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Abstract: The system analysis of the MIMO optimal feedback quantization used to produce switching 
signals is proposed here. The switching signals are then fed into the switch mode power amplifier to drive 
actuator array. The architecture of the power amplifier used in this paper allows the sharing of switching 
elements among actuators and is different from the traditional one-to-one method in actuating a large 
number of devices. To actuate all of the devices at the same time, the MIMO optimal feedback 
quantization generates control signals optimally basing on minimizing the weighted measure of 
quantization error. The discussion on bounding the system states under the zero initial conditions is made. 
The result tells that the stability can be achieved by limiting the maximum amplitude of inputs when the 
MIMO system has stable zeros. To simplify the computational complexity of quantization, a sub-optimal 
method for actuating three-actuator system is mentioned. A design example of 2-input 2-output system 
which is applied to the class-D stereo audio amplifier (dual actuators) is addressed. The control 
performance and cross-talk behavior are investigated. 

 

1. INTRODUCTION 

There has been a growing need to achieve control objective 
using array of actuators. Examples include humanoid robots 
with a large number of motors [1], a variable shape of a 
reflective surface which can be applied to the projection 
display systems [2-3],  the Virtual Audio Reality (VAR) that 
manipulate the spatial sound [4] and the Audio Spotlight that 
puts the sound where we want [5], etc. The easiest way to 
drive the array actuators is to have an independent amplifier 
for each actuator. However, for a large number of actuators, 
this 1-to-1 configuration might be inefficient and costly [6]. 
Although several types of amplifier topology were proposed 
in [4] [7], there are limitations of the type of input signals or 
actuators [6]. Another issue involved in array actuation is the 
power amplification method. Switch mode amplifiers are 
very common in 1-to-1 cases. The switching signal can be 
generated either by PWM or Sigma-Delta methods. But for 
array actuators using modified architecture, the switching 
signal for any one of the amplifiers cannot be independent to 
others because the number of amplifiers is less than the 
number of actuators.  As a result, it is necessary to restrict the 
pattern of the switching signals.  
The power stage control topology for actuator array used in 
this paper can save the number of switching elements. 
Control of each actuator is bi-directional. Conventional 
design (H-bridge) requires 4 switching elements (e.g., 
MOSFET) for each actuator. For N actuators, the proposed 
method requires (2N+2) switching elements as compared 
with 4N elements in 1-to-1 cases. In other words, each 

switching element will be shared by at least two actuators. 
Therefore, the switching signals to the switching elements 
cannot be independent. This problem is then formulated as 
MIMO feedback vector quantization and is solved by the 
optimization technique proposed in [8]. The proposed method 
does not restrict the types of reference signals as compared 
with the one in [9]. Also, the stability analysis of the system 
is derived to obtain the design conditions. It allows us to 
design a stable system with arbitrary order. Further, the noise 
shaping that results in a better tracking of reference signals in 
the desired bandwidth is achieved by selecting the cut-off 
frequency of the filter properly. 
The paper is organized as follows. Section II introduces the 
proposed power stage topology and associated control 
problems. In section III, the MIMO formulation is discussed 
and the optimal solution is explained. Section IV performs 
the stability analysis and recommends the conditions that 
avoid the states of the system exceeding their boundaries. 
Section V discusses the quantization scheme of the 3-input 3-
output system and the sub-optimal concept. Lastly, an 
example of dual actuators (class-D amplifiers for stereo 
speakers) is demonstrated. Both cross-talk and SNR results 
are discussed. 

2. POWER AMPLIFIER SCHEME 

The architecture of power amplifier used here was discussed 
in [6]. We present a concise analysis in this section. 

2.1 Vector Actuation Power Amplifier 
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The structure of the actuation system for N actuators is shown 
in Fig. 1. Because switches are shared among adjacent 
actuators, only (2N+2) switches are needed. Comparing to 
the one-to-one full bridge actuation, the power amplifier used 
here saves (2N-2) switches. Because the actuation commands 
are not independent among actuators, we discuss the 
acceptable actuated states in the following.  

 

 
Fig. 1 1xN actuator array 

 

2.2 Conditions of 1xn Actuation Power Amplifier 

Firstly, the state of zero current is defined as no current flows 
from the supply voltage side (see Fig.2). Further, let us define 
the state “1” as current flowing through the actuator to the 
right direction and “-1” to the left direction (Fig. 1). Two 
design considerations and the corresponding rules are 
proposed to obtain the acceptable switching states of the 
vector actuation power amplifier. First, to protect switching 
elements from permanent damage, we have to avoid the 
switching states that result in the short circuit of the system. 
Second, to prevent the effect caused by mismatching of the 
actuators, states with sharing of voltage between adjacent 
actuators are not considered. Therefore, two rules are used 
when finding the switching conditions of general system [6], 
(i) Any two adjacent actuators cannot be in the same state 

except for zero state. 
(ii) Neighborhood actuators next to the zero-state actuator 

cannot be in the same state except for zero state. 
Following the rules, possible states of current flowing 
direction for dual actuators are shown in Table I. Note that 
there will be no state like [-1 -1] because it will result in a 
short circuit (see Fig. 3(a)). By turning off S3 and S4, the 
dual actuators are put in a serial connection and the voltage 
drop across each actuator will be 1/2 of the supply voltage if 
both actuators are identical (see Fig. 3(b)), i.e. yielding the 
state [1/2 1/2] which violates the rule (i) mentioned above 
and will not be used. 
Now we consider the case of three actuators as indicated in 
Fig. 4. The acceptable switching conditions for 31×  actuation 
system can be calculated by adding an extra actuator at the 
left side of the dual actuation system which has seven 
applicable switching states (conditions A to G in Table I). 
Consequently, the primitive number of switching conditions 
is 2173 =× . But conditions that violate the rules have to be 
avoided; the number of acceptable states is less than 21. For 
example, there are only four acceptable states (conditions 
E,F,G and H in Table II) when the added actuator of 31×  
actuation system is in state “+1”. It is because that state A,B 
and C in Table II result in the sharing voltage of actuators 
and state D results in the short circuit of the power stage (see 
Fig. 5) if the added actuator is in “+1” mode. Note that all of 
the seven states are allowed if added actuator is in state 0. As 

a result, the total number of appropriate states is 
1215474 4 −==++  in 31×  system. 

 

 
Fig. 2  The switching methods of zero state 

 
Table I Possible states of current flowing direction (L and R 

represents left and right actuator in Fig. 2) 
States A B C D E F G

L 1 1 0 0 0 -1 -1
R -1 0 1 0 -1 1 0

 

 
(a)                                                   (b) 

Fig.3 The switching method of  (a) [-1 -1] state which is not 
allowed because of short circuit (b) [-1/2 -1/2] state 

 

 
Fig.4 The circuit of 1x3 actuator array 

 
The same procedure can be applied to 4 actuators based on 

31×  system. The number of prohibited states is 0 when 
added actuator is in “0” state and 7 otherwise. The resulting 
possible number of states is 31. In general, for n actuators, 
the number of valid states can be shown as [6], 

12)12(2)12(3 121 −=−×−−× +−− nnn .       (1) 

 
Fig.5 The switching method of [1 0 1] state 

 
Table II some states of 1x3 actuator array 

Actuator  I Actuator II Actuator III state
1/3 1/3 1/3 A 
1/2 1/2 0 B 
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1/2 1/2 -1 C 
1 0 1 D 
1 0 0 E 
1 0 -1 F 
1 -1 1 G 
1 -1 0 H 
1 -1/2 -1/2 I 
-1 0 -1 J 

    
 

3. SWITCHING COMMAND GENERATION VIA 
OPTIMAL FEEDBACK QUANTIZATION 

In this section, the method to produce switching commands 
for general n×1  power stage topology mentioned in 
preceding section is discussed. The purpose is to track the 
reference signals. For single actuator, previous work in [10] 
has proposed a sigma-delta modulation method to generate 
switching command at a higher sampling rate. 

3.1 Optimal MIMO Feedback Quantization 

The optimal quantization algorithm proposed in [8] is 
extended to the MIMO setting as depicted in Fig. 6. The 
details are introduced in [6] and we only give a brief 
description. Error vector e  is the result of difference between 
up-sampled reference signals a  and system output u  filtered 
by weighting filter W(z). “Optimal Decision Algorithm” 
computes control forces uu  that minimizes e  and 
“Quantization” quantizes uu  according to the limitation due 
to the power stage topology as described in Section II (e.g., 
for dual actuators, there are 7 quantized vector: [1 -1], [1 0], 
[0 1], [0 -1], [0 0], [-1 1], [-1 0]). 
 

 
Fig.6 Optimal MIMO Feedback Quantization 

 
( )zW  can be represented by a state space form as,  

( 1) ( ) ( ( ) ( ))

( ) ( ) ( ( ) ( ))

k A k B k k

k C k D k k

⎧ + = + −⎪
⎨

= + −⎪⎩

x x a u

e x a u
   (2) 

where 111 , ××× ∈∈∈ nnn RRR u e ,a . n is the dimension of inputs 
as well as output space. Further, assume the dimension of the 
state space is nm× , we have  

,  ,  ,  mn mn mn n n mn n nA R B R C R D R× × × ×∈ ∈ ∈ ∈ . The “Optimal 
Decision Algorithm” is derived by considering the following 
cost function to minimize  e , 

( ) ( )TV k P k=e e                                       (3) 
where TP = P  is an nn×  matrix. The optimal solution to the 
equation above is obtained by substituting (2) into (3), and is, 

))()((1 kDkCDuu ax += −     (4) 
The “Quantization” block in Fig. 6 is an n-dimensional 
quantization defined as, 

}{1
uuQqQu −=      (5) 

where T TQ Q D PD=  and q{.} is the Nearest Neighbor Vector 
Quantizer [8]. The block diagram of “Quantization” is shown 
in Fig. 7. 
 

 
Fig. 7 Block diagram of Quantization 

 

4. BOUNDING THE ERROR SIGNAL AND SYSTEM 
STATES FOR 21×  ACTUATOR ARRAY 

The stability of the 2-input 2-output nonlinear feedback 
system (see (2) and (5)) is analyzed based on the idea in [11]. 
Because the quantization scheme of the optimal feedback 
system is more complicated than the system in [11], further 
analysis is required to derive the stability boundary of the 
allowable input amplitude. 
Proposition 1: Consider the 2-input 2-output system (2) 
under the control law (5) and define )k(d  as the input vector 
of the quantizer (see (4) and (5)). The elements of )(ke  are 
bounded under the zero initial conditions if inputs of the 
system satisfy, 

a)k( ≤
∞

a , where ),min( 21 aaa = , 

 
( )( ) [ ]

( )( ) [ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+−=

∞∞

∞∞

1
1

10

1
1

01

1222122

1121111

Q/e)z(P)z(Pda

Q/e)z(P)z(Pda
, 

⎥
⎦

⎤
⎢
⎣

⎡
=

)k(d
)k(d

)k(
2

1d , 
2211 )()( dkddkd ≤≤

∞∞
  , , 

and 

)}({
)()(
)()(

)}({
2221

1211 kZ
zPzP
zPzP

kCZ ex ⎥
⎦

⎤
⎢
⎣

⎡
= . 

}{yZ  is the z-transform of y and 1e  is defined in the proof. 
Proof: There are two parts of the proof. First, we show that 

elements of )k(QD)k( ee1
1−

Δ

=  are bounded if the elements of 
)(kd  are bounded. Second, the allowable input amplitude is 

calculated to prevent elements of )(kd  exceeding these 
bounds. 
From (2), (4) and (5), )k(e can be written as, 

( )})k(D(k)CQD{qDQ)k(D(k)C)k( axaxe +−+= −− 11       (6) 
Then we obtain, 

( ) ( )
)}k({q)k(

})k(D(k)CQD{q)k(D(k)CQD)k(

dd         

axaxe1

−=

+−+= −− 11
  (7) 

Equation (7) indicates that the elements of )k(1e are the 
difference between the inputs and the outputs of the Nearest 
Neighbor Vector Quantizer [8]. Also, for the 2-input 2-output 
system, this quantizer can be implemented geometrically by 
computing the nearest distance between the quantizer inputs 
and the constrained outputs [12]. For example, if only seven 
of the control commands listed in table1 are considered, 
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the quantizer output is one of the following vectors,  
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Hence, one example of the input output relation of the 
quantizer is shown in Fig. 8 and elements of )k(1e  (i.e. the 
difference between quantizer inputs and outputs) are bounded 
if inputs of the quantizer are also bounded [12]. Therefore, 
we write, 

1
1 e)k(QD)k( - <= ee1

, 

where 1e  can be obtained geometrically from Fig. 8 (the 
derivation is omitted here due to page limit). The bound of 

)k(e  is shown below if 1−QD  is invertible, 

( ) ( ) ( ) 1
111 eQD)k(QD)k(QD)k( --- -1

1
-1

1
-1 eee ≤≤= .   (8) 

 
Fig.8 Partition the input space by the quantizer 

Secondly, we want to find out the acceptable amplitude of 
inputs to bound elements of )(kd . Because 
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If the bound is set as, 
11 d)k(d ≤

∞
      (9) 

the amplitude of inputs must satisfy the following equation to 
prevent violation of (9) under the zero initial conditions [11], 
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         (10) 
The same procedure is applied to the limit, 

22 d)k(d ≤
∞

 
and the allowable input amplitude is, 
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        (11) 
As a result, the amplitude of inputs must satisfy both (10) and 
(11) as indicated in proposition 1. 

Proposition 2: For the 2-input 2-output system (2) under the 
control law (5), the states are bounded under the zero initial 
conditions if  
(i) zeros of the system ( )zW  are stable 
(ii) elements of )k(e  are bounded 
Proof: From (2), )k(u  is written as, 

))k(C(k)(D(k))k( xeau −−= −1    (12) 
Substituting (12) into the first equation of (2), the system is 
then become, 

)k(BD)k()CBDA()k( exx 111 −− +−=+   (13) 
If elements of )k(e  are bounded, then the states are bounded 
if the system (13) is stable, indicating that the eigenvalues of 
the matrix ( )CBDA 1−−  must lie inside the unit circle. If the 
shaping filter ( )zW  is designed without pole zero 
cancellation, then the eigenvalues of ( )CBDA 1−−  are exactly 
the zeros of ( )zW  [11]. Therefore, the system with stable 
zeros has bounded states under zero initial conditions if the 
amplitude of both inputs satisfies (10) and (11).  

For general n×1  actuation systems, the same procedure can 
be applied to ensure the stability of the system under zero 
initial conditions. The key idea is that we have to select the 
upper bound of the quantizer inputs and find out the 
maximum difference between inputs and outputs of the 
quantizer (see (7)). Once the elements of  )k(1e are all 
bounded, the error is also bounded (see (8)) indicating that 
the states of system with stable zeros are all bounded if the 
amplitude of inputs is limited by, 
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and )k(di is the upper bound of the i-th input of the quantizer. 
To obtain the bound of )(k1e (see (7)), the analysis of optimal 
quantization scheme is required. In the following, the 
quantization system with 3 actuators is discussed. 

5. QUANTIZATION SHCEME OF THE 3-ACTUATOR 
SYSTEM 

For 31× actuation system (see Fig.4), there are 15 situations 
can be selected for the quantizer output (see (1)). Because the 
input of the quantizer is a vector with length 3, the 
quantization partitions the 3-D space into 15 portions 
according to nearest distance between input and constrained 
output of the quantizer. Although it can also be solved 
geometrically, the cost of implementation is high due to the 
complexity. Therefore, a suboptimal architecture of the 
quantization is proposed here to reduce the dimension of the 
quantizer (see Fig.9), i.e., the 3-dimensional quantization is 
replaced by a 2-dimension quantizer (see Fig. 8) and a one-
dimension quantizer (scalar quantizer). Inputs of 2-
dimensional quantizer are selected from the first or the last 
two inputs of quantization block and the input of the other 
quantizer is the remainder one. Because these three outputs of 
the quantization are not independent, the results of 2-
dimensional quantization will influence the output of the 1-
dimensional quantization. In the implementation, the outputs 
of 2-dimensional quantizer are calculated first and then the 
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results are used to calculate the output of 1-dimensional 
quantizer. As a result, the error of the remainder channel is 
larger than the other two. To avoid this phenomenon, the 
inputs of 2-dimension quantizer will be selected alternatively 
from the first and the last two inputs of the quantization block. 
 

 
Fig. 9 Block diagram of the system with sub-optimal 

quantization 
 

6. EXAMPLE AND SIMULATION RESULT 

The architecture proposed in this paper is applied to dual-
channel class-D audio amplifier. In the traditional class-D 
amplification, half-bridge and full-bridge power amplifier are 
usually used. Comparing to the half-bridge, the system in this 
paper avoids the circuit to produce mid-voltage that 
influences the performance seriously. Further, the system 
protects 2 switching devices as compared to full-bridge 
system in dual-channel actuation. In the following, the design 
of the shaping filter and 2-D quantizer are discussed with 
calculating the maximum input amplitude for stability. The 
simulation in second part verifies the performance and 
stability boundaries of the system.  

6.1 Design Example 

Since there is no coupling of the actuators and both actuators 
are identical, the weighting filter ( )zW  can be written as: 

⎥
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Because the bandwidth of input audio signal is within 
22.05kHz, the performance is characterized at low frequency. 
Therefore, w(z) is selected as a second order low-pass filter 
with cutoff frequency 150kHz. The state space matrices of 
the system are: 
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Because the eigenvalues of ( )CBDA 1−−  are ( )2180790 .j. ± , 
the zeros of the system are stable. Further, by 
selecting ⎥

⎦

⎤
⎢
⎣

⎡
=

15.0
5.01

P and using singular value 

decomposition, we get ⎥
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mismatch of speakers, we use only seven of the control 
commands listed in table 1:  

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡−
⎥
⎦

⎤
⎢
⎣

⎡−
=

0
1

,
1

1
,

1
0

,
0
0

,
1

0
,

1
1

,
0
1

      U                   

Therefore, the quantizer partitions its 2-dimensional input 
space into seven regions according to the nearest neighbor 
rule. Since  
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the partitions are obtained by computing the nearest point 
in 'U .Hence, the input output relation of the quantizer is 
shown in Fig. 10. To ensure the stability of the system, the 
amplitude of inputs are limited to, 

32.0)38.0,32.0min()( ==≤
∞

aka .  
And the boundaries of inputs of the quantizer are, 

791241 21 .)k(d,.)k(d ≤≤
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  .   (14) 

 
Fig.10 Partition the input space by the quantizer 

To compute the output 1 2(   )Tu u u= , a straightforward 
method is to construct the quantization boundary. For 
example, Fig. 11 shows the geometrical partitions of 1u  
where the boundaries can be described as, 

}{}24.173.1{
}62.0{}73.1{1
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Fig.11 input output relation of the quantized variable u1 

 
It can be shown that,  

⎩
⎨
⎧ =

=
else

vsignvsignforvsign
u

                           
    

0
)()()( 211

1
.                                  

The second element 2u  can be obtained in the same way. 

6.2 Simulation Results 

Two sinusoidal waves at 1 KHz and 2 KHz with normalized 
amplitude 0.3 and sampled at 48 KHz are applied to the 
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system as the reference signals. Fig.12 and Fig. 13 plot the 
output spectrum obtained by taking DFT (Discrete Fourier 
Transform) of the binary outputs. The resulting SNDR 
(Signal to Noise Distortion Ratio, see [10] ) are 97dB and 
98dB respectively. SNDR already characterizes the cross-talk 
by viewing its negative values (e.g., -97 dB and -98 dB).  
Specifically, it can be seen from Fig. 12 that the amplitude of 
2 KHz signal is 97 dB below the reference signal at 1 KHz. 
The same result can be observed from Fig.13. Fig.14 shows 
the resulting output waveforms filtered by a low pass filter 
cutoff at 22.05 KHz. Fig. 15 plots the inputs of the quantizer 
which satisfy (14). 

 
Fig.12 DFT of output1 

 

 
Fig.13 DFT of output2 

 

 
(a)                                                 (b) 

Fig.14 Waveform of output1 after filtering (a)1 KHz (b) 2 
KHz 

 

 
(a)                                                        (b) 

Fig 15. Inputs of quantizer (k)d  (a) )(1 kd  (b) )(2 kd  
 

7. CONCLUSION 

The vector actuated power amplification using MIMO 
optimal feedback quantization is analyzed here. The 
architecture of power amplification saves (2N-2) switching 
devices comparing to the independent full-bridge actuation 
system. The stability analysis of MIMO optimal feedback 
quantization is proposed basing on bounding the system 
states. Further, the states can be bounded by limiting the 
maximum amplitude of inputs if the zeros of the shaping 
filter are all stable. The architecture of 3-D quantizer in 31×  
actuation system is addressed considering the sub-optimal 
solution of the cost function. It shows that the 3-dimension 
quantization can be replaced by a 2-D quanitzer and a scalar 
quantizer connected in serial. In the example, a stable 2-input 
2-output system which is applied to dual-channel class-D 
audio amplifier is designed. The simulation results show the 
effectiveness of the proposed scheme in both control 
performance and very little cross-talk. In the future work, the 
quantization scheme of general n×1  system will be derived 
considering the sub-optimal of the cost function. This method 
simplifies the implementation of quantization block 
efficiently. 
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