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Abstract: This paper addresses an optimal design problem of dynamic quantizers for a class of
2D systems with discrete-valued control input. First, we derive a closed form expression of the
performance of a class of dynamic quantizers. Next, based on that, an optimal dynamic quantizer
is provided. Finally, we apply the optimal dynamic quantizer to generate binary halftone images.

1. INTRODUCTION

In recent years, analysis and design problems of quantizers
have been actively discussed from a control point of
view. So various results on this topic have been derived
(e.g., Nair and Evans (2003); Tatikonda and Mitter
(2004); Bullo and Liberzon (2006); Quevedo and Goodwin
(2003); Azuma and Sugie (2008); Minami, Azuma, and
Sugie (2007)).

These results, however, have been derived only for 1D
systems with discrete-valued signal constrains. So no quan-
tizer for 2D systems has been proposed so far, although
2D systems have been received extensive attention in sev-
eral modern engineering fields such as image processing,
modeling of partial differential equations, and control of
repetitive systems (e.g., Roesser (1975); Galkowski et al.
(1999)). Therefore, the design problem of quantizers for
2D system is one of novel and interesting research topics.

Motivated by the above background, this paper addresses
an optimization problem of a class of quantizers for 2D
systems with discrete-valued input, i.e., for 2D systems
whose input takes only values on a fixed discrete set.
In particular, we focus on an optimal design problem of
a class of dynamic quantizers, since dynamic quantizers
can be much better than static ones to achieve high
performance. In this paper, we consider the following
problem as an extension of our previous work (Minami,
Azuma, and Sugie (2007)): when a 2D plant and a 2D
controller are given in the feedback system in Fig. 1 (a),
find a dynamic quantizer such that the system in Fig. 1 (a)
optimally approximates the ideal feedback system in (b)
in terms of the controlled output.

To this problem, the main contributions of this paper are
as follows. First, we analytically derive an optimal dynamic
quantizer for a class of 2D systems with discrete-valued
input. The optimal dynamic quantizer proposed in this pa-
per allows us to use the conventional controller design the-
ory for 2D systems, even though 2D systems have discrete-
valued input constraints. Second, we apply the optimal
dynamic quantizer to generate binary halftone images. The

halftoning is a process of transforming grayscale images to
binary images, and halftone images resemble original gray
images in appearance. In this paper, a halftone image is
generated by the optimal quantizer.

Notation: Let R, R+, and N denote the real number field,
the set of positive real numbers, and the set of positive
integers, respectively. For the matrix H := {Hij}, let
abs(H) be the matrix composed of the absolute values
of the elements, i.e., abs(H) := {|Hij |}, and we use I, 0,
and 1 to express the identity matrix, the zero matrix, and
the vector whose all elements are one. For i, j, h, k ∈ N,
let (i, j) = (h, k) express i = h and j = k. For the vector
x, sign(x) expresses the vector obtained by elementwisely
applying the signum function to x. Finally, for the vector
x, the matrix H, and the sequence of the vectors X :=
{x1, x2, . . . , xf}, the symbols ‖x‖, ‖H‖, and ‖X‖ express
their ∞-norms (note that ‖X‖ := supi∈{1,2,...,f} ‖xi‖).

2. PROBLEM FORMULATION

Let us consider the feedback system ΣQ in Fig. 1 (a)
composed of the linear 2D plant P , the controller K, and
the quantizer Q. The plant P is the Fornasini-Marchesini
first model (Fornasini and Marchesini (1978)) given by

P :


x(i+1, j+1) = A0x(i, j) + A1x(i, j+1)

+A2x(i+1, j) + Bv(i, j),
z(i, j) = C1x(i, j),
y(i, j) = C2x(i, j)

(1)

where x ∈ Rn is the state, v ∈ Rm is the input, z ∈ Rl1

is the controlled output, y ∈ Rl2 is the measured output,
A0, A1, A2 ∈ Rn×n, B ∈ Rn×m, C1 ∈ Rl1×n, C2 ∈ Rl2×n

are constant matrices, and (i, j) ∈ {0, 1, . . . ,M−1} ×
{0, 1, . . . , N−1} for M, N ∈ N. For given M, N ∈ N, let
X(0) be represented by

X(0) := [ x(0, 0) x(1, 0) · · · x(M, 0)
x(0, 1) x(0, 2) · · · x(0, N) ]. (2)

Then the boundary condition is given as X(0) = X0 for
X0 ∈ Rn×(M+N+1). The controller K is given by
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(a) Feedback system ΣQ with an input quantizer

(b) Ideal feedback system Σ

Fig. 1. Two feedback control systems

K : u(i, j) = F0y(i, j) + F1y(i, j+1)
+ F2y(i+1, j) + Gr(i, j) (3)

where u ∈ Rm is the output, r ∈ Rp is the reference, and
F0, F1, F2 ∈ Rm×l2 , G ∈ Rm×p are constant matrices.
We suppose that the controller K internally stabilizes the
plant P in Fig. 1 (b). Finally, Q is the dynamic quantizer
in the form of

Q :


ξ(i+1, j+1) = A0ξ(i, j) + A1ξ(i, j+1) + A2ξ(i+1, j)

+B1u(i, j) + B2v(i, j),

v(i, j) = q
[
C0ξ(i, j) + C1ξ(i, j+1)

+C2ξ(i+1, j) + u(i, j)
] (4)

where ξ ∈ Rn is the state, u ∈ Rm is the input, v ∈ Vm

is the output, Vm ⊂ Rm is the discrete set on which
the output takes values, A0, A1, A2 ∈ Rn×n, B1, B2 ∈
Rn×m, C0, C1, C2 ∈ Rm×n are constant matrices, and
q : Rm → Vm is the static quantizer. Using different
fonts, we distinguish the symbols (A, B, C) used in Q
from (A, B,C) in P . For given M, N ∈ N, the bounday
condition is given as{

ξ(0, 0) = 0
ξ(i, 0) = 0 (i = 1, 2, . . . ,M)
ξ(0, j) = 0 (j = 1, 2, . . . , N)

(5)

for guaranteeing that Q is drift-free, i.e., v(i, j) = 0 for
u(i, j)=0 (i = 0, 1, 2, . . . ,M−1, j = 0, 1, 2, . . . , N−1). This
quantizer is a 2D version of the dynamic quantizer for 1D
plant (Azuma and Sugie (2008)). Also it is an extension
of the usual static quantizer; in fact, if C0 = C1 = C2 := 0,
Q is the same as the static quantizer, i.e., v = q[u ].

In this paper, we consider a problem of finding an optimal
dynamic quantizer with the following assumptions:

(A1) The matrix C1B is square and nonsingular.
(A2) The matrix G is full row rank.
(A3) For given d ∈ R+, the set Vm is defined as

Vm := {0,±d,±2d, . . .}m. In addition, q is
the nearest neighbor quantizer 1 , i.e., q[µ] :=
arg minv∈Vm(v − µ)>(v − µ) for µ ∈ Rm.

The assumptions (A1) and (A2) are given for P and K,
under which the inverse of C1B can be defined and the
pseudo-inverse of G is given by G† := G>(GG>)−1. These
are the essential assumptions in this paper.
1 Note that if the value of q[µ] is not uniquely determined, q[µ]
is given as the smallest vector (in the sense of the sum of the all
elements) of the solutions to minv∈Vm (v − µ)>(v − µ).

On the other hand, (A3) is imposed for q in Q from a
practical point of view. The first half implies that the
set Vm is a lattice whose interval is d in Rm. The last
half is given since the nearest quantizer is the simplest
in the sense that the output can be obtained in short
computation time.

It should be noticed that under (A3), we have the relation

abs(q[µ] − µ) = abs(µ − q[µ]) ≤ d

2
1 (∀µ ∈ Rm), (6)

which will be used in this paper.

Before describing the problem discussed here, some sym-
bols are defined. Given M, N ∈ N, the reference sequence

R :={r0,0, r0,1, . . . , r0,(N−1), r1,0, r1,1, . . . , r1,(N−1),

. . . , r(M−1),0, . . . , r(M−1),(N−1)}∈ RpMN (7)
is applied to the systems in Fig. 1, i.e., r(i, j) = ri,j ∈
Rp (i = 0, 1, . . . ,M−1, j = 0, 1, . . . , N − 1). For the
system ΣQ in Fig. 1 (a) with the boundary condi-
tion X(0) = X0 ∈ Rn×(M+N+1) and the reference se-
quence R ∈ RpMN , let ZQ(X0, R) be the output se-
quence from (i, j) = (1, 1) to (i, j) = (M,N), and let
zQ(i, j,X0, R) be the output at (i, j). In addition, we
consider the system Σ in Fig. 1 (b), and for which,
the output sequence is expressed by Z(X0, R) and the
output at (i, j) is expressed by z(i, j,X0, R). Then, we
denote by Z(X0, R) − ZQ(X0, R) the vector sequence of
z(i, j,X0, R)−zQ(i, j,X0, R) from (i, j) = (1, 1) to (i, j) =
(M,N), and denote by ‖Z(X0, R) − ZQ(X0, R)‖ its ∞-
norm, i.e.,

‖Z(X0, R) − ZQ(X0, R)‖ :=
sup

i∈{1,2,...,M},
j∈{1,2,...,N}

‖z(i, j,X0, R) − zQ(i, j,X0, R)‖. (8)

Then the following problem is considered.
Problem 1. For the system ΣQ, suppose that M, N ∈ N
and d ∈ R+ are given, and we consider the maximum
controlled output difference
E(Q) := sup

(X0,R)∈Rn×(M+N+1)

×RpMN

‖Z(X0, R) − ZQ(X0, R)‖. (9)

Then,
(i) determine the value of E(Q) for a given Q,
(ii) find a dynamic quantizer Q (i.e., A0, A1, A2, B1,

B2, C0, C1, C2) minimizing E(Q), and determine the
minimum value of E(Q).

In Problem 1, the two items (i) and (ii) correspond to an
analysis problem and a design problem, respectively. The
performance index E(Q) represents the difference between
Σ and ΣQ in terms of the controlled output. Thus, if the
minimum value of E(Q) is sufficiently small, the output
response of ΣQ is close to that of Σ. This, for example,
implies that if a good controller K for the ideal feedback
system in Fig. 1 (b) is designed via conventional 2D system
control theory, then the performance of (a) with the same
K and the optimal Q is still good enough.

3. AN OPTIMAL DYNAMIC QUANTIZER

In this section, we provide a solution to Problem 1. Before
solving the problem, the solution of the 2D system in (1)
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is prepared.

x(µ, ν)=
µ−1∑
i=1

Aµ−i−1,ν−1
(
A0x(i, 0)+A2x(i+1, 0)

)
+

ν−1∑
j=1

Aµ−1,ν−j−1
(
A0x(0, j) + A1x(0, j+1)

)
+ Aµ−1,ν−1

(
A0x(0, 0)+A1x(0, 1)+A2x(1, 0)

)
+

µ−1∑
i=0

ν−1∑
j=0

Aµ−i−1,ν−j−1Bu(i, j) (10)

where Ai,j ∈ Rn×n is the transition matrix defined as

Ai,j :=


I if i = 0 and j = 0,

0 if i < 0 or j < 0,

A0A
i−1,j−1 + A1A

i−1,j + A2A
i,j−1

otherwise.

(11)

Then, we derive a closed form expression of the perfor-
mance E(Q) as a solution to Problem 1 (i).

As a preliminary, let us derive the state space models of
the systems ΣQ and Σ in Fig. 1. For obtaining a state
space representation of ΣQ, we first rewrite the quantizer
(4) to an equivalent linear system. The equation (4) can
be rewritten by

Q :


ξ(i+1, j+1) = A0ξ(i, j) + A1ξ(i, j+1) + A2ξ(i+1, j)

+B1u(i, j) + B2v(i, j),

v(i, j) = C0ξ(i, j) + C1ξ(i, j+1)
+C2ξ(i+1, j) + u(i, j) + w(i, j)

(12)

where the variable w ∈ Rm is defined as

w(i, j) := q [ ũ(i, j) ] − ũ(i, j) (13)

for

ũ(i, j) := C0ξ(i, j) + C1ξ(i, j + 1) + C2ξ(i + 1, j) + u(i, j).
(14)

Notice that w(i, j) expresses the quantization error gen-
erated by the static quantizer q in Q, and that w(i, j) ∈
[−d/2, d/2]m.

By using (1), (3), and (12), the system ΣQ is expressed as

[
x(i+1, j+1)
ξ(i+1, j+1)

]
=

(
Ā0+B̄1F̄0C2

)[x(i, j)
ξ(i, j)

]
+

(
Ā1+B̄1F̄1C2

)[x(i, j+1)
ξ(i, j+1)

]
+

(
Ā2+B̄1F̄2C2

)[x(i+1, j)
ξ(i+1, j)

]
+

([
BG

0

]
+B̄1G

)
r(i, j)+B̄2w(i, j),

zQ(i, j) = C̄

[
x(i, j)
ξ(i, j)

]
(15)

for

Ā0 :=
[
A∗

0 BC0

0 A0 + B2C0

]
, Ā1 :=

[
A∗

1 BC1

0 A1 + B2C1

]
,

Ā2 :=
[
A∗

2 BC2

0 A2 + B2C2

]
,

B̄1 :=
[

0
B1 + B2

]
, B̄2 :=

[
B
B2

]
, C̄ :=[C1 0] ,

F̄0 :=[F0 0] , F̄1 :=[F1 0] , F̄2 :=[F2 0] (16)

where A∗
0, A∗

1, and A∗
2 are given by

A∗
0 := A0 + BF0C2, A∗

1 := A1 + BF1C2,

A∗
2 := A2 + BF2C2. (17)

Here, let x̄(i, j) := [ x(i, j)> ξ(i, j)> ]> ∈ R2n, and we
define Āi,j ∈ R2n×2n as Ai,j in (11) for A0 := Ā0+B̄1F̄0C2,
A1 := Ā1 + B̄1F̄1C2, and A2 := Ā2 + B̄1F̄2C2. Then, for
given µ, ν ∈ N, X0 ∈ Rn×(µ+ν+1), and R ∈ Rpµν , the
output zQ(µ, ν,X0, R) of ΣQ at (i, j) := (µ, ν) is described
as

zQ(µ, ν,X0, R)

=
µ−1∑
i=1

C̄Āµ−i−1,ν−1
(
(Ā0 + B̄1F̄0C2)x̄(i, 0)

+(Ā2 + B̄1F̄2C2)x̄(i+1, 0)
)

+
ν−1∑
j=1

C̄Āµ−1,ν−j−1
(
(Ā0 + B̄1F̄0C2)x̄(0, j)

+(Ā1 + B̄1F̄1C2)x̄(0, j+1)
)

+ C̄Āµ−1,ν−1(Ā0 + B̄1F̄0C2)x̄(0, 0)
+ C̄Āµ−1,ν−1(Ā1 + B̄1F̄1C2)x̄(0, 1)
+ C̄Āµ−1,ν−1(Ā2 + B̄1F̄2C2)x̄(1, 0)

+
µ−1∑
i=0

ν−1∑
j=0

C̄Āµ−i−1,ν−j−1

·
{([

BG
0

]
+B̄1G

)
r(i, j) + B̄2w(i, j)

}
. (18)

On the other hand, by using (17), Σ is represented as

Σ:


x(i+1, j+1) = A∗

0 x(i, j) + A∗
1 x(i, j+1)

+A∗
2 x(i+1, j) + BGr(i, j),

zQ(i, j) = C1x(i, j).
(19)

Furthermore, we define (A∗)i,j ∈ Rn×n as Ai,j in (11) for
A0 := A∗

0, A1 := A∗
1, and A2 := A∗

2. Then, the output
z(µ, ν,X0, R) of Σ is given by

z(µ, ν,X0, R)

=
µ−1∑
i=1

C1(A∗)µ−i−1,ν−1
(
A∗

0x(i, 0)+A∗
2x(i+1, 0)

)
+

ν−1∑
j=1

C1(A∗)µ−1,ν−j−1
(
A∗

0x(0, j)+A∗
1x(0, j+1)

)
+C1(A∗)µ−1,ν−1

(
A∗

0x(0, 0)+A∗
1x(0, 1)+A∗

2x(1, 0)
)

+
µ−1∑
i=0

ν−1∑
j=0

C1(A∗)µ−i−1,ν−j−1BGr(i, j). (20)

The difference between z(µ, ν,X0, R) and zQ(µ, ν,X0, R)
is given by

z(µ, ν,X0, R) − zQ(µ, ν,X0, R)
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= W (X0, R) −
µ−1∑
i=0

ν−1∑
j=0

C̄Āµ−i−1,ν−j−1B̄2w(i, j) (21)

where W (X0, R) describes all the terms depending on X0

and R.

Then the following result is obtained as a solution to
Problem 1 (i).
Theorem 1. For the system ΣQ, suppose that M, N ∈ N
and d ∈ R+ are given, and assume (A2) and (A3). If

C̄Āi,jB̄1 = 0
(∀(i, j) ∈ {0, 1, . . . ,M−1}×{0, 1, . . . , N−1}), (22)

then

E(Q) =

∥∥∥∥∥
M−1∑
i=0

N−1∑
j=0

abs
(
C̄Āi,jB̄2

) ∥∥∥∥∥d

2
; (23)

otherwise
E(Q) = ∞. (24)

Proof. See Appendix A.

Theorem 1 provides a closed form expression of the max-
imum output difference E(Q). In the right hand side of
(23), each element of the matrix abs(C̄Āi,jB̄2) is nonnega-
tive for every i, j ∈ {0}∪N, and the term C̄Ā0,0B̄2 = C1B
does not include the parameters of Q. This means that if
there exists a dynamic quantizer Q satisfying the relations
(22) and

C̄Āi,jB̄2 = 0
(∀(i, j) ∈ {0, 1, . . . ,M−1}×{0, 1, . . . , N−1}

except for (i, j) = (0, 0)), (25)
such a Q is a solution to Problem 1 (ii).
Theorem 2. For the system ΣQ, suppose that M, N ∈ N
and d ∈ R+ are given, and assume (A1)–(A3). Then,
an optimal dynamic quantizer and the minimum value of
E(Q) are given by

QOPT :



A0 := A∗
0, A1 := A∗

1, A2 := A∗
2,

B1 := −B, B2 := B,

C0 := −(C1B)−1C1A
∗
0,

C1 := −(C1B)−1C1A
∗
1,

C2 := −(C1B)−1C1A
∗
2,

(26)

and
E(QOPT) = ‖abs (C1B)‖ d

2
(27)

where A∗
0, A∗

1, and A∗
2 are given by (17).

4. GENERATION OF BINARY HALFTONE IMAGES

Digital halftoning is a process of transforming grayscale
images (multi-level images) to monochrome images (bi-
nary images), and which is necessary for display of multi-
level images in media in which the direct rendition of
the tone is impossible. Also, this technique is used for
compressing images since the storage capacity of binary
images is smaller than that of multi-level images.

In this section, we apply an optimal dynamic quantizer for
2D systems to generate a halftone image. More concretely,
for the system shown in Fig. 2 (a), we regard the input
r of Q, the output v, and the plant P as an original
grayscale image, a halftone image, and a human visual

system, respectively. So the output z of P corresponds to
an image obtained by viewing a halftone image v, i.e., an
image is perceived by human eyes. On the other hand,
Fig. 2 (b) is the ideal system with continuous-valued
input, and on which the output z corresponds to an image
obtained by a sight of an original image r. For Q, we
use the optimal dynamic quantizer QOPT such that the
system in Fig. 2 (a) optimally approximates the system
in (b). Hence, a halftone image generated by QOPT closely
resembles an original image in appearance.

In this paper, the system P is given by

P :


A0 :=

[
0.2 0
0 0

]
, A1 :=

[
0.3 0
0 1

]
,

A2 :=
[
0.3 0.1
0 0

]
, B :=

[
0.1
0

]
, C1 :=

[
1 0

]
.

(28)

This model has the spatial low pass property, and which
is given by identifying the visual system of the first author
in this paper 2 . Note here that the state x(i, j) of P is
defined as x(i, j) := [x̃(i, j) x̃(i + 1, j)]> ∈ R2 where
x̃(i, j) ∈ R corresponds to the output zQ(i, j) ∈ R of
P , i.e., x̃(i, j) = zQ(i, j). Then, the optimal dynamic
quantizer is given by (26) where A∗

0, A∗
1, and A∗

2 are
given by (17) with F0 = F1 = F2 := 0. Note that if
F0 = F1 = F2 := 0 and G := I, the system in Fig. 1
implies the system in Fig. 2. In addition, we use the image
shown in Fig. 3 as the original 8-bit image whose the
minimum and maximum luminance values equal to 0 and
255, respectively, and we set d := 255. Then, using the
optimal dynamic quantizer, we have the halftone image
shown in Fig. 4. It is remarked that the picture in Fig. 4
looks like the grayscale image although Fig. 4 is the binary
image composed of 0 and 255, i.e., black and white pixels;
see Fig. 5 (left and center figures).

Furthermore, we compare with another halftone image ob-
tained by a conventional halftoning process called error dif-
fusion algorithm (Eschbach et al. (2003)). Fig. 6 shows the
halftone image generated by Floyd & Steinberg filter which
is one of error diffusion algorithms. Compared Fig. 4 with
Fig. 6, we can verify that our result in Fig. 4 is similar to
the result obtained by the error diffusion algorithm. Here,
to evaluate the two images quantitatively, we use WSNR
(Kite, et al. (2000)) which is one of the useful metrics
of halftone images. The WSNR of Fig. 4 and that of
Fig. 6 are 27.820[dB] and 27.816[dB], respectively, which
means that there is not so much of a difference between
Fig. 4 and Fig. 6. On the other hand, the value of E(Q)
for Fig. 4 is 12.75 and that for Fig. 6 is 27.58. From
this, the proposed method has a superiority over the error
diffusion algorithm in the sense of E(Q). This reason is
that the proposed quantizer is optimized for the visual
model in (28). Finally, the optimal dynamic quantizer
has the parameters of P . So we can construct another
optimal quantizer, which has a different property from the
quantizer used in this paper, by using another model P
such as printer models. Namely, our dynamic quantizer
has a flexibility of designing model based halftone filters,
while the error diffusion filter does not have it. Therefore,
we conclude that the optimal dynamic quantizer is very
useful in halftone image processing.
2 By using a circular zone plate image, we have estimated a spatial
cutoff frequency.
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(a) Feedforward system with an input quantizer

(b) Ideal feedforward system

Fig. 2. Two feedforward systems

Fig. 3. Original image (lena)

Fig. 4. Halftone image by the proposed method

5. CONCLUSION
In this paper, we have considered analysis and optimiza-
tion problems of dynamic quantizers for a class of 2D sys-
tems with discrete-valued input. First, as a solution to the
analysis problem, we derive a closed form expression of the
performance of dynamic quantizers, which is represented
by the parameters of P , K, and Q. Next, based on the
result, we have proposed an optimal dynamic quantizer.
Finally, we have applied the optimal dynamic quantizer
to the generation of binary halftone images, and we have
verified that the optimal dynamic quantizer for 2D systems
is applicable to image processing.
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Appendix A. PROOF OF THEOREM 1

For proving (23) and (24), the following lemma, which is
an extension of the result in (Azuma and Sugie (2008)),
is prepared.
Lemma 1. Suppose that matrices Hi,j ∈ Rm×m, vectors
zi,j ∈ Rm (i ∈ {0, 1, . . . , µ−1}, j ∈ {0, 1, . . . , ν−1}), and
a positive number ζ ∈ R+ are given. Then, the following
statements hold.
(i) If abs(zi,j) ≤ ζ1, then∥∥∥∥∥∥

µ−1∑
i=0

ν−1∑
j=0

Hi,jzi,j

∥∥∥∥∥∥≤
∥∥∥∥∥∥

µ−1∑
i=0

ν−1∑
j=0

abs(Hi,j)

∥∥∥∥∥∥ ζ. (A.1)

(ii) Let Hi,j
αβ and 〈Hi,j〉α be the (α, β)-th element and the

α-th row vector of Hi,j , respectively, and let

α′ := arg max
α∈{1,2,...,m}

m∑
β=1

µ−1∑
i=0

ν−1∑
j=0

∣∣∣Hi,j
αβ

∣∣∣. (A.2)

If zi,j := sign(〈Hi,j〉α′)>ζ, the equality holds in (A.1).

By Lemma 1, (23) and (24) are proven as follows.
Proof of (23): Since W (X0, R) = 0 holds in (21) if the
relation (22) holds, we have

‖z(µ, ν,X0, R) − zQ(µ, ν,X0, R)‖

=

∥∥∥∥∥∥
µ−1∑
i=0

ν−1∑
j=0

C̄Āµ−i−1,ν−j−1B̄2w(i, j)

∥∥∥∥∥∥ (A.3)

for given µ, ν ∈ N, a boundary condition X0 ∈ Rn×(M+N+1),
and a reference sequence R ∈ RpMN . From (6), (13), and
Lemma 1 (i), the following inequality holds under (A3).

‖z(µ, ν,X0, R) − zQ(µ, ν,X0, R)‖

≤

∥∥∥∥∥∥
µ−1∑
i=0

ν−1∑
j=0

abs(C̄Āµ−i−1,ν−j−1B̄2)

∥∥∥∥∥∥ d

2
. (A.4)

Now, let Hi,j := C̄Āµ−i−1,ν−j−1B̄2, and we define α′ by
(A.2). For r(i, j) := ri,j , we define ũi,j in a similar way to
ũ(i, j) in (14) with (1) and (3), that is,

ũi,j := Cξi,j + FC2xi,j + Gri,j (A.5)
where

C := [C0 C1 C2] ∈ Rm×3n, F := [F0 F1 F2] ∈ Rm×3l2 ,

ξi,j :=

[
ξ(i, j)

ξ(i, j+1)
ξ(i+1, j)

]
∈ R3n, xi,j :=

[
x(i, j)

x(i, j+1)
x(i+1, j)

]
∈ R3n.

Let wi,j be described as
wi,j = q[ũi,j ] − ũi,j , (A.6)

and we consider the reference defined as

ri,j := G†
{
− sign(〈Hi,j〉α′)>

(
d

2
− δ

)
− Cξi,j−FC2xi,j +q

[
Cξi,j +FC2xi,j

]}
(A.7)

for an arbitrarily given small number δ ∈ (0, d/2). Then
under (A2), we have

wi,j = sign
(
〈Hi,j〉α′

)> (
d

2
− δ

)
(A.8)

because

q[ũi,j ] = q
[
− sign(〈Hi,j〉α′)>

(
d

2
−δ

)

+ q[Cξi,j + FC2xi,j ]
]

= q[Cξi,j + FC2xi,j ]. (A.9)
Thus it follows from Lemma 1 (ii) that the relation
‖z(µ, ν,X0, R) − zQ(µ, ν,X0, R)‖

=

∥∥∥∥∥∥
µ−1∑
i=0

ν−1∑
j=0

abs(C̄Āµ−i−1,ν−j−1B̄2)

∥∥∥∥∥∥
(

d

2
− δ

)
(A.10)

holds for R ∈ RpMN defined by ri,j in (A.7). Moreover, for
every (sufficiently small) ε ∈ R+, there exists δ ∈ (0, d/2)
satisfying∥∥∥∥∥∥

µ−1∑
i=0

ν−1∑
j=0

abs(C̄Āµ−i−1,ν−j−1B̄2)

∥∥∥∥∥∥ d

2
− ε

≤

∥∥∥∥∥∥
µ−1∑
i=0

ν−1∑
j=0

abs(C̄Āµ−i−1,ν−j−1B̄2)

∥∥∥∥∥∥
(

d

2
− δ

)
. (A.11)

Hence from this and (A.4), we obtain
sup

(X0,R)

‖z(µ, ν,X0, R) − zQ(µ, ν,X0, R)‖

=

∥∥∥∥∥∥
µ−1∑
i=0

ν−1∑
j=0

abs(C̄Āµ−i−1,ν−j−1B̄2)

∥∥∥∥∥∥ d

2
. (A.12)

Since each element of the matrix abs(C̄Āµ−i−1,ν−j−1B̄2)
is nonnegative and the value of the right hand side of
(A.12) is a monotone nondecreasing function with respect
to µ, ν ∈ N, the following relation holds.

sup
µ∈{1,2,...,M},
ν∈{1,2,...,N}

sup
(X0,R)

‖z(µ, ν,X0, R) − zQ(µ, ν,X0, R)‖

=

∥∥∥∥∥∥
M−1∑
i=0

N−1∑
j=0

abs(C̄Āi,jB̄2)

∥∥∥∥∥∥ d

2
. (A.13)

This proves (23).
Proof of (24): Applying Lemma 1 (i) to (21) under (A3),
we have the following relation.

‖W (X0, R)‖−

∥∥∥∥∥∥
µ−1∑
i=0

ν−1∑
j=0

abs(C̄Āµ−i−1,ν−j−1B̄2)

∥∥∥∥∥∥ d

2

≤ ‖z(µ, ν,X0, R) − zQ(µ, ν,X0, R)‖. (A.14)
Here, let µ′, ν′ be defined by smallest integers µ, ν ∈ N
satisfying C̄Āµ−1,ν−1B̄1 6= 0 (note that there exists a pair
(µ′, ν′) since (22) does not hold), and recall that W (X0, R)
in (21) describes the terms depending on X0 and R; see
(18) and (20). According to the term depending on r(0, 0)
in W (X0, R), we have

C1(A∗)µ′−1,ν′−1BGr(0, 0)

− C̄Āµ′−1,ν′−1

([
BG
0

]
+B̄1G

)
r(0, 0)

= −C̄Āµ′−1,ν′−1B̄1Gr(0, 0). (A.15)
Since G is the full row rank under (A2), the relation
C̄Āµ′−1,ν′−1B̄1G 6= 0 holds. Hence the supremum of
‖W (X0, R)‖ with respect to R ∈ RpMN is infinity, i.e., the
left hand side of (A.14) with respect to R is infinity. This
implies sup(X0,R) ‖z(µ′, ν′, X0, R) − zQ(µ′, ν′, X0, R)‖ =
∞, which leads to (24).
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