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Abstract: Path following control problem is treated in recent years. In many past results of
path following control, it is assumed the plant has single-input and the velocity of the plant is
considered as constant value. However, when we have to reduce traveling time, we must control
velocity of the plant in tracking problem. In this paper, velocity control and path following task
are achieved at the same time by optimal control. To achieve these tasks, we assume multi-input
plants are given. Since sum of reaching time and input costs is used as a cost, we can obtain
good acceleration and deceleration input. By a constraint for the cost function, the error from
the plant to a given reference path goes to zero when time goes to infinity. The effectiveness of
the proposed method is examined by numerical examples of an automobile model.

Keywords: Autonomous vehicle; Tracking; Target tracking; Time-optimal control; Boundary
value problem.

1. INTRODUCTION

Path following control problems aim to find control inputs
which make automobiles track to given reference paths.
These problems have been paid attention and many results
have been published ( Sampei et al [1994, 1995], Altafini
[2002], Soetanto et al [2003] ).

In many researches of path following problems, the ve-
locity of plants are considered as constant value for ease.
However, not only path following but also rapidly mov-
ing is required in many actual path following problem
such as car racing, ultrafast operation of manipulator.
The velocity should be controlled to quicken up when
we aim rapidly moving. In contrast, when large input
is difficult to input for the plant, we should control the
velocity for decelerating to take a short turn ( See, for
example, automobile model of Abe [1979] ). Therefore, we
should do adequate velocity control based on information
of dynamics of the plant and the shape of the reference
path. However, velocity control method in path following
has not been considered.

In this paper, velocity control method in path following
problem is proposed based on optimization control of
cost function. The cost functions are used for minimizing
traveling time and for achieving small control inputs. To
achieve path following, one of control inputs would be
constrained based on output-zeroing ( See, for example,
Isidori [1995] ). By using the constraint for path following,
the plant tracks to the reference path asymptotically.

Velocity of plants has been treated in many researches (
Casanova et al [2001], Rajan [1985], Chen et al [1989],

Galicki [2000], Kaminer et al [2006], Okajima et al [2004]
). However, these researches are not concerned with path
following problem. Casanova et al [2001] have analyzed
the given data of lateral acceleration and longitudinal
acceleration of F1 race car. Velocity is controlled for
collision-avoidance in Kaminer et al [2006]. The aim of this
method is not time optimization. Not only velocity but also
path of the plant are controlled in Rajan [1985], Chen et al
[1989], Galicki [2000]. These problems are named as “Path
Planning”. The difference between path following and path
planning is that desired reference path is given or not
given. Since we should follow the reference path, control
inputs are constrained by path following task in this paper.
Reference path is used with time optimal problem in
Okajima et al [2004]. However, since this method treats
trade-off between tracking error and moving time, the
plant takes a shorter route for minimizing moving time.
Therefore tracking error exists.

This paper is organized as follow: The problem is formu-
lated in section 2. In particular, the classes of the desired
reference paths and the state equation of the plants are
shown. A constraint for following the path is derived in
section 3. The optimal control problem is presented based
on the constraint in section 4. At the last, the effectiveness
of the method are shown by numerical examples with an
automobile model.

2. PROBLEM FORMULATION

2.1 Desired reference paths

It is assumed that plants move in horizontal plane and a
reference path is given in the plane. Suppose the reference
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path is given as a function with respect to the path
length s, i.e., the reference path is represented as Pr(s) =
(ξr(s), ηr(s))

T . In particular, we also assume ξr(s) and
ηr(s) belong to class C3.

Σ is inertial coordinate and orthonormal bases of Σ is
defined as e1, e2(See Fig. 1). Pr(s) is written as follow:

Pr(s) = ξr(s)e1 + ηr(s)e2 (1)

Then, the curvature κr of each point s in reference path is
represented by

κr(s) =
dθr(s)

ds
. (2)

Since ξr(s) and ηr(s) belongs to class C3, κr is differen-
tiable in each s.

2.2 Characteristics of Plants

We consider path following control for a plant which is
given by the following non-linear state equation:

ẋp(t) = fp1(xp(t)) + fp2(xp(t))u(t), (3)

where xp(t) ∈ Rn is state and u(t) = [ u1(t), · · · , um(t) ]T∈
Rm is control input. { · } is the differential operator with
respect to t. To divide tracking control and velocity con-
trol, we suppose m is greater than 2. Velocity of the plant
v ∈ R and curvature of the plant κ are written as follow:

v(t) = h1(xp(t), u(t)), (4)

κ(t) = h2(xp(t), u(t)). (5)

In addition, we assume the velocity of the plant is not
dependent on u(t) explicitly. i.e., (4) is written by v(t) =
h1(xp). In addition, h2(xp(t), u(t)) is given as follow:

h2(xp(t), u(t)) = h21(xp(t)) + h22(xp(t))u1(t), (6)

where h22(xp) �= 0 holds. We should pay attention that
many plants satisfy these conditions. For example, car with
nonholonomic constraint, basic automobile model based
on slip angle (Abe [1979]).

By using κ(t) and v(t), we can calculate gravity of the
plant in each time. Therefore, we can see that v(t) and
κ(t) play a significant role in path following.
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Fig. 1. Relative position of the reference path and the plant

3. CONTROL LAW FOR PATH FOLLOWING

Path following is achieved by appropriate u1(t) in this
paper. In what follows, we will show the control law for
following the reference path asymptotically.

At the beginning, positional relationship between the plant
and a point Pr(s) on the reference path is considered.

When the value of s is time varying, position of the point
Pr(s(t)) also moves.

In this paper, ζ is defined as follow:

ζ(q′, s) = sgn (q′ · e′2(s)) ‖q′‖, (7)

where ‖ · ‖ shows Euclidean norm. Absolute value of ζ
indicates length of q′. Sign of ζ indicates e′2 element of q′.
i.e., if ζ is positive, the plant exists in left half plane of e′1
axis.

Former relations are satisfied for any given s(t). Moreover,
we consider a special point s = sr which orthogonalize q′

and e′1(Altafini [2002],Okajima et al [2004]). Then such
Pr(sr) is named as “reference point” (See Fig. 2). I.e.,
sr(t) represent the dynamics of reference point when the
following equation holds for any t.

q′(t) · e′1(sr(t)) = 0 (8)

If (8) holds in initial state, we can consider sr(t) by the
following state equation (See Altafini [2002]):

ẋ(t) = F (x(t), u(t)), x = [xT
p , xT

re]
T (9)

F (x, u) =










fp1(xp) + fp2(xp)u

h1(xp)h2(xp, u) − κ̂r

h1(xp) cos θ

1 − κ̂rz
h1(xp) cos θ

1 − κ̂rz
h1(xp) sin θ










where xre = [θ, sr, z]T . (9) includes (3),(4) and (5). We can
see that z indicates signed distance from the plant and the
reference point. Therefore, the plant follows the reference
path exactly when z(t) = 0 holds. Then, we will consider
a control law to satisfy the following equation instead of
path following task:

lim
t→∞

z(t) = 0. (10)

To achieve (10), z(t) is used as output in output zeroing
method. When s2+a1s+a0 is given as Hurwitz polynomial,
the following equation:

T

zz

Reference PointReference Point
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Fig. 2. Characteristics of reference point
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d2z

dt2
+ a1

dz

dt
+ a0z = 0 (11)

enable us to satisfy equation (10). On the other hand,
d2z/dt2 of (9) can be written as a linear function of
u1. Therefore, we can write u1 by a function of x and
ũ = [u2, · · · , um]T by explicit form when the following
statement holds:

h1(xp)
2 cos θh22(xp) (12)

+ sin θ
∂h1

∂xp

fp2(xp)[

m
︷ ︸︸ ︷

1, 0, · · · , 0 ]T �= 0.

Since we had already assumed h22 �= 0 in section 2, (12)
holds when v �= 0 and second term of (12) closes to zero.
The second term is small when θ is small and the term is
zero when u1 gives no impact on dv/dt directly.

Consequently, u1, given by (11), is used for path following.
When the u1 is substituted for (9), we obtain the following
state equation:

ẋ = F̃ (x(t), ũ(t)) (13)

= F̃1(x) + F̃2(x)ũ,

where the state of (13) is same as that of (9). When the
plant dynamics according to (13), it is clear that the plant
follows the reference path asymptotically for any time
series of ũ(t). In turn, (11) can be considered as constraint
for following the path. Then optimal ũ(t) is derived in next
section.

4. OPTIMAL CONTROL PROBLEM

To consider the optimal control problem, the cost function
J is defined as follow:

J = Ju + Jt, (14)

where Ju and Jt are amplitude of control input and
reaching time from start to end point of the desired
reference path, respectively. ℓ is interval for cost function
(See Fig. 3).

Let (3),(4),(5) and initial position q(t0) be given. Further-
more, initial angle θo(t0), initial states xp(t0) and desired
reference path pr(s) also be given. sr(t0) = sr0 and θr(t0)
are decided uniquely when designer choose a point which
satisfy (8). Consequently, initial states of (13) are given by

x(t0) =






xp0

θo(t0) − θr(sr0)
sr0

ζ(q′(t0), sr0)




 . (15)

Then Ju and Jt are determined as follows by using interval
[sr0, sr1] with sr1 = sr0 + ℓ.

Ju =

t(sr1)∫

t(sr0)

Du1
(u1(x)) + Dũ(ũ)dt (16)

Jt = g (t(sr1) − t(sr0)) =

t(sr1)∫

t(sr0)

gdt (17)

Evaluating Interval l

Fig. 3. Evaluating interval

We should pay attention that Du(u) is differentiable with
respect to each component of u. For example, uT u is
suitable as Du(u). t(sr1) of (17) represent the reaching
time to the end point of the interval. On the other hand,
second term of (17) is the cost for evaluating time. In the
result, The proposed method can be summarized as the
following optimal control problem.

Problem 1. Find ũ which minimize:

J =

t(sr1)∫

t(sr0)

Du1
(u1(x)) + Dũ(ũ) + gdt, (18)

subject to (13), (15).

The aim of this paper “velocity control in path following”
can be treated by problem 1. This problem belongs to
standard optimal control problem.

The difference between proposed method and Okajima et
al [2004] is as follow. Okajima et al [2004] uses cost function
of z to follow the reference path. The proposed method
use u1(t) with (11) as constraint for asymptotical path
following.

In the next section, numerical examples would be shown
for examining the effectiveness. Problem 1 can be reduced
to two point boundary value problem. The solutions of
the two point boundary value problem are obtained by
MATLAB (bvp4c.m).

In what follows, notations about two point boundary value
problem are written. The Lagrangian function for deriving
the problem is as follow:

L = Du1
(u1(x)) + Dũ(ũ) + g + λT (F̃ (x, ũ) − ẋ), (19)

where λ ∈ Rn is called as costate. Costate equation is
derived by

∂L

∂x
−

d

dt

(
∂L

∂x

)

= 0 (20)

The two point boundary value problem is consist of
state equation, costate equation and boundary conditions
(initial states etc.).

When Dũ(ũ) is given as quadratic form, i.e.,

Dũ(ũ) = ũT Qũ,Q > 0 (21)

holds, ũ is given by

ũ(t) = −
1

2
Q−1F̃2(x)T λ. (22)

We can obtain ũ(t) by λ(t) which is given by solving two
point boundary value problem. Since u1(t) has already
been given by (11), we can obtain u(t).
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In this two point boundary value problem, the terminal
time is free. When we want to obtain numerical solution
of u(t) by bvp4c.m, terminal time should be fixed. In this
paper, this problem is reduced to two point boundary value
problem with fixed terminal time by idea of the “time-state
control method ( Sampei et al [1986] ) ” with τ(x) = sr.

5. NUMERICAL EXAMPLES

To examine the effectiveness of the proposed method,
the following automobile model is used as a plant. The
model has two input (steer-angle δ(t) and accelera-
tion/deceleration w(t)). The details of the plant are shown
in Appendix.

ẋp(t) = fp(xp(t), u(t)), (23)

xp = [β ψ̇ v]T , u = [δ w]T

fp(xp, u) =







a11

v
β + (−1 +

a12

v2
)ψ̇ +

a13

v
δ

a21β +
a22

v
ψ̇ + a23δ

a31(v − v0) + a32w







, (24)

where aij are coefficients of automobile model. The follow-
ing values are used for numerical examples.

[
a11 a12 a13

a21 a22 a23

]

=

[
−43 −109 18
5.45 −34.09 10.8

]

[
a31

a32

]

=

[
−0.5

2

]

, v0 = 5

Then the velocity and the curvature of the automobile
model are written as follow:

h1(xp, u) = [0 0 1]xp, (25)

h2(xp, u) =
a11

v(t)2
β(t) +

a12

v(t)3
ψ̇(t) +

a13

v(t)2
δ(t). (26)

We can see that when δ of h2(xp, u) is ascribed as u1,
(26) satisfy (6). Moreover, if |v(t)| is large in (26), κ(t) is
less affected by δ(t). We have to input large δ to turn for
high velocity automobile. Therefore, the plant has trade-
off between magnitude of δ and moving time.

The following J is used as the cost function:

J =

t(sr1)∫

t(sr0)

g1δ(x)2 + g2w
2 + g3dt (27)

w

Fig. 4. Automobile model

The problem in this example is to minimize J by w(t). We
can expect that we obtain w(t) which satisfies small control
input δ(t) by large g1 and short reaching time by large g3.
We choose g1 = 150, g2 = 1 for all examples. Two types of
reference path are used for numerical example. To analyze
the effectiveness of weights, reference path of simple to
understand would be used in Case 1. More complex path
would be used in Case 2.

• Case 1

The following κr(sr) with xr(0) = 0, yr(0) = 0, θr(0) = 0
is used as the reference path in Case 1(See Fig. 5):

κr = 0, 0 ≤ sr < 12,

κr = 0.04(1 − cos(0.15sr − 1.8)), 12 ≤ sr.

The path is simple to understand the impact for the cost.
In straight line part, the reader would assume acceleration
is better for minimizing the cost. On the other hand, the
reader would assume deceleration is better in curve part.
Initial states x(0) of numerical examples are chosen as zero
except velocity (v(0) = 10).

First, we show the case of changing weight g3. Fig. 6 shows
the velocity and Fig. 7 shows time-series of the steer input.
Solid line shows the case g3 = 100, dashed line shows the
case g3 = 50, dotted line shows the case g3 = 20, dash-
dotted line shows the case g3 = 0. We can see that the
automobile’s velocity is high when g3 is large value. In
particular, the automobile with g3 = 100 is accelerated in
straight line part. However, the automobile with g3 = 0 is
decelerated in spite of the same part of the reference path.
In Fig. 7, we can see that large steer input is required
when g3 is large. By each control inputs, reaching time is
2.01[s], 2.35[s], 2.81[s], 3.54[s], respectively, in Fig. 7. We
can see from this figure that reaching time is short when
g3 is large. Trade-off between control inputs and reaching
time have been treated in the proposed method. Note that
since z(0) = 0 and θ(0) = 0 hold, automobiles follow the
reference path strictly in Case 1.

Then we compare the proposed method to a constant
velocity case. g3 is choose by trial and error for easily
comparison. We obtain g3 = 12.35 which satisfy same
reaching time as the case of constant velocity ( v = 10
). Figs. 8, 9 show the velocities and steer angles. Dashed
line shows the case of constant velocity, solid line shows
the case of proposed method. Horizontal axis of Fig. 8 is
sr. We can see that the velocity of proposed method is

0 5 10 15 20 25
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−2

0

2

4

6

8
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12

x−axis

y
−

a
x
is Initial Position

Terminal Position

Direction of Movement

Fig. 5. reference path and automobile’s trajectory
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Fig. 6. Velocities for each weights
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t

δ

 
  

 
 

g3=100

g3=50

g3=20

g3=0

Reaching time

Fig. 7. Steer angles for each weights

large in straight line part and velocity is small in curve.
Horizontal axis of Fig. 9 is time t. We can confirm the
reaching time is same ( 3[s] ) by Fig. 9. In this figure, we
can see that steer angle δ(t) of proposed method is smaller
in spite of other conditions (conditions: reaching time and
automobile’s trajectory are same). Actually,

Jδ =

t(sr1)∫

t(sr0)

g1δ(t)
2dt (28)

of the proposed method ( Jδ = 6.55 ) is smaller than that
of constant velocity case ( Jδ = 9.27 ).

Table 1 shows J of proposed method and that of constant
velocity for some g3. Note that since g1 and g2 are fixed
value, Ju for constant velocity can be calculable as Ju =
13.96. Now therefore values of J of constant velocity case
are given by J = 13.96+g3×3. On the other hand, control
inputs (Numerical solutions) are different in each weights
of the proposed method. We can see from Table 1 that
values of the proposed method are smaller than that of
constant velocity for all g3.

Table 1. Values of the cost function

method - g3 100 50 20 0 12.35

Proposed J= J= J= J= J=
method 256.54 147.15 71.31 8.18 49.31

The case of J= J= J= J= J=
v(t) = 10 313.96 163.96 73.96 13.96 51.01

• Case 2

Results of various z(0) are shown in Case 2. The following
κr(sr) with xr(0) = 0, yr(0) = 0, θr(0) = 0 is used as the
reference path:

0 5 10 15 20 25 30
7

8

9

10

11

12

sr

v

Proposed method

Constant velocity (v=10)

Fig. 8. Velocities of the pro-
posed method and con-
stant case
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0
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0.2
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0.3

t

δ

 

Proposed method

Constant velocity (v=10)

Same reaching time

Fig. 9. Steer angles of the
proposed method and
constant case

κr = 0.06 cos(0.1sr) (29)

κr is positive in sr < 2.5π and negative in other area. We
also use v(0) = 10 for this example. Other initial states
are chosen as zero. g3 = 30 for the

The examples of z(0) = −2(thick,dashed), −1(thin,dashed),
0(thick,solid), 1(thin,dash-dotted), 2(thick,dash-dotted)
are shown in Figs. 10, 11. We can see that each automobile
tracks to the reference path asymptotically in Fig. 10. We
obtain various series of velocities in Fig. 11. In particular,
complex time series of v are obtained for z(0) = 1, 2. J
of each z(0) are given as 238.6, 141.1, 107.9, 150.8, 274.9.
Cost values are asymmetric for z(0) because of the form
of the reference path.

0 5 10 15 20 25

−5

0

5

10

15

x−axis

y
−

a
x
is

z(0) = 2

z(0) = 1

z(0) = 0, reference

z(0) = −1

z(0) = −2

Fig. 10. trajectories of au-
tomobile and reference
path for different z(0)
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v

z(0) = 2
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z(0) = 0

z(0) = −1

z(0) = −2

Fig. 11. velocities of automo-
bile for different z(0)

6. CONCLUSIONS

In this paper, we have proposed the method which achieve
velocity control and path following. Proposed method is
based on optimal control problem. Path following task
is treated as a constraint for the problem. By using the
constraint, we can treat two tasks (appropriate velocity
control and path following) as standard optimal control
problem. Minimization of the cost function enable us to
treat trade-offs between control input and reaching time.
The effectiveness of proposed method has been shown by
numerical examples of automobile model.

Since the proposed method is given as standard optimal
control problem, it is expected that we apply the proposed
method to more complex plants such as aircraft with many
inputs.
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Appendix A. AUTOMOBILE MODEL

The automobile model is derived as follow: To describe
the dynamics of the automobile, a reference frame for
the automobile is set such that one basis vector ē1(t) is
along the velocity vector, while another basis vector ē2(t)
is orthogonal to ē1(t) (Fig. 4). Note that those basis vectors
have unit length and that they are time-varying because
of the motion of the automobile.

rrK β2 ffK β2

ψ&
β δ

rl fl

Fig. A.1. slip angles of front and rear tires

The velocity vector and the force vector of the automobile
are represented as follows:

ṽ = vē1
(t)ē1(t) + vē2

(t)ē2(t), (A.1)

f̃ = fē1
(t)ē1(t) + fē2

(t)ē2(t), (A.2)

where ṽ and f̃ are the velocity and the force vectors,
respectively, and vē1

, vē2
, fē1

, fē2
are elements. By the

definition of ē1(t) and ē2(t), vē2
= 0 holds for any t.

By considering the rotation of the coordinate frame, the
equations of motion are given as follow:

m(v̇ē1
(t) − vē2

(t)(ψ̇(t) + β̇(t))) = fē1
(t), (A.3)

m(v̇ē2
(t) + vē1

(t)(ψ̇(t) + β̇(t))) = fē2
(t), (A.4)

Iψ̈(t) = M(t), (A.5)

where m is the mass of the automobile, I is the moment
of inertia, M is the total torque of the center of gravity, ψ̇
is the yaw rate and β is the angle between the orientation
of the automobile and the velocity vector (Fig. 4). Since
vē2

= 0 holds, vē2
and v̇ē2

of (A.3) and (A.4) are zero,
respectively. For simplicity, we describe vē1

as v.

In this paper, fē1
is assumed to be given by damping force

µ(v − v0) and driving force w. Then (A.3) is written by
the following equation:

mv̇(t) = µ(v(t) − v0) + w(t) (A.6)

wherev0 is the operating point of the velocity.

Moreover, we assume the side forces are generated due to
the slip angles of each tire(See Fig. A.1, such assumption
is also used in Abe [1979]). The each forces are given by
Kfβf (t)ē2(t) and Krβr(t)ē2(t) where Kf and Kr are the
cornering powers of the front and the rear tires respec-
tively, and βf (t) and βr(t) are the slip angles (angle from
orientation of each tire to velocity vector). Furthermore,
βf (t) and βr(t) can be approximated by

βf (t) = β(t) +
lf ψ̇(t)

v(t)
− δ(t), (A.7)

βr(t) = β(t) −
lrψ̇(t)

v(t)
, (A.8)

where lf and lr are the distances from the center of gravity
to the positions of the front and the rear tires. Then the
following equations hold:

fē2
(t) = 2Kfβf + 2Krβr, (A.9)

M(t) =−2Kf lfβf + 2Krlrβr. (A.10)

By (A.4),(A.5),(A.6),(A.9) and (A.10), we obtain (23) as
the state equation of the automobile.
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