function admits a

representation G1
( d

dt

)
y = G2

( d
dt

)
u with G1,G2 ∈ R(ξ )•×•PS ,

and [G1 G2] left coprime over R(ξ )PS . This is an important,
classical, result. However, in the controllable case, we can ob-
tain a representation that is left prime over R(ξ )P , and such
that [G1 G2] has no zeros at all. The main difference of our
result from the classical left-coprime factorization results over
R(ξ )PS is that we faithfully preserve the exact behavior and
not only the controllable part of a behavior, whereas in the clas-
sical approach all stabilizable systems with the same transfer
function are identified. We thus observe that the behavioral
viewpoint provides a more intrinsic approach for discussing
pole-zero cancellation. Indeed, since the transfer function is
a rational function, poles and zeros can — by definition —
be added and cancelled ad libitum. Transfer functions do not
provide the correct framework in which to discuss pole-zero
cancellations. Behaviors defined by rational functions do.

7. CONTROL

We refer to Willems (1997); Belur and Trentelman (2002)
for an extensive treatment of control in a behavioral setting.
In terms of the notions introduced in these references, we shall
be concerned with full interconnection only, meaning that the
controller has access to all the system variables. We refer to
Belur and Trentelman (2002) for a nice discussion of the
concepts involved.

In the behavioral approach, control is viewed as the intercon-
nection of a plant and a controller. Let P (henceforth ∈ L w)
be called the plant, C (henceforth ∈ L w) the controller, and
their interconnection P ∩C (hence also ∈L w), the controlled
system. This signifies that in the controlled system, the trajec-
tory w has to obey both the laws of P and C , which leads to the
point of view that control means restricting the plant behavior
to a subset, the intersection of the plant and the controller.

The controller C is said to be a regular controller for P if
p(P ∩C ) = p(P)+p(C ) .

and superregular if, in addition,
n(P ∩C ) = n(P)+n(C ) .

The origin and the significance of these concepts is dis-
cussed in, for example, (Belur and Trentelman , 2002, section
VII). The classical input/state/output based sensor-output-to-
actuator-input controllers that dominate the field of control are
superregular. Controllers that are regular, but not superregular,
are relevant in control, much more so than is appreciated, for
example as PID controllers, or as control devices that do not act
as sensor-output-to-actuator-input feedback controllers.

Superregularity means that the interconnection of the plant
with the controller can take place at any moment in time. The
controller C ∈ L w is superregular for P ∈ L w if and only if
for all w1 ∈ P and w2 ∈ C , there exists a w ∈ (P ∩C )closure

such that w′1 and w′2 defined by

w′1(t) =
{

w1(t) for t ≤ 0
w(t) for t > 0

,

and

w′2(t) =
{

w2(t) for t ≤ 0,

w(t) for t > 0
belongs to P and C , respectively. Hence, for a superregular
interconnection, any distinct past histories in P and C can be
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continued as one and the same future trajectory in P ∩C . In
Willems (1997) it has been shown that superregularity can also
be viewed as feedback.

The controller C is said to be stabilizing if P ∩C is stable,
that is, if w ∈ P ∩C implies w(t) → 0 as t → ∞. Note that
we consider stability as a property of an autonomous behavior
(a behavior B with m(B) = 0). In the input/output setting,
as in Vidyasagar (1985), the interconnection of P and C
is defined to be stable if the system obtained by injecting
artificial arbitrary inputs at the interconnection terminals is
bounded-input/bounded-output stable. Our stability definition
requires that w(t) → 0 for t → ∞ in P ∩ C . It turns out
that bounded-input/bounded-output stability requires (i) our
stability, combined with (ii) superregularity. Interconnections
that are not superregular cannot be bounded-input/bounded-
output stable. However, for physical systems these concepts
(stability and superregularity) are quite unrelated. For example,
the harmonic oscillator M d2

dt2 w1 +Kw1 = w2, with M,K > 0, is
stabilized by the damper w2 =−D d

dt w1 if D > 0. In our opinion,
it makes little sense to call this interconnection unstable, just
because the interconnection is not superregular.

Regularity and superregularity can be expressed in terms of left-
prime kernel representations with rational symbols.
Proposition 5. Consider the plant P ∈ L w. Assume that P
is stabilizable. Let P be described by P

( d
dt

)
w = 0 with P ∈

R(ξ )•×w left prime over R(ξ )S . By stabilizability of P such
a representation exists.

(1) C ∈ L w is a regular stabilizing controller if and only if
C admits a representation C

( d
dt

)
w = 0 with C ∈R(ξ )•×w

left prime over R(ξ )S , and such that

G =
[

P
C

]
is square and R(ξ )S -unimodular, that is, with det(G)
miniphase.

(2) C ∈ L w is a superregular stabilizing controller if and
only if C admits a representation C

( d
dt

)
w = 0 with C ∈

R(ξ )•×w left prime over R(ξ )PS , and such that

G =
[

P
C

]
is square and R(ξ )PS -unimodular, that is, with det(G)
biproper and miniphase.

�

The equivalence of the following statements can be shown:

[[P is stabilizable]]
⇔ [[∃ a regular controller C that stabilizes P]]
⇔ [[∃ a superregular controller C that stabilizes P]].

Combining this with the previous theorem leads to the follow-
ing result on matrices of rational functions.

Corollary 6. (1) Assume that G ∈ R(ξ )n1×n2
S is left prime

over R(ξ )S . Then there exists F ∈ R(ξ )(n2−n1)×n2
S such

that [
G
F

]
is R(ξ )S -unimodular.

(2) Assume that G ∈ R(ξ )n1×n2
PS is left prime over R(ξ )PS .

Then there exists F ∈ R(ξ )(n2−n1)×n2
PS such that[

G
F

]
is

R(ξ )PS -unimodular.

8. PARAMETRIZATION OF THE SET OF REGULAR
STABILIZING, SUPERREGULAR STABILIZING, AND

DEAD-BEAT CONTROLLERS

In this section, we parametrize the set of regular and superregu-
lar controllers that stabilize a given stabilizable plant P ∈L •.

8.1 Regular stabilizing controllers

Step 1. The parametrization starts from a kernel representation
P

( d
dt

)
w = 0 of P , with P ∈ R(ξ )p(P)×w(P) left prime over

R(ξ )S . By stabilizability of P , such a representation exists.

Step 2. Construct a P′ ∈ R(ξ )m(P)×w(P)
S such that[
P
P′

]
is R(ξ )S -unimodular. By corollary 6, such a P′ exists.

Step 3. The set of regular stabilizing controllers C ∈ L w(P)

is given as the systems with kernel representation C( d
dt )w = 0,

where
C = F1P+F2P′,

with F1 ∈ R(ξ )m(P)×p(P)
S is free and F2 ∈ R(ξ )m(P)×m(P)

S is
R(ξ )S -unimodular, that is, with det(F2) miniphase.

Step 3’. This parametrization may be further simplified using
controllability equivalence, by identifying controllers that have
the same controllable part, that is, by considering controllers
up to controllability equivalence. The set of controllers C ∈
L w(P) with kernel representation C( d

dt )w = 0 and C of the
form

C = FG+G′,

with F ∈ R(ξ )m(P)×p(P)
S free, consists of regular stabilizing

controllers, and contains an element of the equivalence class
modulo controllability of each regular stabilizing controller for
P .

8.2 Superregular stabilizing controllers

Step 1. The parametrization starts from a kernel representation
P

( d
dt

)
w = 0 of P , with P ∈ R(ξ )p(P)×w(P) left prime over

R(ξ )PS . By stabilizability of P , such a representation exists.

Step 2. Construct a P′ ∈ R(ξ )m(P)×w(P)
S such that[
P
P′

]
is R(ξ )PS -unimodular. By corollary 6, such a P′ exists.

Step 3. The set of superregular stabilizing controllers C ∈
L w(P) is given as the systems with kernel representation
C( d

dt )w = 0, where

C = F1P+F2P′,
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with F1 ∈ R(ξ )m(P)×p(P)
PS free and F2 ∈ R(ξ )m(P)×m(P)

PS
R(ξ )PS -unimodular, that is, with det(F2) biproper and
miniphase.

Step 3’. This parametrization may be further simplified using
controllability equivalence, by identifying controllers that have
the same controllable part, that is, by considering controllers
up to controllability equivalence. The set of controllers C ∈
L w(P) with kernel representation C( d

dt )w = 0 and C of the
form

C = FG+G,′

with F ∈ R(ξ )m(P)×p(P)
PS free, consists of superregular stabi-

lizing controllers, and contains an element of the equivalence
class modulo controllability of each superregular stabilizing
controller for P .

It is of interest to compare these parametrizations with the one
obtained in Kuijper (1995). We now show a very simple ex-
ample to illustrate the difference between the parametrizations
obtained in step 3 and step 3’.

Example: Consider the plant y = 0u, hence P = [1 0], and
the superregular stabilizing controller u + α

d
dt u = 0, with α ≥

0. Take P′ = [0 1] in the parametrizations. The set of (su-
per)regular stabilizing controllers is given by C

( d
dt

)
u = 0,

with C ∈ R(ξ ) miniphase in the regular case, and miniphase
and biproper in the superregular case. Taking F2(ξ ) = (1 +
αξ )/(1+2αξ ), for example, yields the controller u+α

d
dt u =

0, with α ≥ 0. The parametrization in step 3’ yields only the
controller u = 0, which is indeed the controllable part of u +
α

d
dt u = 0.

This example illustrates that the parametrization in step 3’ does
not yield all the (super)regular stabilizing controllers, although
it yields all the stabilizing controller transfer functions. Note
that the parametrization of step 3 does exclude the destabilizing
controller u+α

d
dt u = 0, with α < 0.

The trajectory-based parametrization is not only more general,
but it also give sharper results. It yields all stabilizing con-
trollers, without having to resort to equivalence modulo con-
trollability.
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