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Abstract: This paper studies the iterative learning control of robotic systems with repetitive
tasks. A fuzzy neural network is applied to design a direct adaptive iterative learning controller.
The fuzzy neural network is introduced for compensation of the unknown certainty equivalent
controller. A new adaptive law using mixed time-domain and iteration-domain adaptation is
developed. It is shown that the finiteness of control parameters and control input can be
guaranteed for all the time interval during each iteration without using parameter projection.

1. INTRODUCTION

In the early works [1]-[3], classical PD and PID linear
controllers were widely used in robotics applications to
asymptotically stabilize the joint positions of rigid robot
manipulators at a given set-point. Owing to the physical
property that the robot parameters enter linearly in the
Lagrange equation, adaptive control strategies [4, 5] have
been derived for trajectory tracking. On the other hand,
taking advantage of the fact that robot manipulators are
generally used in repetitive tasks, several iterative learning
control (ILC) schemes have been presented for repetitive
control of robot manipulators in the past two decades. The
ILC approach iteratively tunes the control input in order
to enhance the tracking accuracy from operation to oper-
ation for systems executing repetitive tasks. Initially, ILC
algorithms for robot manipulators were developed based
on the contraction mapping theory and required a certain
a priori knowledge of robot dynamics [6]-[10]. Recently,
another type of ILC algorithms, namely adaptive iterative
learning control (AILC), has been deployed during the last
decade (see, for instance, [11]-[15]) for robot manipulators.
The main feature of AILC is to iteratively estimate the
uncertain parameters, which are in turn used to generate
the current control input. Instead of using contraction
mapping theory, the Lyapunov-like approach is applied to
analyze the stability and convergence so that the restrict
Lipschitz condition can be relaxed.

However, most of the adaptive learning controllers are
designed based on the fact that the robot nonlinearities are
linearly parameterizable. This often leads to the problem
of over-parametrization. To this end, fuzzy system or neu-
ral network based controllers [16]-[22] have become an ef-
fective approach for adaptive control of nonlinear systems
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if the nonlinearity can not be linearly parameterizable.
Recently, the controller design based on fuzzy system or
neural network was applied to iterative learning control of
uncertain robotic systems or nonlinear dynamic systems
[23]-[25]. Since the fuzzy system and neural network are
employed to model the nonlinearities, these schemes [23]-
[25] can be considered as an indirect AILC similar to that
defined in [18].

As we know, both fuzzy system and neural network are
to mimic human-like knowledge processing capability. To
obtain the advantages of both, such as the low-level
learning and computational power of neural network and
the high-level human-like thinking and reasoning of fuzzy
inference system, fuzzy neural network (FNN) has become
a popular research topic in a variety of applications.
In this paper, we apply the FNN to design a direct
AILC (DAILC) for uncertain robotic systems. The FNN
is introduced for compensation of the unknown certainty
equivalent controller. Using this direct scheme, only one
fuzzy neural network is required to design the iterative
learning controller. It is well known that the whole control
parameter profiles in the previous iteration must be stored
for an adaptive iterative learning controller. A complex
control structure implies that it requires more control
parameters and a large system memory. In this work, the
proposed FNN-DAILC uses only one FNN and possesses
simpler structure, especially compared with the related
works [23]-[25].

Because of the iteration based control problem, the adap-
tive learning laws for the estimation of the unknown pa-
rameters are mostly designed in the iteration-domain. In
general, projection or deadzone mechanisms are necessary
to construct the iteration-domain based adaptive laws in
order to guarantee the tracking error convergence as well
as the boundedness of all internal signals. In [14] both
time-domain and iteration-domain adaptations were used.
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A time-domain adaptive law estimates the robot param-
eters so that the upper bounds on these parameters are
not necessary. However, the iteration-domain learning law
which learns the desired input and disturbances still needs
the upper bound and the projection mechanism. In this
paper, a new adaptive law using mixed time-domain and
iteration-domain adaptation is developed in this paper to
relax the requirement of projection mechanism. It will be-
come a pure time-domain learning law or iteration-domain
learning law if a weighting gain is suitably chosen. In other
words, the proposed adaptive law is a general formulation
and extension for the existing results [11]-[15]. We show
that the finiteness of control parameters and control input
can be guaranteed for all the time interval during each
iteration without using parameter projection. This implies
that the upper bounds on the desired unknown control
parameters are not necessary. A rigorous proof via the
technique of Lyapunov-like analysis is given to guarantee
the stability and convergence of the closed-loop learning
system. It is shown that all adjustable parameters as well
as internal signals are bounded in time domain for each
iteration. Furthermore, the position and velocity tracking
error will asymptotically converge to zero in iteration
domain if iteration number is large enough.

2. DESIGN OF FUZZY NEURAL NETWORK DIRECT
ADAPTIVE ITERATIVE LEARNING CONTROLLER

In this paper, we consider an uncertain robot system with
n rigid bodies which can perform a given task repeatedly
over a finite time interval [0, T ] as follows:

D(qj(t))q̈j(t) + B(qj(t), q̇j(t))q̇j(t)

+f(qj(t), q̇j(t)) + dj(t) = uj(t) (1)

where j ∈ Z+ denotes the index of iteration num-
ber and t ∈ [0, T ] denotes the time index. The signals
qj(t), q̇j(t), q̈j(t) ∈ Rn are the unknown generalized joint
position, joint velocity and joint acceleration vectors, re-
spectively. D(qj(t)) ∈ Rn×n is the unknown inertia matrix,
B(qj(t), q̇j(t)) ∈ Rn×n is the centripetal plus Coriolis force
vector, f(qj(t), q̇j(t)) ∈ Rn is the unknown gravitational
plus frictional forces, dj(t) ∈ Rn is an unknown distur-
bance vector, and uj(t) ∈ Rn is the joint torque vector.
Given the specified desired joint position, velocity, accel-
eration trajectories qd(t), q̇d(t) and q̈d(t) ∀t ∈ [0, T ], the
control objective is to design a fuzzy-neural direct adaptive
iterative learning controller uj(t) such that when iteration
number j is large enough, ‖qj(t) − qd(t)‖ and ‖q̇j(t) −
q̇d(t)‖ will converge to some small positive error tolerance
bounds ∀t ∈ [0, T ] even there exists some bounded non-
repeatable disturbance dj(t) and initial resetting errors.
Here the initial resetting errors mean that qd(0) �= qj(0)
or q̇d(0) �= q̇j(0) for all j ≥ 1. In order to achieve the
above control objective, some assumptions on the uncer-
tain robot system and desired trajectories are given as
follows:

(A1) The nonlinear functions D(qj(t)), B(qj(t), q̇j(t)) and
f(qj(t), q̇j(t)) are bounded if qj(t) and q̇j(t) are
bounded. In addition, the disturbance vector dj(t) is
also bounded.

(A2) The symmetric inertia matrix D(qj(t)) is assumed to
be positive definite and bounded for all t ∈ [0, T ] and

iteration j ≥ 1 as 0 < λ1I ≤ D(qj(t)) ≤ λ2I where
λ1, λ2 > 0 and I is an n×n identity matrix. The ma-
trix Ḋ(qj(t))−2B(qj(t), q̇j(t)) is assumed to be skew-

symmetric, that is, x⊤(Ḋ(qj(t))−2B(qj(t), q̇j(t)))x =
0 for all x ∈ Rn and x �= 0.

(A3) The desired joint position, velocity, acceleration tra-
jectories qd(t), q̇d(t) and q̈d(t), t ∈ [0, T ] are bounded
and contained in the compact set Ac.

(A4) Let the initial resetting errors e
j
1(t), e

j
2(t) be defined as

e
j
1(t) = qj(t) − qd(t), e

j
2(t) = q̇j(t) − q̇d(t). The initial

resetting errors at each iteration are not necessarily
zero, small and fixed, but assumed to be bounded.

Now, in order to illustrate the idea of the learning con-
troller, we use the following three steps to explain the
design approach 1 .

• Step 1. We first design a control function sj as a linear
combination of the tracking errors, i.e.,

sj = e
j
2 + λe

j
1 = ėj + λej (2)

where ej ≡ qj − qd, λ is a diagonal positive define matrix.
It is clear that if the learning controller can drive sj(t) to
zero for all t ∈ [0, T ], then the tracking errors will also
asymptotically converge to zero for all t ∈ [0, T ]. However,
there exist initial resetting errors such that sj(0) �= 0. In
order to overcome the uncertainty from the bounded initial
resetting errors, let εj be the known constant satisfying
‖sj(0)‖ = ‖ėj(0) + λej(0)‖ ≡ εj by assumption (A4), and

introduce the following error function s
j
φ as

s
j
φ = sj − φjsat

(
sj

φj

)
, φj = εje−kt, k > 0 (3)

where sat
(

sj

φj

)
=

[
sat

( s
j

1

φj

)
, · · · , sat

( sj
n

φj

)]⊤
and each ele-

ment of the saturation function is defined as

sat

(
s

j
i

φj

)
=





1 if s
j
i > φj

s
j
i

φj
if |sj

i | ≤ φj

−1 if s
j
i < −φj

Note that φj is the width of boundary layer, and it
is designed to decrease along time axis with the initial
condition chosen as φj(0) = εj for jth iteration and

0 < εje−kT ≤ φj(t) ≤ εj, ∀t ∈ [0, T ], j ≥ 1 [24]. Now s
j
φ

will play the main role in our controller design since it can

be easily shown that s
j
φ(0) = 0 and s

j
φ(t)⊤sat( sj(t)

φj(t) ) =

|sj
φ(t)| for all j ≥ 1. Let k be suitably large such that

φj(t) can be as small as possible ∀t ∈ [0, T ]. If we can

show that limj→∞ s
j
φ(t) = 0, ∀t ∈ [0, T ], then we have

limj→∞ ‖sj(t)‖ ≤ φ∞(t) according to (3), which implies
that the control objective will be achieved. To find the
approach for the design of the proposed fuzzy-neural direct
adaptive iterative learning controller, we derive the time

derivative of 1
2s

j⊤
φ D(qj)sj

φ as follows:

d

dt

(1

2
s

j⊤
φ D(qj)sj

φ

)
= s

j⊤
φ D(qj)ṡj

φ +
1

2
s

j⊤
φ Ḋ(qj)sj

φ

1 The argument t will now be omitted if it does not lead to any
confusion.
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= s
j⊤
φ D(qj)

(
ṡ

j
φ + D−1(qj)B(qj , q̇j)sj

φ

)

= s
j⊤
φ D(qj)

(
ṡj − φ̇jsgn

(
s

j
φ

)
+ D−1(qj)B(qj , q̇j)sj

φ

)

= s
j⊤
φ D(qj)

{
λėj − q̈d − D−1(qj)

(
B(qj , q̇j)q̇j

+ f(qj , q̇j) + dj
)

+ D−1(qj)B(qj , q̇j)sj
φ

+ D−1(qj)uj − φ̇jsgn(sj
φ)

}
(4)

where sgn is the notation for sign function. Suppose that
the nonlinear functions D(qj), B(qj , q̇j), f(qj , q̇j) and
disturbance dj [26] are completely known, we can define
the certainty equivalent controller as

uj
⋆ = B(qj , q̇j)q̇j + f(qj , q̇j) + dj + B(qj , q̇j)sj

φ

+ D(qj)
(
q̈d − λėj − ksj

)
(5)

with the positive constant k the same as that in (3). Let

uj = u
j
⋆, equation (4) becomes

d

dt

(1

2
s

j⊤
φ D(qj)sj

φ

)
= s

j⊤
φ D(qj)

(
−ksj − φ̇jsgn

(
s

j
φ

))

= s
j⊤
φ D(qj)

{
−ks

j
φ − kφjsat

( sj

φj

)
− φ̇jsgn(sj

φ)

}

=−s
j⊤
φ D(qj)ks

j
φ − s

j⊤
φ D(qj)

(
φ̇j + kφj

)
sgn(sj

φ)

=−ks
j⊤
φ D(qj)sj

φ (6)

Since D(qj), B(qj , q̇j), f(qj , q̇j) and dj of the robot system
are in general unknown or only partially known, the result
of (6) can not be achieved. However, using the results of
(5) and (6), equation (4) can actually be rewritten as

d

dt

(1

2
s

j⊤
φ D(qj)sj

φ

)
= −ks

j⊤
φ D(qj)sj

φ + s
j⊤
φ

(
uj − uj

⋆

)
(7)

• Step 2. The fuzzy neural network (FNN) is now applied
to compensate for the unknown certainty equivalent con-
troller u

j
⋆(t). For this FNN, let O(4), O(3) and W denote

the network output (output of layer 4), firing strength of
layer 3 (output of layer 3) and network weight between
layer 3 and layer 4, respectively (for detailed, please see
[27]). In this paper, the FNN will take the form of

O(4)(qj(t), q̇j(t), W j(t)) = W j(t)⊤O(3)(qj(t), q̇j(t)) (8)

where W j ∈ RM×n with M being the numbers of

rule nodes and O(3)j
= O(3)(qj , q̇j) = [O

(3)
1 (qj , q̇j), · · ·,

O
(3)
M (qj , q̇j)]⊤, with elements O

(3)
ℓ (qj , q̇j), ℓ = 1, · · · , M

being determined by the selected membership functions.

Note that 0 < O
(3)
ℓ (qj , q̇j) ≤ 1. It is well known that the

FNN (8) can uniformly approximate real continuous non-

linear function vector u
j
⋆(t) on a compact set Ac ⊂ Rn×1

[18]. An important aspect of the above approximation
property is that there exist optimal weights W ∗ such that
the function approximation errors between the optimal
O(4)(qj , q̇j , W ∗) and vector u

j
⋆ can be bounded by pre-

scribed constant θ∗ on the compact set Ac. More precisely,
if we let u

j
⋆ = O(4)(qj , q̇j , W ∗) + ǫ(qj , q̇j), then the ap-

proximation errors will satisfy ‖ǫj‖ = ‖ǫ(qj , q̇j)‖ ≤ θ∗,
∀qj , q̇j ∈ Ac. For simplicity, the FNN in the proposed

DAILC only updates the consequent parameters. Such
a concept is very similar in some works [22, 26]. The
proposed FNN based DAILC is now designed as

uj = O(4)(qj , q̇j , W j) − sat
( sj

φj

)
θj

= W j⊤O(3)j
− sat

( sj

φj

)
θj (9)

where W j ∈ RM×n, and θj ∈ R are the control param-
eters to be tuned via some suitable adaptive laws. If we
substitute (9) into (7), we will have

d

dt

(1

2
s

j⊤
φ D(qj)sj

φ

)

= −ks
j⊤
φ D(qj)sj

φ + s
j⊤
φ

{
W̃ j⊤O(3)j

− sat
( sj

φj

)
θj + ǫj

}

≤−s
j⊤
φ Ls

j
φ + s

j⊤
φ W̃ j⊤O(3)j

− |sj
φ|θ̃

j (10)

where L ≡ kλ1I is a symmetric positive define matrix,

W̃ j = W j − W ∗ and θ̃j = θj − θ∗,

• Step 3 : The adaptive laws combining time domain and
iteration domain adaptation without deadzone or bounds
of unknown parameters are proposed as follows :

(1 − α1)Ẇ
j =−α1W

j + α1W
j−1 − β1O

(3)j
s

j⊤
φ (11)

(1 − α2)θ̇
j =−α2θ

j + α2θ
j−1 + β2|s

j
φ| (12)

with W j(0) = W j−1(T ), θj(0) = θj−1(T ) for j ≥ 1,
and 0 < α1, α2 < 1, β1, β2 > 0. In this adaptive law,
α1, α1 and β1, β2 are defined as the weighting gains and
adaptation gains, respectively. For the first iteration, we
set W 0(t) = W 0 and θ0(t) = θ0 to be any constant
value. It is noted that (11) and (12) will be reduced to
pure time-domain adaptation laws if α1=α2=0, or pure
iteration-domain adaptation laws if α1=α2=1. Also it is

obviously that −α1W
j + α1W

j−1 = −α1W̃
j + α1W̃

j−1

and −α2θ
j + α2θ

j−1 = −α2θ̃
j + α2θ̃

j−1.

3. ANALYSIS OF STABILITY AND CONVERGENCE

Lemma 1 : Consider the uncertain robot system (1) which
satisfies assumptions (A1)–(A4). The proposed FNN-
DAILC (9) and adaptation laws (11) and (12) will ensure
that all the internal signals at first iteration are bounded,
i.e., e1, s1

φ, s1, W 1, θ1, u1, ṡ1, Ẇ 1, θ̇1 ∈ L∞e[0, T ].

Proof : Let us choose a Lyapunov function as

V j
a =

1

2
s

j⊤
φ D(qj)sj

φ +
(1 − α1)

2β1
tr

{
W̃ j⊤W̃ j

}

+
(1 − α2)

2β2
(θ̃j)2.

Using the fact of (10) and parameter adaptation laws (11)
and (12), and after some simple manipulations, we can
compute its derivative with respective to time t along (2),
(11) and (12) as follows :

V̇ j
a

≤−s
j⊤
φ Ls

j
φ + s

j⊤
φ W̃ j⊤O(3)j

− |sj
φ|θ̃

j
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+
1

β1
tr

{
W̃ j⊤

[
(1 − α1)

˙̃
W

j]}
+

1

β2
θ̃j

[
(1 − α2)

˙̃
θ

j]

=−s
j⊤
φ Ls

j
φ + s

j⊤
φ W̃ j⊤O(3)j

− |sj
φ|θ̃

j

+
1

β1
tr

{
W̃ j⊤

[
−α1W

j + α1W
j−1 − β1O

(3)j
s

j⊤
φ

]}

+
1

β2
θ̃j

[
−α2θ

j + α2θ
j−1 + β2|s

j
φ|

]

=−s
j⊤
φ Ls

j
φ −

α1

β1
tr

{
W̃ j⊤W̃ j

}
+

α1

β1
tr

{
W̃ j⊤W̃ j−1

}

−
α2

β2
(θ̃j)2 +

α2

β2
θ̃j θ̃j−1 (13)

where we use the property of tr
{
W̃ j⊤O(3)j

(t)sj⊤
φ

}
=

s
j⊤
φ W̃ j⊤O(3)j

. Note that W̃ 0 = W 0 − W ∗ ≡ W
0

and

θ̃0 = θ0 − θ∗ ≡ θ
0

are bounded for all t ∈ [0, T ]. So if
we let j = 1, we can rewrite (13) as follows,

V̇ 1
a

≤−s1⊤
φ Ls1

φ −
α1

β1
tr

{
W̃ 1⊤W̃ 1

}
+

α1

β1
tr

{
W̃ 1⊤W

0
}

−
α2

β2
(θ̃1)2 +

α2

β2
θ̃1θ

0

=−s1⊤
φ Ls1

φ −
α1

2β1
tr

{
W̃ 1⊤W̃ 1

}
−

α2

2β2
(θ̃1)2

−
α1

2β1
tr

{(
W̃ 1 − W

0
)⊤(

W̃ 1 − W
0
)}

−
α2

2β2
(θ̃1 − θ

0
)2 +

α1

2β1
tr

{
W

0⊤
W

0
}

+
α2

2β2
(θ

0
)2

≤−λV 1
a (t) + λ̄0 (14)

where λ = min{2kλ1,
α1

1−α1

, α2

1−α2

}, λ
0

= α1

2β1

tr
{
W

0⊤
W

0}

+ α2

2β2

(θ
0
)2. Note that the initial value V 1

a (0) is bounded

since s1
φ(0) = 0, W̃ 1(0) = W 1(0) − W ∗ = W 0(T ) −

W ∗ = W
0
, and θ̃1(0) = θ1(0) − θ = θ0(T ) − θ = θ

0
.

Together with the result of (14), it readily implies V 1
a , s1

φ,

W̃ 1, θ̃1 ∈ L∞e[0, T ] and hence, s1 (by (3)), u1 (by (9)), ṡ1

(by (2)), Ẇ 1 (by 11)), θ̇1 (by 12)) ∈ L∞e[0, T ]. Q.E.D.

Lemma 2 : Consider the system set-up in lemma 1, the
proposed FNN-DAILC ensures that

(L1) limj→∞ tr
{
W̃ j⊤(T )W̃ j(T )

}
= tr

{
W̃⊤

T W̃T

}
, and

limj→∞ (θ̃j(T ))2 = (θ̃T )2 for some constant matrix

W̃⊤
T W̃T and constant (θ̃T )2.

(L2) tr
{
W̃ j⊤(T )W̃ j(T )

}
, (θ̃j(T ))2, (sj

φ(T ))2 are bounded
for all j ≥ 1.

(L3) limj→∞

∫ T

0
s

j⊤
φ (t)Ls

j
φ(t)dt = 0, and

limj→∞ s
j⊤
φ (T )D(qj(T ))sj

φ(T ) = 0.

Proof : Define a positive function V j(T ) as

V j(T ) =

T∫

0

[
α1

2β1
tr

{
W̃ j⊤W̃ j

}
+

α2

2β2
(θ̃j)2

]
dt

+
1 − α1

2β1
tr

{
W̃ j⊤(T )W̃ j(T )

}
+

1 − α2

2β2
(θ̃j(T ))2,

the difference between V j(T ) and V j−1(T ) can be derived
by using integration by parts as follows :

V j(T ) − V j−1(T )

=

T∫

0

[ α1

2β1

(
tr

{
W̃ j⊤W̃ j

}
− tr

{
W̃ j−1⊤W̃ j−1

})

+
α2

2β2

(
(θ̃j)2 − (θ̃j−1)2

)]
dt

+
(1 − α1)

β1

T∫

0

tr
{

W̃ j⊤ ˙̃
W

j}
dt

+
(1 − α1)

2β1
tr

{
W̃ j⊤(0)W̃ j(0)

}

−
(1 − α1)

2β1
tr

{
W̃ j−1⊤(T )W̃ j−1(T )

}

+
(1 − α2)

β2

T∫

0

θ̃j(t)
˙̃
θ

j

(t)dt

+
(1 − α2)

2β2
(θ̃j(0))2 −

(1 − α2)

2β2
(θ̃j−1(T ))2

=

T∫

0

[
−

α1

2β1
tr

{(
W̃ j − W̃ j−1

)⊤(
W̃ j − W̃ j−1

)}

−
α2

2β2

(
θ̃j − θ̃j−1

)2]
dt

+

T∫

0

[
−s

j⊤
φ W̃ j⊤O(3)j

+ |sj
φ|θ̃

j
]
dt

≤

T∫

0

[
−s

j⊤
φ W̃ j⊤O(3)j

+ |sj
φ|θ̃

j
]
dt (15)

If we define V
j
b = 1

2s
j⊤
φ D(qj)sj

φ, we can easily derive the
following inequality by similar argument in lemma 1 that

V̇
j
b ≤ −s

j⊤
φ Ls

j
φ + s

j⊤
φ W̃ j⊤O(3)j

− |sj
φ|θ̃

j (16)

Integrating both side of (16) from 0 to T gives

T∫

0

[
−s

j⊤
φ W̃ j⊤O(3)j

+ |sj
φ|θ̃

j
]
dt ≤

T∫

0

−s
j⊤
φ Ls

j
φdt − V

j
b (T )

(17)

where we use the fact of V
j
b (0) = 1

2s
j⊤
φ (0)D(qj(0))sj

φ(0) =

0. Substituting (17) into (15), it yields

V j(T ) − V j−1(T )

≤

T∫

0

−s
j⊤
φ Ls

j
φdt −

1

2
s

j⊤
φ (T )D(qj(T ))sj

φ(T ) (18)

Since V 1(T ) is bounded by lemma 1, and V j(T ) is positive
and monotonically decreasing, V j(T ) is bounded for all
j ≥ 1 and will converge as j approaches infinity to some
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limit value V (T ) (independent of j). This shows (L1) of
lemma 2. On the other hand, (18) implies

T∫

0

s
j⊤
φ Ls

j
φdt ≤ V j−1(T ) − V j(T ) ≤ V 1(T )(19)

1

2
s

j⊤
φ (T )D(qj(t))sj

φ(T ) ≤ V j−1(T ) − V j(T ) ≤ V 1(T )(20)

for all j ≥ 1. The boundedness of 1
2s

j⊤
φ (T )D(qj(T ))sj

φ(T )

for all iterations is then established from (20). Therefore,

this further implies that (sj
φ(T ))2 is bounded for all it-

erations, and hence (L2) of lemma 2 follows. Finally, as
limj→∞ V j−1(T )−V j(T ) = 0, (L3) of lemma 2 is achieved
from (19) and (20). Q.E.D.

Using the boundedness of W̃ j(T ), and θ̃j(T ) (or equiva-

lently the boundedness of W̃ j(0) and θ̃j(0)) for all j ≥ 1

as shown in (L2) of lemma 2, the convergence of s
j
φ and

boundedness of all internal signals for all j ≥ 1 are now
established in the following theorem.

Theorem 1 : Consider the system set-up in lemma
1. The proposed FNN-DAILC guarantees the tracking
performance and system stability as follows :

(T1) s
j
φ, sj , W j , θj , uj , ṡj , Ẇ j , θ̇j ∈ L∞e[0, T ], for all j ≥ 1.

(T2) limj→∞ s
j⊤
φ Ls

j
φ = s∞⊤

φ Ls∞φ = 0, for all t ∈ [0, T ].

(T3) limj→∞ |sj | = |s∞| ≤ φ∞ = e−ktε∞, for all t ∈ [0, T ].

Proof :

(T1) Since s1
φ, W̃ 1, θ̃1 ∈ L∞e[0, T ] as shown in lemma 1,

if we assume s
j−1
φ , W̃ j−1, θ̃j−1 ∈ L∞e[0, T ], then

derivative of Lyapunov function V j
a in (13) can be

rewritten as

V̇ j
a ≤−s

j⊤
φ Ls

j
φ

−
α1

β1
tr

{
W̃ j⊤W̃ j

}
+

α1

β1
tr

{
W̃ j⊤W

j−1
}

−
α2

β2
(θ̃j)2 +

α2

β2
θ̃jθ

j−1

≤−λV j
a + λ̄j−1 (21)

where λ
j−1

= α1

2β1

tr
{
W

j−1⊤
W

j−1}
+ α2

2β2

(θ
j−1

)2 and

W
j−1

and θ
j−1

are the upper bounds on |W̃ j−1|

and |θ̃j−1|, respectively. Since the initial condition of
the Lyapunov function V j

a is bounded for all j ≥ 1
due to (L2) of lemma 2, we conclude from (21) that

s
j
φ, W̃ j , θ̃j and sj , uj, ṡj , Ẇ j , θ̇j ∈ L∞e[0, T ]. Hence,

(T1) of Theorem 1 is achieved by using mathematical
induction.

(T2) By using V
j
b in lemma 2 and (T1) in this theorem,

we have V̇
j
b and V

j
b ∈ L∞e[0, T ]. On other hand,

limj→∞

∫ T

0 s
j⊤
φ Ls

j
φdt=0, or limj→∞

∫ T

0 V
j
b dt =0 due

to (L3) of lemma 2. We can finally conclude that

limj→∞ s
j⊤
φ Ls

j
φ=limj→∞ V

j
b =0, for all t ∈ [0, T ] by

using similar argument of Barbalat’s lemma [28].

(T3) Since limj→∞ s
j
φ = s∞φ = 0 for all t ∈ [0, T ], the

boundedness of sj at each iteration over [0, T ] can

be concluded from equation (3) because φ∞ is always

bounded and s∞ converges to s∞ = φ∞sat
(

s∞

φ∞

)
, so

that |s∞| ≤ φ∞ = e−ktε∞ for all t ∈ [0, T ]. Q.E.D.

4. A SIMULATION EXAMPLE

The dynamic equation of the two-link planar robotic
system [5] is given as follows,

[
D11 D12

D21 D22

] [
q̈

j
1

q̈
j
2

]
+

[
−hq̇

j
2 −h(q̇j

1 + q̇
j
2)

hq̇
j
1 0

] [
q̇

j
1

q̇
j
2

]

+

[
d

j
1

d
j
2

]
=

[
u

j
1

u
j
2

]
(22)

where D11 = m1l
2
c1 +m2(l

2
1 + l2c2 +2l1lc2 cos(qj

2))+ I1 + I2,

D12 = D21 = m2l1lc2 cos(qj
2) + m2l

2
c2 + I2, H22 = m2l

2
c2 +

I2, h = m2l1lc2 sin(qj
2). Here mi, Ii, li and lci

represent
mass, inertia, length of link i, and the distance from the
previous joint to the center of mass of link i, respectively.
In this simulation, the physical parameters are specified as
m1 = 10kg, m2 = 5kg, l1 = 1m, l2 = 0.5m, lc1 = 0.5m,
lc2 = 0.25m, I1 = 0.83kg-m2 and I2 = 0.3kg-m2. The
control objective is to let qj = [qj

1, q
j
2]

⊤ track the desired
trajectory qd = [qd1, qd2]

⊤ = [sin(3t), cos(3t)]⊤ as close
as possible over a finite time interval [0, 15]. We assume

that the disturbances take the form of dj = [dj
1, d

j
2]

⊤ =

[mj
1 sin(wj

1t), m
j
2 sin(wj

2t)] and the values of m
j
1, m

j
2, w

j
1

and w
j
2 are varying. The proposed FNN-DAILC in (9)

is applied with the design parameters k = 1, and the
diagonal positive define matrix λ = diag[2, 2]. In this
simulation, we set the weighing gains α1 = α2 = 0.5,
i.e., the weighting between time-domain adaptation and
iteration-domain adaptation is equal. Then we investigate
the effect of the learning gains by choosing β1 = β2 = 500
and β1 = β2 = 5000, respectively. In order to show
the robustness to the varying initial resetting errors, we
assume that the initial joint position and velocity take the
arbitrary values for the first 5 iterations. To study the
effects of the proposed FNN-DAILC, we show some learn-
ing performances in Figure 1 and Figure 2, respectively.
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−1
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0

(a)

0 5 10 15
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2
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0 5 10 15
−2

−1

0

1

2
(c)

0 5 10 15
−4

−2

0

2

4
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0 5 10 15
−40

−20

0

20

40
(e)

Figure 1 :
(a) supt∈[0,15] |s

j
φ1(t)| (∗ ∗ ∗ for β1 = β2 = 500; ◦ ◦ ◦ for

β1 = β2 = 5000) versus iteration j ;
(b) s5

1(t) (solid line ) and ±φ5(t) (dotted lines) versus time
t, β1 = β2 = 5000, k = 1 ;
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(c) q5
1(t) (solid line) and qd1 (dotted line) versus time t,

β1 = β2 = 5000, k = 1 ;
(d) q̇5

1(t) (solid line) and q̇d1 (dotted line) versus time t,
β1 = β2 = 5000, k = 1 ;
(e) u5

1(t) versus time t, β1 = β2 = 5000, k = 1 ;
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Figure 2 :
(a) supt∈[0,15] |s

j
φ2(t)| (∗ ∗ ∗ for β1 = β2 = 500; ◦ ◦ ◦ for

β1 = β2 = 5000) versus iteration j ;
(b) s5

2(t) (solid line ) and ±φ5(t) (dotted lines) versus time
t, β1 = β2 = 5000, k = 1 ;
(c) q5

2(t) (solid line) and qd2 (dotted line) versus time t,
β1 = β2 = 5000, k = 1 ;
(d) q̇5

2(t) (solid line) and q̇d2 (dotted line) versus time t,
β1 = β2 = 5000, k = 1 ;
(e) u5

2(t) versus time t, β1 = β2 = 5000, k = 1.

5. CONCLUSION

For a repetitive control task of robotic system, a fuzzy
neural network based adaptive iterative learning controller
is proposed in this work. Since a direct scheme is ap-
plied to design the learning control structure, the fuzzy
neural network is used to play a role of compensation
for unknown desired certainty equivalent controller. The
optimal weights of the fuzzy neural network are tuned by
a new adaptive law which combines the adaptation along
time domain and iteration domain. Rigorous analysis is
presented to guarantee the signal stability in time domain
and error convergence in iteration domain. Simulation
results demonstrate the effectiveness of the proposed FNN-
DAILC for robotic systems with repeatable control tasks.
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