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Abstract: This paper investigates a few issues related to the problem of robust output feedback
stabilization of nonlinear non-minimimum phase systems. In order to cope with (unstructured)
parametric uncertainties we insist on well-known high-gain design principles which, however, are
integrated with robust zero-assignment procedures to handle possible unstable zero dynamics. In
this respect we propose two possible zero-assignment arguments. The first relies upon an output
redesign obtained by means of a ”feed-through” compensator. Interestingly enough, we show
how existing results on this subject can be cast in terms of the resulting feed-through / high-gain
design paradigm. In the second, by drawing inspiration from known results for linear systems
which go under the name of vibrational-feedback, the output redesign is achieved by using time-
varying periodic controllers. Remarkably, we show how the resulting design framework is able to
deal also with severe uncertainties in the high-frequency gain of the controlled system by thus
obtaining results which turn out to be interesting also in a linear setting.
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1. INTRODUCTION

We consider a smooth nonlinear system of the form
ẋ = f(x, u) y = h(x) x ∈ Rn (1)

with control input u ∈ R, measurable output y ∈ R and
initial condition in a compact set X ⊂ Rn. For this system
we address the problem of output feedback stabilization
which amount to design a controller of the form

χ̇ = α(χ, y) u = β(χ, y) (2)

such that the origin of the resulting closed-loop system is
locally asymptotically stable with a domain of attraction
whose projection in the x-space contains X. Implicit in
the above description is the presence of possible uncertain
parameters which affect the controlled dynamics whose
values range in possibly large known compact sets.

It is a well-known fact that the problem at hand has a
meaningful solution in the case the controlled system (1)
has a well-defined uniform 2 relative degree, namely it is
globally diffeomorphic to a system in normal form, and
the system is minimum-phase, namely the associated zero
dynamics are asymptotically stable with a proper domain
of attraction. As a matter of fact, in this case, the theory in
Teel and Praly (1995) shows how a combination of a robust
high-gain observer and high-gain output feedback does the
job. Roughly, the asymptotic stability of the zero dynamics
1 This work was supported in part by MIUR. Corresponding author:
Dr. Lorenzo Marconi, Tel: 0039.051.2093788, Fax: 0039.051.2093073,
email: lorenzo.marconi@unibo.it.
2 with respect to the uncertain parameter.

represents the crucial property to have a system with an
infinity gain margin which makes it possible the adoption
of high gain control laws which, in turn, are crucial to offset
the effect of (possibly large) parametric uncertainties.

In this note we explore possible solutions insisting on
the high/gain paradigm in the case the system is non-
minimum phase. The solution necessarily passes through
a zeros assignment procedure which can be obtained by
defining a new output (and possibly a new input) with
respect to which the gain margin is infinity. In other words
the idea is to figure out a way to identify a new input-
output pair with respect to which the zeros dynamics
are asymptotically stable. Then, the stabilization can be
achieved by adopting the ”usual” high-gain paradigm with
respect to the new input-output pair. In these terms there
are two possible ways to robustly assign zeros: the first is
by means of feed-through compensators while the second is
by means of time-varying periodic fast controllers. These
two methods and related considerations are discussed in
the next two subsections.

2. OUTPUT FEEDBACK STABILIZATION VIA
FEED-THROUGH AND HIGH-GAIN

A natural way to deal with the robust output feedback
stabilization of nonminimum-phase systems is the one
relying upon a feed-through compensator of the form

η̇ = ϕ0(η) + ϕ1(η)v
u = γ0(η) + γ1(η)v

yf = r(η) .
(3)
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feeding the controlled system through the function γ0(η)+
γ1(η)v and generating a feed-through signal r(·) which,
along with the measurable output y, induces a new output
ỹ := y−yf . The objective of the feed-through compensator
is to generate a system of the form

ẋ = f(x, γ0(η) + γ1(η)v)
η̇ = ϕ0(η) + ϕ1(η)v
ỹ = h(x)− r(η)

(4)

which, with respect to the input v and output ỹ, is
minimum-phase so that conventional high-gain techniques
can be adopted to close the loop between the two signals
ỹ and v.
Proposition 1. Suppose that system (4) is affine in the
input v and that there exists a feed-through compensator
of the form (3) such that system (4) with input v and
output ỹ has a well-defined relative degree and the origin
of the associated zero dynamics are asymptotically stable
(locally exponentially 3 ) with a a domain of attraction
M×X with X ⊂ X . Then there exists a dynamic output
feedback stabilizer of the form (2) solving the problem at
hand.

Proof. The result immediately follows by the results of
Teel and Praly (1995). In particular if the relative degree
of the system (1)-(3) with input v and output ỹ is one,
it follows that there exists a positive κ? such that for all
possible κ ≥ κ? the output feedback controller

η̇ = ϕ0(η) + ϕ1(η)v
u = γ0(η) + γ1(η)v
v = κ[y − r(η)]

solves the problem at hand. In the case of higher relative
degree, the use of high-gain dirty derivatives observers
makes it possible to solve the problem as proposed in Teel
and Praly (1995).

Interestingly enough, it is possibly to show that the
existence of a feed-through compensator of the form (3)
is not only a sufficient condition to design an output
feedback stabilizer (as claimed by the previous theorem)
but, indeed, also necessary. In other words the existence
of an output feedback stabilizer for (1) necessarily implies
the existence of a feed-through compensator of the form
(3) yielding a minimum phase system (4).
Proposition 2. Assume that there exists a smooth stabi-
lizer of the form

χ̇ = L(χ) + M(χ)y
u = N(χ) + d(χ)y (5)

with d(χ) 6= 0 such that the closed-loop system (1), (5) is
asymptotically (locally exponentially) stable with domain
of attraction X ×C with X ⊂ X . Then there exists a feed-
through system of the form 4

3 the local exponential stability requirement can be weakened with-
out adding, however, conceptual value to the result
4 see Misra and Patel (1988) for linear systems.

η̇1 = v

η̇2 = L(η2)− 1
d(η2)

M(η2)N(η2) +
1

d(η2)
M(η2)η1

u = η1

yf =
1

d(η2)
[−N(η2) + η1]

(6)

such that system (1), (6), with input v and output ỹ =
y − yf , has relative degree one and the associated zero
dynamics coincide with the closed-loop dynamics of (1),
(5).

The proof is by direct check.

Remark. It is worth noting that the previous result relies
upon the somehow restrictive assumption that the stabi-
lizer (5) is affine in the measured output y. Furthermore
we note that it has been assumed a stabilizer (5) with
zero relative degree (d(χ) 6= 0). Indeed, it can be proved
that the result holds also in the case the output feedback
stabilizer of the form

χ̇ = L(χ) + M(χ)y
u = N(χ) .

(7)

In fact, consider the regulator

χ̇ = L(χ) + M(χ)y
u = N(χ) + εy

(8)

with ε a positive parameter. If the closed-loop of (1) with
(7) is asymptotically stable with a domain of attraction
X ×M with X ⊂ X , Lyapunov arguments can be used
to prove that there exists an ε? such that for all ε ≤ ε?

also the closed-loop of (1) with (8) is asymptotically stable
with a domain of attraction X ′ ×M′ with X ⊂ X ′. From
this the previous proposition yields that a feed-through
compensator of the form (6) with d(χ) replaced by ε has
the desired properties.

Clearly, the previous result about the existence of the feed-
through compensator is useless for design purposes as it
starts from the knowledge of an output feedback stabilizer.
Thus the previous framework to stabilize systems via
”feed-through” and ”high-gain” seems useful for design
purposes if one finds a way to stabilize the zero dynamics
of system (4) without relying upon the knowledge of
a system stabilizer. In the following we present a few
developments along this direction which allow us to frame,
in the previous ”feed-through” and ”high gain” paradigm,
the approach proposed in Isidori (2000). To this purpose
we restrict our attention on the class of systems (1) which
are affine in the input and characterized by a well-defined
unitary relative-degree so that they can be transformed in
the normal form

ż = f(z, y)
ẏ = q(z, y) + b(z, y)u (9)

with b(z, y) 6= 0 the high-frequency gain. In the case the
relative degree is larger than one (namely if y in (9) is not
the measured output but one of its time derivative) the
techniques in Teel and Praly (1995) allow one to extend in
a straightforward way the results we are going to present.
Coherently with the state partition in (9) we denote by
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Z×Y the compact set of initial condition where the initial
state of (9) is supposed to range.

Motivated by the framework in Isidori (2000) we associate
to system (9) the “auxiliary system”

ż = f(z, ua)
ya = q(z, ua) (10)

with auxiliary input ua and output ya and we make the
following stabilizability assumption (which, as shown in
Isidori (2000), is necessary for the problem at hand to be
solvable in case of linear systems):

Assumption AUX. There exists an “auxiliary controller”
of the form

η̇ = ϕ0(η) + ϕ1(η)ya

ua = r(η) (11)

such that the closed auxiliary loop (10)-(11) is locally
exponentially stable with a domain of attraction which
projected in the z-space contains the set Z.

Under this assumption it is possible to show that, if the
high-frequency gain b(z, y) of system (9) is known, i.e.
b(z, y) = b(y) with b(y) not affected by uncertainties, a
feed-through compensator of the form (3) can be designed
so that the zero dynamics of system (9)-(3) with respect
to the input v and output ỹ = y − yf are asymptotically
stable. As a matter of fact, the constraints ỹ = 0 and ˙̃y = 0
yield that, along the zero dynamics of (9)-(3), the following
holds

∂r

∂η
[ϕ0(η) + ϕ1(η)v] =

q(z, r(η)) + b(r(η)) [γ0(η) + γ1(η)v]
(12)

This expression suggests the choice

γ0(η) =
1

b(r(η))
∂r

∂η
ϕ0(η)

γ1(η) =
1

b(r(η))

[
∂r

∂η
ϕ1(η)− 1

] (13)

yielding a zero dynamics
ż = f(z, r(η))
η̇ = ϕ0(η) + ϕ1(η)q(z, r(η)) (14)

which, by assumption, is asymptotically stable. From this
it turns out, by following the arguments of Proposition 1
and by observing that, by the previous choice, the relative
degree between the output ỹ and the input v is one, that
there exists a κ? > 0 such that for all κ ≥ κ? the controller

η̇ = ϕ0(η) + ϕ1(η)v

u =
1

b(r(η))

[
∂r

∂η
ϕ0(η) +

(
∂r

∂η
ϕ1(η)− 1

)
v

]

v = κ(y − r(η))

(15)

solves the problem at hand. It is interesting to note that
the final controller so-obtained is the same as the one
proposed 5 in Isidori (2000) which, as a consequence, can
5 Indeed the framework of Isidori (2000) considered an auxiliary
controller (11) and a final controller (15) with an “input map” ϕ1(·)
not state dependent (ϕ1(·) = M). However this limitation could be
easily removed even in Isidori (2000).

be seen as a particular way of designing output feedback
controller via feed-through and high-gain.

It is worth noting how the knowledge of the high frequency
gain plays a crucial role in the previous control structure.
In the following part we make a few attempts to show
how the not perfect knowledge of the term b(z, y) can be
tolerated in the previous paradigm. In particular we show
how the most natural choice which one would make to
extend the previous results in presence of an uncertain
b(z, y) leads to the considerations and results reported in
Isidori (1999).

The same computations carried out before to compute the
zero dynamics of system (9), (3) lead to the relation (12)
with b(r(η)) replaced by b(z, r(η)). This, inspired by the
choice (13), suggests to take

γ0(η) =
1
b0

∂r

∂η
ϕ0(η) γ1(η) =

1
b0

[
∂r

∂η
ϕ1(η)− 1

]

with b0 being the nominal value of the high frequency gain
at the equilibrium, yielding the following relation

v = q(z, N(η))−∆w

w =
[

∂r

∂η
ϕ1(η)v − v +

∂r

∂η
ϕ0(η)

]
(16)

with ∆ = b0−b(z,r(η))
b0

. Note that if b(z, r(η)) = b(r(η))
were known, the choice b0 = b(r(η)) would yield ∆ = 0
and, in turn, the same ideal controller obtained before.
The overall zero dynamics are thus given by the feedback
composition of the auxiliary system (10) with the system

η̇ = ϕ0(η) + ϕ(η)v
ua = r(η)

w =
∂r

∂η
ϕ1(η)v − v +

∂r

∂η
ϕ0(η)

with v given by v = ya−∆w (see (16)). According to this
the zero dynamics have the desired asymptotic properties
if the assumption AUX before is strengthened by asking
that the “ideal” interconnection (14) remains asymptoti-
cally stable under the effect of the extra perturbation ∆w
which, in turn, requires the term ∆ to be “sufficiently
small”. These are precisely the same considerations and
conclusions drawn in Isidori (1999).

The previous considerations highlights a structural limita-
tion in the stabilization paradigm based on robust zeros
assignment via feed-through to deal with (severe) uncer-
tainties in the high frequency. In the next section we show
how this limitation can be overcome, for a particular class
of nonlinear systems, by using time-varying controllers.

3. ZERO-DYNAMICS ROBUST STABILIZATION VIA
VIBRATIONAL FEEDBACK

It is a well-known fact for linear systems that fast periodic
controllers have the ability to assign zeros (see Lee et al.
(1987)). In this part we show how the same can be
obtained in a nonlinear framework and, above all, how
severe uncertainties on the high-frequency gain can be
dealt with in this framework.

We consider the special class of nonlinear systems de-
scribed by
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ż = f(z, y, µ)
ẏ = q(z, y, µ) + b(µ)u (17)

with input u, measured output y, initial condition in a
known compact set Z × Y, in which µ is a vector of
uncertain parameters ranging in a known compact set, b(µ)
is the high-frequency gain assumed constant, and f(·), q(·)
are functions which are assumed affine in the output y,
namely

f(z, y, µ) = f0(z, µ) + f1(z, µ)y
q(z, y, µ) = q0(z, µ) + q1(z, µ)y .

(18)

The main goal is to design a semiglobal output feedback
stabilizer which does not depend explicitly on the high-
frequency gain as in the existing stabilization frameworks.

The main assumption regards the existence of a linear
output feedback stabilizer for the auxiliary system (see
Isidori (2000))

ż = f(z, u′a, µ)
ya = q(z, u′a, µ) (19)

with input u′a and output ya. More specifically it is as-
sumed the following:

Assumption VIB. There exists a triplet (F, G,N), such
that (19) in closed-loop with

η̇ = Fη + Gya

u′a = Nη
(20)

is globally asymptotically (locally exponentially) stable 6 .

The proposed controller is of the form

η̇ = Fη + B(
t

ε
)κy

u = β̇(
t

ε
)η + β(

t

ε
)
[
Fη + B(

t

ε
)κy

]
+ ua(

t

ε
)

(21)

where ε and κ are design parameters, ua(t/ε) is an aux-
iliary control input yet to be chosen, β(t/ε) and B(t/ε)
are time-varying (row and column) vectors, with B(·) of
the form B(t/ε) = B0k(t/ε) with B0 a column vector and
k(t/ε) a scalar function, to be chosen. The time varying
entries of the control law are supposed to be functions with
a well-defined averaged description (for instance periodic
functions).

Consider the change of variable

y 7→ ỹ := y − b(µ)β(
t

ε
)η

which transforms the closed-loop system as

6 Global Stability can be weaken to local asymptotic stability
with a suitable domain of attraction. Furthermore, without loss of
generality, we assume GTG = 1.

ż = f(z, ỹ + b(µ)β(
t

ε
)η, µ)

˙̃y = q(z, ỹ + b(µ)β(
t

ε
)η, µ) + b(µ)ua(

t

ε
)

η̇ = Fη + Bok(
t

ε
)κ

[
ỹ + b(µ)β(

t

ε
)η

] (22)

In this system the parameter ε, which will be eventually
chosen small, represents an averaging parameter which is
used to simplify the closed-loop analysis. In particular, by
re-scaling time as τ = t/ε and denoting x′ = dx/dτ , system
(22) reads as

z′ = εf(z, ỹ + b(µ)β(τ)η, µ)

ỹ′ = εq(z, ỹ + b(µ)β(τ)η, µ) + εb(µ)ua(τ)

η′ = εFη + εBok(τ)κ [ỹ + b(µ)β(τ)η]

(23)

whose asymptotic properties can be studied by considering
the averaged system. Denoting by k̄, β̄, kβ and ūa the
averaged descriptions of the functions k(τ), β(τ), k(τ)β(τ)
and ua(τ) respectively, and by taking advantage of (18),
it turns out that the averaged description of (23) is given
by

1
ε
z′ = f(z, ỹ + b(µ) β̄ η, µ)

1
ε
ỹ′ = q(z, ỹ + b(µ) β̄ η, µ) + b(µ)ūa

1
ε
η′ = Fη + Boκ

[
k̄ ỹ + b(µ) kβ η

]
.

(24)

Proposition 3. Under the assumption VIB formulated be-
fore, let the degree-of-freedom of the controller (21) be
chosen so that

−kβ

k̄
+ β̄ = N , Bo

(
− k̄

kβB0

)
= G (25)

and choose ua so that

ūa = −kβ

k̄
Fη , (26)

Then for any compact set Z ⊂ Rdimz, Ỹ ⊂ R and
M ⊂ Rdimη there exists a κ? > 0 (not dependent on ε)
such that for any κ ≤ −κ? system (24) is asymptotically
(locally exponentially) stable with domain of attraction
containing Z × Ỹ ×M.

Proof. Consider system

ż = f(z, ỹ + b(µ) β̄ η, µ)

˙̃y = q(z, ỹ + b(µ) β̄ η, µ) + b(µ)ūa

η̇ = Fη + Boκ
[
k̄ ỹ + b(µ) kβ η

]
(27)

which, somewhere, will be written as ẋ = f(x) with
x = col(z, ỹ, η). Note that this system can be regarded
as the system

ż = f(z, ỹ + b(µ) β̄ η, µ)
˙̃y = q(z, ỹ + b(µ) β̄ η, µ) + b(µ)ūa

η̇ = Fη + Bov

w = k̄ ỹ + b(µ) kβ η

(28)
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with input v and output w, under the static positive
feedback

v = κw .

Moreover, if kβB0 6= 0, it turns out that system (28) has
a well-defined unitary relative degree. We show that the
choices (25), (26) make the zero dynamics of system (28)
with respect to the input v and the output w asymptoti-
cally stable and, in particular, coincident with the auxil-
iary loop characterizing the main assumption formulated
before. To compute the zero dynamics, note that

w = 0 ⇒ ỹ = −b(µ)
kβ

k̄
η

and that, in the case kβB0 6= 0 and ua(τ) is chosen
so that its averaged description satisfies (26) the friend
v associated to the zero dynamics (computable by the
constraint w′/ε ≡ 0) is

v = − k̄

kβB0

q(z, b(µ)Lη, µ)
b(µ)

with L := −kβ
k̄

+ β̄. From this it turns out that the zero
dynamics are described by

1
ε
z′ = f(z, b(µ)Lη, µ)

1
ε
η′ = Fη + Bo

(
− k̄

kβB0

)
q(z, b(µ) Lη, µ)

b(µ)

namely, by re-scaling the η variable as ηb := b(µ)η,

z′ = f(z, Lηb, µ)

η′b = Fηb + Bo

(
− k̄

kβB0

)
q(z, Lηb, µ)

(29)

Remarkably the dynamics (29) do not depend on b(µ).
Furthermore, according to the choices (25) and to assump-
tion VIB, system (29) is globally (locally exponentially)
stable. From this standard results (using the fact that b(µ)
has a well defined sign assumed positive) yield that for
any compact sets Z, Ỹ and M, there exists a κ? > 0
such that for any κ ≤ −κ? system (27) is asymptotically
(locally exponentially) stable with domain of attraction
containing Z × Ỹ ×M. In particular there exist an open
set D ⊃ Z × Ỹ ×M, class-K∞ functions α, α : D → R, a
class-K function α(·) : D → R and a differentiable function
V : D → R satisfying

α(|x|) ≤ V (x) ≤ α(|x|)

and
∂V (x)

∂x
f(x) ≤ −α(|x|) . (30)

Furthermore, from local exponential stability, α, α and α
can be taken locally linear. From (30) it follows that

∂V (x)
∂x

εf(x) ≤ −εα(|x|)

which, rewriting (24) as ẋ = εf(x), yields the desired
result.

Indeed, a possible choice which makes (25) fulfilled is given
by

B0 = −G , β(τ) = N −GT + N cos τ

k(τ) = 1 + k1 cos τ , k1 =
−1

[cos2 τ ]av
= −2 .

From this, with κ fixed and not dependent on ε, standard
averaging results (not repeated for reasons of space) guar-
antee the existence of an ε? such that also the origin of
(22) is asymptotically stable with a domain of attraction
containing Z × Ỹ ×M.

The overall result can be summarized as follows.

Proposition 4. Consider system (17) (under the assump-
tion 18) and the controller (21) with β(t), k(t), ua(t)
so that (26) and (25) are satisfied. Let Z, Y and M
be arbitrary compact sets of initial conditions for (17)
and (21) and let µ be ranging in a compact set. There
exist a κ? > 0 and, for all κ ≤ −κ?, a ε? > 0 such
that for all positive ε ≤ ε? the closed-loop system (17),
(21) is asymptotically stable with a domain of attraction
containing Z × Y ×M.

Remark. We stress that the previous result holds under
the limitative condition (18).
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