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Abstract: This paper deals with the problem of nonlinear H∞ synchronization for Lur’e systems
using time-delay feedback control. Making use of a vector field modulation in the master system
by a filtered binary valued message signal, applying a static output feedback control with time-
delay to the slave system, and taking into account L2-norm bounded noise in the channel, the
master-slave synchronization is formulated as to minimize the L2-gain from the exogenous input
to a tracking error. Then a delay-dependent synchronization criterion is derived to analyze the
error system. Sufficient conditions for the H∞ synchronization and a feedback control with time-
delay are obtained in terms of linear matrix inequality. Finally, the original message is recovered
from the tracking error. Chua’s circuit is given to illustrate the effectiveness of the proposed
method.
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1. INTRODUCTION

Secure communication using chaotic Lur’e systems has
received much attention during the last decade. Without
taking into account a message signal in the synchroniza-
tion, the master-slave synchronization for Lur’e systems
has been addressed as to discuss the absolute stability of an
error system, see for instance,Curran [1997], Liao [2003],
Wu [1994] and references therein. When both a binary
valued message signal and channel noise are considered
in the synchronization scheme, methods of nonlinear H∞

synchronization have been approached in order to recover
a message signal Suykens [1997b,a]. The main idea of
nonlinear H∞ synchronization is to regard the message
signal as a reference input and formulate the problem as
to find a feedback controller such that the L2-gain from
the exogenous input to the tracking error is minimized or
bounded by a prescribed level. On the other hand, due to
the propagation delay frequently encountered in remote
master-slave synchronization scheme, recently, there have
been some research efforts to investigate the effect of time-
delay on master-slave synchronization Cao [2005], Han
[2007], He [2006], Liao [2003], Wu [2001]. However, to
the best of authors’ knowledge, study on nonlinear H∞

synchronization for Lur’e systems with time-delay is still
open and remains challenging, which motivates the present
study.

In this paper, we will investigate the problem of nonlinear
H∞ synchronization for Lur’e systems with time-delay.
Both a binary valued message signal and static output
feedback control with time-delay will be considered in
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istry of Education (20050422036), and Shandong Province Founda-
tion (2005BS01007).

the master-slave synchronization scheme and the master-
slave synchronization will be formulated as an H∞ reg-
ulation. Applying the Lyapunov-krasovskii approach, a
delay-dependent synchronization criterion will be derived
to analyze the error system and, based on this, sufficient
conditions for the synchronization and a solution to the
time-delay feedback control will be given in terms of linear
matrix inequality (LMI). Finally, we will use Chua’s circuit
to illustrate the effectiveness of the proposed method.

2. PRELIMINARIES AND PROBLEM STATEMENT

Consider the following master-slave synchronization scheme

R :

{

µ̇(t) = Aµµ(t) + Bµv(t),
r(t) = Dµµ(t) + Eµv(t),

(1)

M :

{

ẋ(t) = Ax(t) + Bϕ(Cx(t)) + Dr(t),
zx(t) = Hx(t) + Gω(t),

(2)

S :

{

ẏ(t) = Ay(t) + Bϕ(Cy(t)) + u(t),
zy(t) = Hy(t),

(3)

C : u(t) = −K(zx(t − τ) − zy(t − τ)), (4)

with master system M, slave system S, low pass filter
R, and controller C. x(t), y(t) ∈ Rn, µ(t) ∈ Rnr are
state vectors; zx(t), zy(t) ∈ Rl, r(t) ∈ R are output
vectors; τ > 0 is a constant time-delay; v(t) ∈ R is a
binary valued message signal; ω(t) denotes the channel
noise; A,B,C,D,Aµ, Bµ, Dµ, Eµ,H, and G are constant
matrices with appropriate dimensions; ϕ(·) : Rm → Rm

is a memoryless nonlinear vector valued function which
is globally Lipschitz, ϕ(0) = 0, and suppose that the
nonlinearity ϕ(·) is time invariant, decoupled, and satisfies
a sector condition with ϕi(ξ) belonging to a sector [0, k],
i.e.

ϕi(ξ)[ϕi(ξ) − kξ] ≤ 0,∀t ≥ 0, (5)
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for a given scalar k > 0. Defining e(t) = x(t) − y(t), we
have the error system

ė(t) = Ae(t) + KHe(t − τ) + Bη(Ce(t), y(t))

+Dr(t) + KGω(t − τ), (6)

where the initial condition of system (6) is e(θ) =
φ(θ), ∀θ ∈ [−τ, 0], φ(θ) is a continuous vector valued
function

η(Ce(t), y(t)) = ϕ(Ce(t) + Cy(t)) − ϕ(Cy(t)).

Let C = ( c1 c2 · · · cm )
T

, ci ∈ Rn, i = 1, 2, · · · ,m.
Suppose that η(Ce(t), y(t)) belongs to the sector [0, k], i.e.

ηi(c
T
i e(t), y(t))[ηi(c

T
i e(t), y(t)) − kcT

i e(t)] ≤ 0.

The output zx(t) is transmitted along the channel and
the original message is not recovered from e(t) but from
taking the sign of a tracking error z(t) = r(t) − βT e(t)
with β = (1 0 · · · 0)T . We then have



















ė(t) = Ae(t) + KHe(t − τ) + Bη(Ce(t), y(t))
+ DDµµ(t) + DEµv(t) + KGω(t − τ),

µ̇(t) = Aµµ(t) + Bµv(t),
z(t) = −βT e(t) + Dµµ(t) + Eµv(t),
e(θ) = φ(θ), µ(θ) = 0, ∀θ ∈ [−τ, 0].

(7)

Denote

ξT (t) =
(

eT (t) µT (t)
)

,

wT (t) =
(

vT (t) ωT (t − τ)
)

,

Aξ =

(

A DDµ

0 Aµ

)

, Aξτ =

(

KH 0
0 0

)

,

Dξ =

(

DEµ KG
Bµ 0

)

, BT
ξ =

(

BT 0
)

,

Hξ =
(

−βT Dµ

)

, Gξ = ( Eµ 0 ) .

We rewrite (6) as














ξ̇(t) = Aξξ(t) + Aξτξ(t − τ) + Bξη(Ce(t), y(t))
+ Dξw(t),

z(t) = Hξξ(t) + Gξw(t),

ξ(θ) = φ̃(θ), ∀θ ∈ [−τ, 0],

(8)

where φ̃T (·) =
(

φT (·) 0
)

.

The goal in H∞ master-slave synchronization is to find a
matrix K such that system (8) is globally asymptotically
stable with an L2-gain bound γ, i.e., the system (8) with
w(t) = 0 is globally asymptotically stable and, for any
w(t) ∈ L2[0,∞), the H∞ performance ‖z(t)‖2 ≤ γ‖w(t)‖2

is satisfied under condition φ̃(θ) = 0, ∀θ ∈ [−τ, 0].

The following lemma is useful in deriving the synchroniza-
tion criterion.

Lemma 1. Han [2005] For any constant matrix M ∈
Rn×n, M = MT > 0, scalar τ > 0, and vector function
ẋ : [−τ, 0] → Rn such that the following integration is well
defined, then

−τ

0
∫

−τ

ẋT (t + s)Mẋ(t + s)ds

≤

(

x(t)
x(t − τ)

)T (

−M M
M −M

) (

x(t)
x(t − τ)

)

.

3. MAIN RESULTS

In order to design controller C for the H∞ synchronization,
we first concentrate on the analysis of system (8). Choose
a Lyapunov-Krasovskii functional candidate as

V (t) = ξT (t)Pξ(t) +

t
∫

t−τ

ξT (s)Qξ(s)ds

+

t
∫

t−τ

(τ − t + s) ξ̇T (s) (τR) ξ̇(s)ds, (9)

where P > 0, Q > 0, and R > 0 are real (n+nr)×(n+nr)
matrices. Applying Lemma 1, we have the following result.

Proposition 2. For given scalars γ > 0, τ > 0, and a
matrix K, system (8) is globally asymptotically stable
with an L2-gain bound γ if there exist real (n + nr) ×
(n + nr) matrices P > 0, Q > 0, R > 0, and a matrix
Λ = diag(λ1, λ2, · · · , λm) > 0 such that

Φ =

















(1, 1) (1, 2) (1, 3) PDξ HT
ξ τAT

ξ R

* (2, 2) 0 0 0 τAT
ξτR

* ∗ −2Λ 0 0 τBT
ξ R

* ∗ ∗ −γ2I GT
ξ τDT

ξ R
* ∗ ∗ ∗ −I 0
* ∗ ∗ ∗ 0 −R

















< 0,

where

(1, 1) = PAξ + AT
ξ P + Q − R,

(1, 2) = PAξτ + R,

(1, 3) = PBξ + kCT
ξ Λ,

(2, 2) =−Q − R.

Proof. Taking the derivative of V (t) with respect to t along
the trajectory of (8) yields

V̇ (t) = ξT (t)(PAξ + AT
ξ P + Q)ξ(t)

+2ξT (t)PAξτ ξ(t − τ) + 2ξT (t)PDξw(t)

+2ξT (t)PBξη(Cξξ(t), y(t))

−ξT (t − τ)Qξ(t − τ) + ξ̇T (t)(τ2R)ξ̇(t)

−

t
∫

t−τ

ξ̇T (s)(τR)ẋ(s)ds. (10)

For any Λ = diag(λ1, λ2, · · · , λm) > 0, from (10) we have

V̇ (t)≤ ξT (t)(PAξ + AT
ξ P + Q)ξ(t)

+2ξT (t)PAξτ ξ(t − τ) + 2ξT (t)PDξw(t)

+2ξT (t)PBξη(Cξξ(t), y(t))

−ξT (t − τ)Qξ(t − τ) + ξ̇T (t)(τ2R)ξ̇(t)

−2

m
∑

i=1

λiηi(c
T
ξiξ(t), y(t))(ηi(c

T
ξiξ(t), y(t))
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−kcT
ξiξ̇(t)) −

t
∫

t−τ

ξ̇T (s)(τR)ẋ(s)ds. (11)

Using Lemma 1 to obtain

−

t
∫

t−τ

ξ̇T (s)(τR)ξ̇(s)ds

≤

(

ξ(t)
ξ(t − τ)

)T (

−R R
R −R

)(

ξ(t)
ξ(t − τ)

)

.

We then have

V̇ (t)

≤ ξT (t)(PAξ + AT
ξ P + Q)ξ(t)

+2ξT (t)PAξτ ξ(t − τ) + 2ξT (t)PDξw(t)

−ξT (t − τ)Qξ(t − τ) + ξ̇T (t)(τ2R)ξ̇(t)

+

(

ξ(t)
ξ(t − τ)

)T (

−R R
R −R

) (

ξ(t)
ξ(t − τ)

)

+2ξT (t)PBξη(Cξξ(t), y(t))

+2kηT (Cξξ(t), y(t))ΛCξξ(t)

−2ηT (Cξξ(t), y(t))Λη(Cξξ(t), y(t)). (12)

First, we analyze the global asymptotic stability of the
system (8) with w(t) = 0. In the case of w(t) = 0, from
(12) one obtains

V̇ (t) ≤ ςT
1 (t)Θς1(t),

where

ςT
1 (t) =

(

ξT (t) ξT (t − τ) ηT (Cξξ(t), y(t))
)

,

Θ =





(1, 1) (1, 2) PBξ + kCT
ξ Λ + AT

ξ (τ2R)Bξ

* (2, 2) AT
ξτ (τ2R)Bξ

* ∗ −2Λ + BT
ξ (τ2R)Bξ





with

(1, 1) = PAξ + AT
ξ P + Q − R + AT

ξ (τ2R)Aξ,

(1, 2) = PAξτ + R + AT
ξ (τ2R)Aξτ ,

(2, 2) =−Q − R + AT
ξτ (τ2R)Aξτ .

In view of Schur complement, Φ < 0 implies that Θ < 0.
Then we have V̇ (t) < 0 for all ς1(t) 	= 0, from which we
conclude that the system (8) with w(t) = 0 is globally
asymptotically stable.

Next, we consider the performance ‖z(t)‖2 ≤ γ ‖w(t)‖2 for
all w(t) ∈ L2[0,∞) and a prescribed γ > 0 under condition
φ(θ) = 0,∀θ ∈ [−τ, 0]. Define

Jw =

∞
∫

0

[zT (t)z(t) − γ2wT (t)w(t)]dt. (13)

From (12) and (13), we have

Jw =

∞
∫

0

[zT (t)z(t) − γ2wT (t)w(t) + V̇ (t, ξt)]dt

− V (t)|t→∞
+ V (t)|t=0

≤ ξT (t)(PAξ + AT
ξ P + Q + HT

ξ Hξ)ξ(t)

+2ξT (t)PAξξ(t − τ) − ξT (t − τ)Qξ(t − τ)

+2ξT (t)(PDξ + HT
ξ Gξ)w(t)

+ξ̇T (t)(τ2R)ξ̇(t) + 2ξT (t)PBξη(Cξξ(t), y(t))

+

(

ξ(t)
ξ(t − τ)

)T (

−R R
R −R

)(

ξ(t)
ξ(t − τ)

)

−2ηT (Cξξ(t), y(t))Λη(Cξξ(t), y(t))

+2kηT (Cξξ(t), y(t))ΛCξξ(t) −γ2wT (t)w(t)
)

dt

− V (t)|t→∞
+ V (t)|t=0 .

Observing that

V (t)|t→∞
≥ 0, V (t)|t=0 = 0,

we then have

Jw ≤

∞
∫

0

ςT
2 (t)Ψς2(t)dt,

where

ςT
2 (t) =

(

ξT (t) ξT (t − τ) ηT (Cξξ(t), y(t)) wT (t)
)

,

Ψ =









(1, 1) (1, 2) (1, 3) (1, 4)
* (2, 2) (2, 3) AT

ξτ (τ2R)Dξ

* ∗ (3, 3) BT
ξ (τ2R)Dξ

* ∗ ∗ (4, 4)









with

(1, 1) = PAξ + AT
ξ P + Q − R + HT

ξ Hξ

+AT
ξ (τ2R)Aξ,

(1, 2) = PAξτ + R + AT
ξ (τ2R)Aξτ ,

(1, 3) = PBξ + kCT
ξ Λ + AT

ξ (τ2R)Bξ,

(1, 4) = PDξ + HT
ξ Gξ + AT

ξ (τ2R)Dξ,

(2, 2) =−Q − R + AT
ξτ (τ2R)Aξτ ,

(2, 3) = AT
ξτ (τ2R)Bξ,

(3, 3) =−2Λ + BT
ξ (τ2R)Bξ,

(4, 4) =−γ2I + GT
ξ Gξ + DT

ξ (τ2R)Dξ.

Using Schur complement, we have Ψ < 0 from Φ < 0. Thus
Jw ≤ 0, which implies ‖z(t)‖2 ≤ γ ‖w(t)‖2. This completes
the proof.

We are now in the position to design controller C for the
master-slave synchronization. Define

Dξ0 = ( D 0 ) , Gξ0 = ( 0 G ) ,

D̂ξ =

(

DEµ 0
Bµ 0

)

, Kξ =

(

K
0

)

.

Applying Proposition 2, system (8) is globally asymptoti-
cally stable with an L2-gain bound γ if there exist positive
definite matrices P = diag(P1, P2) with P1 ∈ Rn×n and
P2 ∈ Rnr×nr , Q ∈ R(n+nr)×(n+nr), R ∈ R(n+nr)×(n+nr),
Λ = diag(λ1, λ2, · · · , λm), and matrix Kξ with appropriate
dimensions such that
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(1, 1) (1, 2) (1, 3) (1, 4) HT
ξ τAT

ξ R
* (2, 2) 0 0 0 (2, 6)
* ∗ −2Λ 0 0 τBT

ξ R

* ∗ ∗ −γ2I GT
ξ (4, 6)

* ∗ ∗ ∗ −I 0
* ∗ ∗ ∗ 0 −R

















< 0,

(14)

where

(1, 1) = PAξ + AT
ξ P + Q − R,

(1, 2) = PKξDξ0 + R,

(1, 3) = PBξ + kCT
ξ Λ,

(1, 4) = P (D̂ξ + KξGξ0),

(2, 2) =−Q − R,

(2, 6) = τDT
ξ0K

T
ξτR,

(4, 6) = τ(D̂ξ + KξGξ0)
T .

Pre- and post-multiplying both sides of (14) with

diag(I, I, I, I, I, PR−1)

and its transpose, letting Yξ = PKξ with Y = P1K, yields

















(1, 1) (1, 2) (1, 3) (1, 4) HT
ξ τAT

ξ P

* (2, 2) 0 0 0 τDT
ξ0Y

T
ξ

* ∗ −2Λ 0 0 τBT
ξ P

* ∗ ∗ −γ2I GT
ξ (4, 6)

* ∗ ∗ ∗ −I 0
* ∗ ∗ ∗ 0 −PR−1P

















< 0.

(15)

Notice that (15) includes nonlinear term −PR−1P and,
for any R > 0, ε > 0,

−PR−1P + 2εP − ε2R

= −(P − εR)R−1(P − εR) ≤ 0. (16)

In light of Schur complement, we have (15) from (16) and





















(1, 1) (1, 2) (1, 3) (1, 4) HT
ξ τAT

ξ P 0

* (2, 2) 0 0 0 τDT
ξ0Y

T
ξ 0

* ∗ −2Λ 0 0 τBT
ξ P 0

* ∗ ∗ −γ2I GT
ξ (4, 6) 0

* ∗ ∗ ∗ −I 0 0
* ∗ ∗ ∗ 0 −2εP εR
* ∗ ∗ ∗ ∗ ∗ −R





















< 0,

(17)

where terms (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), and (4, 6)
are the same as those in (14) and (15). From the above
discussion, we conclude the following result.

Proposition 3. For given scalars τ > 0, γ > 0, and
ε > 0, system (8) is globally asymptotically stable with
an L2-gain bound γ if there exist positive definite ma-
trices P = diag(P1, P2) with P1 ∈ Rn×n and P2 ∈
Rnr×nr , Q ∈ R(n+nr)×(n+nr), R ∈ R(n+nr)×(n+nr), Λ =
diag(λ1, λ2, · · · , λm), and matrix Y T

ξ =
(

Y T 0
)

with

appropriate dimensions such that LMI (17) is satisfied.

Moreover, the controller gain matrix K is calculated by
K = P−1

1 Y .

Remark 4. Is is seen from Proposition 3 that one can
design a feedback controller for Lur’e systems to imple-
ment nonlinear H∞ synchronization by solving LMI. It
should be point out that, however, the proposed design
result is a little conservative due to the particular choice
of P = diag(P1, P2).

4. A NUMERICAL EXAMPLE

Consider the following Chua’s circuit

{

ẋ = α(y − h(x)) + w(t),
ẏ = x − y + z,
ż = −βy,

with nonlinear characteristic

h(x) = m1x +
1

2
(m0 − m1)(|x + c| − |x − c|),

and parameters m0 = − 1
7 , m1 = − 2

7 , α = 9, β = 14.28,
and c = 1. The system can be represented in Lur’e form
with

A =

(

−αm1 α 0
1 −1 1
0 −β 0

)

, B =

(

−α(m0 − m1)
0
0

)

,

C = D = H = ( 1 0 0 ) , G = 1,

and ϕ(θ) = 1
2 (|θ + c| − |θ − c|) belonging to sector [0, k]

with k = 1. For a first order Butterworth filter R with
cut-off frequency 10Hz, applying Proposition 3, choosing
ε = 0.05, we calculate the minimum allowed value of γ
(i.e. γmin) and the controller gain matrix K for different
values of time-delay τ . Table 1 lists the obtained γmin for
different time-delay.

Table 1: Minimum allowed γmin for different time-delay τ

τ 0.04 0.06 0.08 0.10 0.12
γmin 1.01 1.02 1.03 1.08 2.79

Set τ = 0.08 and γ = 1.03, we have

K = (−7.6222 −1.4366 7.2900 )
T

.

The initial conditions of the master and slave are chosen
as

( x(0) y(0) z(0) )
T

= (−0.2 −0.33 0.2 )
T

,

( xs(0) ys(0) zs(0) )
T

= ( 0.5 −0.1 0.66 )
T

.

For a message signal v(t) = sign(sin(0.3t)), the master
system state and slave system state are shown in Figure 1
and Figure 2, respectively. The message signal is invisible
on the transmitted signal in Figure 3. We recover the orig-
inal message by taking sign(βT e(t)). Figure 4 shows signal
βT e(t) (solid line) and the recovered message sign(βT e(t))
(dashed line), respectively.

5. CONCLUSION

The problem of nonlinear H∞ master-slave synchroniza-
tion for Lur’e systems with time-delay feedback control has
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Fig. 3. The transmitted signal zx(t)

been addressed. In this synchronization scheme, the vector
field of the master system has been modulated by a filtered
binary valued message signal and a static output feedback
control with time-delay has been used in the slave system.
The master-slave synchronization has been formulated as
to minimize a tracking error in the sense of L2-gain and
the message has been recovered from the tracking error.
Applying the Lyapunov-Krasovskii functional approach,
we have derived a delay-dependent criterion to analyze the
error system and, based on the analyzing results, a time-
delay feedback control has been obtained by solving LMIs.
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Fig. 4. The signal βT e(t) (solid line) and the recovered
message sign(βT e(t)) (dashed line)

The proposed method has been illustrated on Chua’s cir-
cuit.
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