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Abstract: This paper shows that one of soft actuators, Ionic Polymer-Metal Composite (IPMC)
can be modeled in terms of distributed port-Hamiltonian systems with multi-scale. The physical
structure of IPMC consists of three parts. The first part is an electric double layer at the interface
between the polymer and the metal electrodes. The frequency response of the polymer-metal
interface shows a fractal degree of gain slope. Then we adopt a black-box circuit model to
this part and give considerations for distributed impedance parameters. The second part is
an electrostress diffusion coupling model with bending and relaxation dynamics. This part is
represented by an electro-osmosis, which is a water transport by an electric field, and a streaming
potential, which is an electric field created by a water transport. We discuss the relationship of
stress and bending moment induced by swelling. The third part is a mechanical system modeled
as a flexible beam with large deformations. The representation has the capability extracting the
control structure based on passivity from distributed parameter systems possessing a complex
behavior.

Keywords: Modeling, Design methodologies

1. INTRODUCTION

Polyelectrolyte gels that deform under electric field has
been expected as soft actuators and sensors (Osada
[2004]). A new type gel, called an ionic polymer metal
composite (IPMC) (Shahinpoor and Jim [2001], Asaka
et al. [2004]), is a swollen polyelectrolyte gel of certain
fluorocarbon networks that is plated with metal electrodes
and includes a counterion such as Na+. The IPMC demon-
strates the quick response to small electric fields and the
robustness for a large number of bending cycles. The
characteristic of the deformation strongly depends on the
kind of counterions in the gel. Various modeling methods
of IPMC have been proposed in the viewpoint of both a
⋆ This work has been supported by the Ministry of Education,
Science, Sports and Culture Grants-in-Aid for Young Scientists (B)
No.19760298 and Scientific Research (C) No.19560435 and the JSPS
and French Ministry of Foreign Affairs Grant-in-Aid for the Japan-
France Integrated Action Program (SAKURA).

black box model with a system identification (Takagi et al.
[2007]) and a white box model using an actual physical
structure (Yamaue et at. [2005]).

Generally, soft materials such as IPMC are modeled by
partial differential equations as a distributed parameter
system. The most general way of introducing a system
model for the control of the distributed system is the
method of adopting classical types of partial differential
equations classified by the existence of analytical solu-
tions (Sobolev [1964]). In this method, some approxima-
tions, that is linearization, discretization, and finite dimen-
sional reduction are considered. These are used in the field
of numerical simulation mainly.

On the other hand, a new modeling method for distributed
systems, called a distributed port-Hamiltonian systems
has been presented (Van der Schaft and Maschke [2002]),
which is a geometric system representation based on pas-
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sivity (Van der Schaft [2000]). The port-Hamiltonian rep-
resentation is based on pairs of power variables, called a
port, and the product of the pair is equal to its power.
The system is connected to each subsystem through the
port with preserving the total energy of connected systems,
and then the connected system can be written as a port-
Hamiltonian system. Two control strategies for such a
system there exists (Van der Schaft [2000], Stramigioli
[2001], Ortega et at. [1999]). One of them is stabiliza-
tion by a damping injection on the port. The other is
an energy shaping, which means the arrangement of the
global minimum point of energy functions, by connecting
another port-Hamiltonian system as a dynamical compen-
sator to ports of plants. Additionally, the distributed port-
representation has the capability dealing with a boundary
observation of an internal energy change by using the
boundary port. The applications of the distributed port-
Hamiltonian system have been studied in the viewpoint of
multi-scale (Couenne et at. [2005], Eberard et at. [2005]).

In this paper, we extend the electrostress diffusion coupling
model for polyelectrolyte gels expressing the relaxation
phenomenon of IPMC (Yamaue et at. [2005]) to a dis-
tributed parameter multi-physics system in terms of the
distributed port-Hamiltonian systems with multi-scale as
a control system.

2. MODELING

In this section, we assume that a distributed parameter
model for IPMC lies on 3-dimensional space. Let the x-
axis be the longitudinal direction of the film, the y-axis be
the width of the film, and the z-axis be along the cross
section of the film.

2.1 Equivalent model of electric double layer

The electrical impedance of IPMC is capacitive, because
there exists electric double layer at the interface between
the polymer and the metal electrodes (Osada [2004]).
The polymer-metal interface has a complex structure and
its frequency response shows a fractal degree of gain
slope (Takagi et al. [2005]). Then, a black-box circuit
modeling of the electrical system of IPMC has been
discussed (Fig.1, Takagi et al. [2007]).

Consider a virtual coordinate ξ ∈ [0, L] for the black-
box model of distributed systems. Let v(ξ, t), i(ξ, t) be an
electrical potential and a current, respectively. Now, we
assume that the series impedance is R1(ξ) as an electrode
resistance and the parallel impedance is R2(ξ)+1/(sC2(ξ))
with the polymer resistance R2(ξ) and the electric double
layer capacitance C2(ξ). Then, we have

R2C2
∂2i

∂t∂ξ
+

∂i

∂ξ
+ C2

∂v

∂t
= 0 ,

∂v

∂ξ
+ R1i = 0 ,

(1)

where i(0, t) = je(t), v(0, t) = va(t), and i(L, t) = 0.

A) The case of constant coefficients R1, R2, C2: As-
suming R1, R2, C2 are constant, the system (1) can be
transformed into

C2
∂v

∂t
=

1
R1

∂2v

∂ξ2
+

R2C2

R1

∂3v

∂t∂ξ2
. (2)

Fig. 1. Black-box model of electric double layer of IPMC

In the port-Hamiltonian setting, one introduces as state
variable, a conserved quantity. In the model of the double
layer of equation (2), this is the distributed charge Q(ξ, t)
which is related to the voltage by: v(ξ, t) = Q(ξ,t)

C2(ξ)
. The

voltage is the co-energy variable: v(ξ, t) = δQH(Q) where
H(Q, ξ) =

∫ L

0
1
2

Q2

C2
dξ is the electrical energy of the model

and δ is a variational derivative.

The evolution equation is actually a conservation law:
∂Q

∂t
= −∂f2

∂ξ
, (3)

where f2 is the flux variable (current). In turn, we define
the right-hand side of (3) as −f1. Then, f2 is generated by
the phenomenological law:

f1 =
∂f2

∂ξ
, f2 = − 1

R1
e2 (4)

where e2 is a “generalized thermodynamic force” (here a
voltage density) which is constituted by two parts through
e1:

e1 = v − R2f1 , e2 =
∂e1

∂ξ
(5)

consisting in a reversible voltage due to the charge and a
voltage due to dissipation. Then, we obtain

∂Q

∂t
= −∂f2

∂ξ
= − ∂

∂ξ

(
− 1

R1
e2

)
= − ∂

∂ξ

(
− 1

R1

∂

∂ξ
e1

)
= − ∂

∂ξ

(
− 1

R1

∂

∂ξ

(
v + R2

∂Q

∂t

))
= −f1 . (6)

One recovers the relations in the domain:[
f1

e2

]
=

 0
∂

∂ξ
∂

∂ξ
0

[
e1

f2

]
(7)

and if we complete with the port boundary variables:[
f |∂
e|∂

]
=

 f2(0)
f2(L)
e1(0)
e1(L)

 =
[

current
voltage

]
, (8)

then we have the distributed port-Hamiltonian sys-
tem (Van der Schaft and Maschke [2002]). The bond-graph
representation of this system is as follows:

R2 : R

∫ L

0

Q2

2C2
: C 0�

�
Q̇

Q
C2_g

Q
C2

f1

_ 7 �� 1
__

R2f1 f1

�W

e1

f1

_ 7 �� DTF

:

∂
∂ξ

�

1�
�

f2

e2_g −e2

f2

_ 7 �� R :
1

R1

( f2(0) ,e1(0))

(f2(L), e1(L))

W

(9)
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The pair of boundary-ports at ξ = 0 consists of the input:
e1(0, t) = va(t) and the conjugate output: f2(0, t) = je(t)
with Q̇ → 0 for t ≫ T where T is a large integer, that is

je(t) = − 1
R1

dv

dξ

∣∣∣∣
ξ=0

(10)

connecting to an electro-mechanical system in the follow-
ing. The another boundary is terminated by the condition:
f2(L, t) = 0.

B) The case of distributed coefficients R1(ξ), R2(ξ), C2(ξ):
The system (1) can be transformed into

C2
∂v

∂t
− 1

R1

∂2v

∂ξ2
+

1
R2

1

∂R1

∂ξ

∂v

∂ξ

− R2C2

R1

∂3v

∂t∂ξ2
+

R2C2

R2
1

∂R1

∂ξ

∂2v

∂t∂ξ
= 0 ,

C2
∂v

∂t
+ (1 + R2C2∂t)

(
− 1

R1

∂2v

∂ξ2
+

1
R2

1

∂R1

∂ξ

∂v

∂ξ

)
= 0 .

(11)

Introducing the new state variable: X = C2v + R2C2f1,
we obtain

∂X

∂t
= −

(
− 1

R1

∂2v

∂ξ2
+

1
R2

1

∂R1

∂ξ

∂v

∂ξ

)
:= −f1 , (12)

where we defined the following power variables:

f1 =
∂f2

∂ξ
, f2 = − 1

R1
e2 ,

e1 = v =
Q

C2
=

X

C2
− R2f1 , e2 =

∂e1

∂ξ
. (13)

This system can be illustrated as follows:

R2 : R

∫ L

0

X2

2C2
: C 0�

�
Ẋ

X
C2_g

X
C2

f1

_ 7 �� 1
__

R2f1 f1

�W

e1

f1

_ 7 �� DTF

:

∂
∂ξ

�

1�
�

f2

e2_g −e2

f2

_ 7 �� R :
1

R1

( f2(0) ,e1(0))

(f2(L), e1(L))

W

(14)

Remark 1. The structure of the system corresponds with
the conservation law

∂X

∂t
= −∂f2

∂ξ
(15)

coupled to the closure equation:

f2 = − 1
R1

∂

∂ξ

(
δXH(X) − R2

∂f2

∂ξ

)
, (16)

where H(X) =
∫ L

0
1
2

X2

C2
dξ. If R2 = 0, the state X changes

to Q and the system is reduced to an ordinary diffu-
sion equation. Then, the system can be considered as a
“diffusion-like equation” with the modulated conserved
quantity X. Generally speaking, it is difficult to construct
control systems for such an equation in terms of analytical
methods. However, the port-representation provides us an
intuitive synthesis framework without theoretical difficul-
ties.

2.2 Electrostress diffusion coupling model with bending
and relaxation dynamics

The electric current density je and the water flux density
js in the polyelectrolyte gels are expressed by the coupling
the gradient of pressure p and the electric field ψ as follows{

je = −σe∇ψ − λ∇p ,
js = −κ∇p − λ∇ψ ,

(17)

where σe is the conductance, κ is the Darcy’s permeability
and λ is the Onsager’s coupling constant (De Gennes et at.
[2000]). The first equation of (17) expresses an electro-
osmosis, which is a water transport by an electric field. The
second equation of (17) is a streaming potential, which is
an electric field created by a water transport.

Next, we introduce the model expressing relaxation phe-
nomenon of IPMC (Yamaue et at. [2005]). Now, we assume
that there is no electro chemical reaction in the electrode
of IPMC. The film is considered as a strip with thickness
h. Let R(t) be a radius of a curvature of the film at the
time t. When the film bends with curvature 1/R(t), the
displacement u(x, y, z, t) of the film is given by

ux =
z

R(t)
x, uy =

z

R(t)
y, uz = uz(z, t) . (18)

Thus, the swelling ratio fs(z, t) = ∇u is given by

fs(z, t) =
∂uz

∂z
+

2z

R(t)
. (19)

Consider the linearized stress tensor:

σij = K
∑

k

∂uk

∂k
δij + G

(
∂ui

∂j
+

∂uj

∂i
− 2

3

∑
k

∂uk

∂k
δij

)
,

(20)
where i, j, k = {x, y, z}, K is the bulk modules and G is
the shear modulus of gels. Then, we have

σzz(z, t) =
(

K +
4
3
G

)
fs(z, t) − 4G

R(t)
z , (21)

σxx(z, t) =
(

K − 2
3
G

)
fs(z, t) +

2G

R(t)
z . (22)

From the force balance equation ∂(σzz−p)/∂z = 0 and the
boundary condition σzz −p = 0 at z = ±h/2, the pressure
p(z, t) is calculated by

p(z, t) =
(

K +
4
3
G

)
fs(z, t) − 4G

R(t)
z . (23)

From (17), it follows that

js(z, t) = −
(

κ − λ2

σe

) (
K +

4
3
G

)
∂fs

∂z

+
(

κ − λ2

σe

)
4G

R(t)
+

λ

σe
je(z, t) ,

= −D′ ∂fs

∂z
+ Φ +

λ

σe
je(z, t) , (24)

where

D′ :=
(

κ − λ2

σe

)(
K +

4
3
G

)
, Φ :=

(
κ − λ2

σe

)
4G

R(t)
.

(25)
Substituting (24) into the continuity equation

∂fs

∂t
= −∂js

∂z
, (26)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2302



the time evolution of the swelling ratio can be written by
the diffusion equation

∂fs

∂t
= D′ ∂

2fs

∂z2
, (27)

where we used the charge conservation law ∂je/∂z = 0. If
we assume that the electrode is impermeable js|±h/2 = 0,
then we obtain the boundary condition

∂fs

∂z

∣∣∣∣
±h

2

=
λ

D′σe
je(z, t) ± Φ

D′ . (28)

Writing the conservation law for the swelling ratio fs(z, t)
directly as a “diffusion equation”:

∂fs

∂t
= − ∂

∂z

(
−D′ ∂

∂z
δfs

Hsw

)
(29)

where Hsw(fs) =
∫ L

0
f2

s

2 dz. As in the preceding section,
this makes appear a Dirac structure which may be rep-
resented by a DTF -element. Then the boundary port
variables are:

• the swelling ratio at the boundary: fs|∂
• the flux variable at the boundary: βsw = −D′ ∂

∂z fs

which defines a dissipative port-Hamiltonian system (Maschke
and Van der Schaft [2005]). Writing a model under the
assumption of “charge conservation”, the boundary condi-
tions are:

βsw = −Φ(t) +
λ

σe
je(t) (30)

The following is the bond graph of the above system:

λ
σe

je

__ λ
σe

je
∂fs
∂z

�
�

∫ h
2

−h
2

f2
s

2
: C 0�

�
ḟs

fs_g fs

−ḟs

_ 7 �� DTF

:

∂
∂z

�

0�
�

js

∂fs
∂z_g

∂fs
∂z

D′ ∂fs
∂z

_ 7 �� R : D′

(
fs( h

2 ) ,js( h
2 )

)(
fs(−h

2 ) , js(−h
2 )

)
W

Sf : Φ
__Φ

∂fs
∂z

� G
(31)

where fs|∂ are connected to the following mechanical part
through (36).
Remark 2. In bond graph terms, the boundary port is
connected to a source element. Writing the boundary
condition in terms of the port variable, here the flux
variable has the advantage to avoid to parameterize the
relation by an “internal” parameter D′. However this
writing has the disadvantage to be not flexible to changes
in the modeling assumptions. To be more general the
coupling with the flux of charges has to be written in the
domain according to the equation (24).

2.3 Modulated coupling on stress and bending moment
induced by swelling

We assume that the stress (22) on the edge of x axis can be
decompose into an active part σa generated by electrical
fields and a passive part σp caused by the restoring force
of the curvature 1/R(t). Then, we have

σxx = σa + σp , (32)

σa =
(

K − 2
3
G

)
fs(z, t) , σp =

2G

R(t)
z . (33)

First, a passive bending moment Mp is calculated by

Mp(t) =
∫ h

2

−h
2

σp(z, t)bz dz =
∫ h

2

−h
2

2G

R(t)
bz2 dz

=
2Gbh3

12R(t)
=

Y I

1 + ν

1
R(t)

, (34)

where Y is Young’s modulus such that G = Y/2(1 + ν),
I = bh3/12 is a moment of inertia of area, and ν is
Poisson’s ratio. Let w(x, t) be a shearing position. Now,
we assume the curvature 1/R(t) to be a strain ∂θ(x, t)/∂x.
Then, we obtain

Mp(t) = − Y I

1 + ν

∂θ(x, t)
∂x

= −Ψ
∂θ(x, t)

∂x
. (35)

Let us consider an active bending moment Ma induced
from σa as follows:

Ma(t) =
∫ h

2

−h
2

σa(z, t)bz dz

=
(

K − 2
3
G

)
b

∫ h
2

−h
2

fs(z, t)bz dz , (36)

where b is a coefficient of moment of inertia of cross section.
Remark 3. Note that the boundary ports jx|∂ are termi-
nated by the impermeable condition jx|∂ = 0 of electrode
in the coupling between the electro-mechanical part and
the mechanical part. Then, this port connection has no
reaction from the mechanical part, which this means that
efforts jx|∂ are fixed to zero. The effect of the flows fs|∂ in
the mechanical part is expressed as a modulated source,
which is an element of bound-graph. Thus, the input to
the mechanical part should be calculated by (36).

2.4 Mechanical part with large deformations

First, we introduce the equation of flexible beams under
large overall motions on the plane presented (Simo and Vu-
Quoc [1986]). This model carries the advantage that dras-
tic simplification of the inertia temporal part is obtained
by the linear uncoupled inertia operator. After that, we
show two reduced model of the flexible beams with large
deformations.

A) The case of large deformations: Let Aρ be a mass per
unit length and let Iρ be a mass moment of inertia of a
cross section. Let EA, GA and EI be an axial, a shear and
a flexural stiffness of beams, respectively. Let us consider
the equations of motion Aρ

[
ytt

wtt

]
− ∂x

(
ΛCΓ

)
=

[
0
0

]
,

Iρ θtt − EI θxx − ΞΛ CΓ = ∂xMa ,
(37)

where ∂xM is the input from the electro-mechanical sys-
tem, x ∈ [0,M ] is the spatial coordinate along the equilib-
rium position, (x+y) is the axial position, w is the shearing
position, θ is the rotation of the cross section along the
unchangeable length of the beam and the matrices: Λ, C,
Γ1, Γ2 and Ξ, are given by
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Λ :=
[
cos θ − sin θ
sin θ cos θ

]
, C :=

[
EA 0
0 GA

]
,

Γ :=
[
Γ1

Γ2

]
= Λ⊤

[
1 + yx − cos θ

wx − sin θ

]
,

Ξ := [−wx 1 + yx] . (38)
The kinetic energy T and the potential energy U are
expressed as

T =
1
2

∫ M

0

[
Aρ yt

2 + Aρ wt
2 + Iρ θt

2
]
dx , (39)

U =
1
2

∫ M

0

[
EA Γ1

2 + GA Γ2
2 + EI θx

2
]
dx . (40)

Next, the variational differential of the Hamiltonian den-
sity H = T + U is obtained as the functional 1-form:

δH =
∫ M

0

[
Aρ yt dyt + Aρ wt dwt + Iρ θt dθt − ΞΛCΓ dθ

+
(
Λ CΓ

)⊤ [
dyx

dwx

]
+ EI θx dθx

]
dx . (41)

From (41) the energy variables p, ϵ and the co-energy
variables ν, σ are defined by the following.

p1 = −Aρ yt dx , ν1 = −yt ;
p2 = −Aρ wt dx , ν2 = −wt ;
p3 = −Iρ θt dx , ν3 = −θt ;
ϵ1 = θ dx , σ1 = −ΞΛ CΓ ;
ϵ2 = yx dx , σ2 =

(
ΛCΓ

)
1
;

ϵ3 = wx dx , σ3 =
(
ΛCΓ

)
2
;

ϵ4 = θx dx , σ4 = EI θx ,

(42)

where ( · )i means an extracted i-th element. Setting

fpi = −∂pi

∂t
, fϵj = −∂ϵj

∂t
, (43)

eνk
= νk , eσl

= σl , (44)
the energy variables (42) can be connected to the Stokes-
Dirac structure and defines a field port-Lagrangian sys-
tems (Nishida and Yamakita [2005]), which is a kind of
dual representation of the distributed port-Hamiltonian
system. The above system can be modeled as a bond
graph.

I

:

Aρ

fy|∂

�

C

:

(ΛCΛ⊤)−1
1

1

−ẏ −Aρÿ

� G__

��Aρÿ

−ẏ
_ 7

∂
∂x

:

DTF

ey|∂W

0−ẏx

ΛCΓ1_g�� __
ΛCΓ1 ẏx

�W

0ΛCΓ1 �
�__

Ma

−θ̇xMa �
�__

[−Ξ, 0] : MTF
−ΞΛCΓ

−θ̇

_ 7 �� 1
−Iρθ̈−θ̇ �
�__

��∂xe0

−θ̇

_ 7 DTF

:

∂
∂x

eθ|∂ �

1
−θ̇x

e0_g��

1
−Aρẅ−ẇ �
�__

��Aρẅ

−ẇ
_ 7 DTF

:

∂
∂x

ew|∂ �

0−ẇx

ΛCΓ2_g��
__
ẇxΛCΓ2 �

�

ΛCΓ2 0

�W__

Iρ

:

I fθ|∂

W

0

−θ̇xEIθx

�W__

__
θ̇xEIθx �

�

Aρ

:

I fw|∂

W

(ΛCΛ⊤)−1
2

:

C

EI−1

:

C

(45)
where e0 := EIθx + Ma.

B) The case of small strains: First, introducing the
following infinitesimal strain assumption in (37)

[
Γ1

Γ2

]
= Λ⊤

[
1 + yx − cos θ

wx − sin θ

]
≈

[
yx

wx − θ

]
, (46)

we obtain a Timoshenko beam model.
Aρ ytt − EA yxx = 0 ,
Aρ wtt − GA

(
wxx − θx

)
= 0 ,

Iρ θtt − EI θxx − GA
(
wx − θ

)
= ∂xMa .

(47)

Thus, we define the energy variables:
p1 = −Aρ yt dx , ν1 = −yt ;
p2 = −Aρ wt dx , ν2 = −wt ;
p3 = −Iρ θt dx , ν3 = −θt ;
ϵ1 = (wx− θ) dx , σ1 = −GAθ ;
ϵ2 = yx dx , σ2 = EAyx ;
ϵ3 = (wx− θ) dx , σ3 = GA wx ;
ϵ4 = θx dx , σ4 = EI θx .

(48)

which defines a port-representation also (Golo et at.
[2002]). The reduced system can be illustrated as follows:

I

:

Aρ

fy|∂

�

C

:

EA−1

1

−ẏ −Aρÿ

� G__

��Aρÿ

−ẏ
_ 7

∂
∂x

:

DTF

ey|∂W

0−ẏx

EAyx_g�� __
EAyx ẏx

�W

Ma

−θ̇xMa �
�__

1
−Iρθ̈−θ̇ �
�__

��∂xe0

−θ̇

_ 7 DTF

:

∂
∂x

eθ|∂ �

1
−θ̇x

e0_g��

1
−Aρẅ−ẇ �
�__

��Aρẅ

−ẇ
_ 7 DTF

:

∂
∂x

ew|∂ �

0
f2

e1_g��
__
ẇxe1 �

�

−θ̇

e1
�5
AA

�����
�����

Iρ

:

I fθ|∂

W

0

−θ̇xEIθx

�W__

__
θ̇xEIθx �

�

Aρ

:

I fw|∂

W

GA−1

:
C

EI−1

:

C

(49)
where e1 := GA(wx − θ) and f2 := −ẇx + θ̇.

C) The case of infinitesimal strains: Moreover, an Euler-
Bernoulli model

Aρ wtt + EI wxxxx = −∂xxMa (50)
is obtained by assuming a shear deformation is negligible:
(wx−θ) → 0 and GA → ∞ in addition to the Timoshenko
beam model.

3. DISCUSSION

In the viewpoint of multi-scale distributed port-Hamiltonian
systems (Eberard et at. [2005]), this system has three levels
regarding physical scale. That is, the electrical part (1),
the electro-mechanical part (17) and the mechanical part
(37), and then state variables for each level can be defined
by {x(t), z(x, t), ξ(z, x, t)} ∈ Xel, {x(t), z(x, t)} ∈ Xem,
and x(t) ∈ Xme, respectively. The essential concept of
the multi-scale port-representation is that we consider the
relation Xel ≪ Xem ≪ Xme as a fiber bundle structure
with fiber coordinates z, ξ and a base coordinate x, where
≪ means that there exists a large enough difference be-
tween two scales. Actually, we assumed ∂je/∂z = 0 in the
contact of two lower levels, then this means the situation
that same fibers regarding ξ-axis are defined on each point
of the domain of z uniformly.

The multi-scale factors of IPMC can be classified as
follows:
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1–A Fractal impedance based on the structure of polymer
and metal electrode in the electrical system,

1–B Response of electrical charge in the double layer in
the electrical system,

2 Relaxation in the mechanical-electrical system,
3 Deformation magnitude from stationary position in

the mechanical system,
4 Parameter changes in coefficients depending on vari-

eties of counterions in the chemical system.

The scale of above factors is changeable according to a
scope of observation. There are several models according
to the factors.

1–A
{

(i) Lumped parameter black-box model [Sec. 2.1-A]
(ii) Distributed parameter model [Sec. 2.1-B]

1–B


(i) Fast system; uniform charge conservation law

∂je/∂z = 0 [Sec. 2.1]
(ii) Slow system; distributed current density je

regarding z-axis

2

{ (i) Fast system; e.g. 2nd order delay system
(ii) Slow system; extended diffusion equation

for relaxation phenomena [Sec. 2.2]

3

{ (i) Large deformation beam model [Sec. 2.4-A]
(ii) Timoshenko beam model [Sec. 2.4-B]
(iii) Euler-Bernoulli beam model [Sec. 2.4-C]

4
{

(i) Single property system
(ii) Chemical property varying system

where there are the relations: 1–A ≪ 3 in the spatial scale,
4 ≪ 2 ≪ 1–B in the time scale. Then, the scale can be
selected according to observed phenomena in an actual
model. This situation indicates that such a set of complex
and different scale partial differential equations can be for-
malized by the port-representation and the observed scale
can be changed with the multi-scale connection through
the boundary ports. The port-represented model is based
on passivity, which is a familiar concept with engineers,
and then it is easy to understand its essential physical
network structure. Moreover, a lot of control strategies
has been proposed for port-represented systems (Strami-
gioli [2001], Ortega et at. [1999]). These methods can be
adapted to the models without further considerations.

4. CONCLUSION

This paper shows the modeling of Ionic Polymer-Metal
Composite (IPMC) with the distributed port-Hamiltonian
systems with multi-scale. As a result, we can use a port-
Hamiltonian model with an appropriate scale case by case.
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