

The Software Platform Development of a New Microcontroller
 for Automotive Body Systems

Jae Ho. Chang*, Chan Woong. Park*, Chan Hong. Park*, Sang il. Lee*, Jin Su. Jang*

Jong Hyun. Baek*, Jeong Ho. Son*, Dae Hwan. Lim*, Kyung Tae. Kim*

*Car Electronic Architecture & Networks System (CARNES) Company Ltd. 1043, Hogye-dong, Dongan-gu,
Anyang-city, Kyunggi-do, Korea (Tel: 82-31-389-0333; e-mail: jhjang@carnes.co.kr).

Abstract: A new software platform (SWP) for automotive body electronic systems is introduced in this
paper. This platform consists of three parts which are run time environment (RTE), generic layer and
hardware abstraction layer (HAL). The RTE is a kind of dynamic interface layer to connect the application
to basic software. The generic layer is independent of hardware and is normally not changed even though a
microcontroller is changed. The HAL is a layer which depends on hardware and should be modified if the
microcontroller and hardware configurations are changed. Our efforts are mainly focused on the
development of RTE, HAL, and a few generic components for our new software platform. Some basic
technologies such as configuration concept and code generation are acquired through this project. SWP
configuration tool as well as SWP itself was developed for the convenience of application design based
and SWP. SWP validator is also implemented for the automatic validation of various SWPs that will be
developed in the near future. Finally, our new software platform shows that the reuse of applications can
be realized by the new technologies of configuration concept. That was indirectly proven by SWP
validator which performs same diagnostic software on two different platforms.

1. INTRODUCTION

Automotive electronics has been growing up for the user’s
convenience and to increase the reliability of the vehicle with
the help of technology improvement of the microcontroller in
the semiconductor industry. The more cost-effective high
performance microcontrollers enable electronic modules of
the vehicle to replace a lot of old mechanical functions. These
days there may be up to 70 electronic control units (ECUs) in
a high grade automotive which are responsible for controlling
major electric functions of the car. These many ECUs cause
the cost, reliability, complexity and interaction problems
between themselves in the vehicle electrical and electronic
systems. To overcome these many problems and to improve
the reliability of the product, the reuse of the software
modules, which was already proven in the previous mass
production and can be applicable to a new ECU again, has
been an important issue. Nowadays car manufacturers and
Tier 1 suppliers have applied their individual basic software
standards to their products to satisfy the requirements of the
software reuse. This type of basic software is usually a kind
of local standard which has to be maintained and integrated
individually. This type of individual approach needs more
time for verification and validation of the product. It is not
easy to reuse the software modules for specific vehicle
applications without any modification since their basic
software is not standard and has different architecture. To
reduce the efforts for software development and integration
time for verification and validation, leading automotive
manufactures and suppliers founded the automotive open
system architecture (AUTOSAR) initiative in 2003 that aims
to develop and standardize basic software architecture for

automotive ECUs(AUTOSAR initiative, 2006). They are also
trying to launch AUTOSAR standard platform into their
products (Kohler, 2006).

The CARNES software platform introduced in this paper is a
kind of local standard for automotive body electronic systems.
However our platform is much flexible and has the features
of configuration concept, code generation and standard API
and so on. In other words, our software platform has almost
same concept as the standard AUTOSAR platform but only
its specification is somehow different from that. This
platform consists of three parts which are RTE, generic layer
and HAL. The RTE is a dynamic software interface layer
generated by SWP configuration tool. This layer plays a role
to connect applications to our platform and enables
application software modules to be independent of hardware.
Therefore, the possibility of the software reuse can be
increased by using these configuration concepts. The generic
layer includes operating system, flash boot loader (FBL),
core, memory (MEM), communication modules (COMM),
input and output (I/O) and power management (PM). These
parts are independent of hardware and used in common for
all software platforms. The HAL is the layer depends on
hardware. This part should be modified when the
microcontrollers are changed. In this paper, our research is
mainly focused on the development of HAL, RTE and the
encapsulation of a few generic components for a new
microcontroller. Also, related design tools such as SWP
configuration tool and SWP validator are designed and
implemented to approach the AUTOSAR standard in the near
future.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 9511 10.3182/20080706-5-KR-1001.1826

The purpose of this paper is to show that new technologies
and design approaches can be successfully applicable to the
development of automotive ECUs. In section 2, the integrated
environment for SWP development is explained. Section 3
explains RTE, generic layer and HAL for a new
microcontroller. The design procedure called V-cycle used
for our SWP development is also introduced in brief. The
SWP configuration tool and new technologies are disclosed
in section 4. The overall explanation about SWP validator
and the possibility of application reuse were briefly presented
in section 5. Conclusions and further works are summarized
in section 6.

2. INTEGRATED DEVELOPMENT ENVIRONMENT
(IDE) FOR SWP DEVELOPMENT

The integrated development environment (IDE) for SWP
development is explained in this section. Originally this was
introduced into CARNES from Siemens. However this IDE
has been updated and modified by ourselves for the
development of CARNES software platform.

2.1 The IDE for SWP development

The purpose of IDE for SWP development is to manage
version, change and quality of platform software from the
initial stage of the development for mass production. The
IDE comprises the tool to manage version and change of
software, text editor for programming, quality tool for
checking the reliability of the code, compiler and linker that
depends on microcontrollers and code generation tool to
create the interface layer between application and SWP etc.
The interaction among all these tool components is
administrated by script language. This IDE sometimes should
be modified for a new project because some parts like
compiler and linker of the IDE depend on microcontrollers.
The IDE used in this project was also modified to support the
compiler corresponding to a new microcontroller. The
configuration of our IDE is shown in Fig. 1.

Fig. 1. The integrated development environment for SWP
development

2.2 Emulator and debugger for real debugging

For real debugging of platform as shown in Fig. 1, the extra
equipments including emulator and debugger are needed for
each microcontroller because our IDE was focused on only
managing software and creating executable file before final
execution on the target is performed. Our IDE can be used for
all projects related to software development if some parts
depending on hardware are supplemented on necessity.

3. SOFTWARE PLATFORM DEVELOPMENT

In this section CARNES software platform is briefly
outlined . At first original software platform was provided to
CARNES from Siemens. It was modified and upgraded for
the use of automotive body electronics. The mass production
of original software platform with upgraded features such as
Vector CAN encapsulation, KWP2000 protocol and software
update module via K-line and CAN etc. is now in progress.
This section just describes the software platform we have
newly developed for covering from low-end to high-end
ECUs. It is divided into three layers which are RTE, generic
layer and HAL. Fig. 2 is the overall block diagram of our
platform.

Fig. 2. The overall block diagram of CARNES software
platform

3.1 Run Time Environment (RTE)

The RTE is created by SWP configuration tool. This layer is
a kind of dynamic layer to interface applications with
software platform. It is the first local standard to introduce a
type of middleware to automotive ECUs. The RTE makes the
applications designed by different suppliers reusable by
introducing the concept of virtual function bus decoupling the
applications from the basic software. The roles of RTE
include hardware configuration, the configuration of generic
layer and the configuration of applications. This type of
approach is one of the core technologies that have been used
for AUTOSAR standard platform.

3.2 Generic layer

The generic layer is independent of hardware. This layer is
always same even if a microcontroller is changed. Therefore,

Function
Application

OSEK

FBL

SW
P

configuration

MB90 HAL (Hardware Abstraction Layer)

SWP Runtime Environment (RTE)

Services
MEM

CORE

COMM
SPI
ASC

ECU Abstraction
I/O
PM

CARNES Basic Software

K/Entry
SWC

Actuator
SWC

Sensor
SWC

Wiper
SWC

ECU with MB90 Microcontroller

Quality

Checker
Compiler
& Linker

Text editor

S D

H E W L ET T
PA C KA R D

Server

Client

Network

Code
Generation

The IDE for SWP development

 Emulator & Debugger

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9512

most of the components contained in the generic layer were
reused. However, some functions were redesigned and
modified. First, the operating system was changed and
encapsulated into our SWP because the operating system
used in the original platform does not support a new
microcontroller selected in this project any more. Second, 3rd
party software stack like Vector CAN was successfully
encapsulated into our SWP. Related CAN station manager
already developed in the previous project was slightly
modified and perfectly transferred into our SWP. Third, the
key word protocol 2000 (KWP2000) which is one of the ISO
standards also became a part of the generic layer for
diagnosis. This software stack was already developed and
proved as an application in the previous project. Of course,
this component was redesigned and thoroughly verified as a
part of our SWP. As a result KWP2000 has become an
indispensable element of our SWP for the diagnosis of
automotive ECUs. Additionally, the software update modules
were newly developed including PC download utility for
reprogramming application software via CAN or K-line in
the field.

3.3 Hardware Abstraction Layer (HAL)

The hardware abstraction layer (HAL) relies on hardware. In
the selection of microcontroller, all information from car
manufacture and Tier1 suppliers was gathered up to decide
which microcontroller is optimum for automotive body
electronics. In the end, Fujitsu MB90 series was chosen to
cover from very low cost ECU such as assistant door module
(ADM) to high-end ECU like body control module (BCM).
The performance of this controller is not enough to
implement high integrated BCM which has multi-functions
of smart key, tire pressure management system as well as
BCM itself in the near future. However, the development of
HAL for MB90 was started because the cost is very sensitive
factor for mass production. All components of the HAL for
OS, FBL, MEM, IO, CORE, COMM, CAN and PM were
developed. From the initial stage all development procedure
follows the well-known V-cycle approach [2]. Therefore all
documents related to SWP development consist of software
requirement specification (SRS), software design document
(SDD), coding, software verification and validation plan
(SVVP) and software verification and validation report
(SVVR) per each function module. About 200 documents
were created throughout the SWP development.

4. SWP CONFUGURATION TOOL

The configuration concept is one of the most important
technologies. This technology can give the SWP the feature
of the reuse of application software based on SWP by
introducing configuration concept. The development of this
tool is the first step to reach the AUTOSAR standard
platform.

3.1 The overview of configuration tool

CARNES developed this tool by himself using JAVA and
XML technologies used extensively in computer areas. This

type of tool is already widely used for integrating lots of
applications with 3rd party software like operating system.
The role of this tool is to generate C sources and header files
which combine applications with software platform as shown
in Fig. 3 for easy understanding. In other words, the RTE
explained in subsection 3.1 is the combination of generated C
sources and header files. The characteristics of this layer are
dynamic and changed every time per each application.

Fig. 3. The creation of RTE by SWP configuration tool

The inside of SWP configuration tool is disclosed in Fig. 4.
This tool has the various functions of XML project view,
open project, consistency check and code generation etc. This
tool separates the application software modules from basic
software by introducing the concept of virtual function bus
on any ECU.

Fig. 4. The inside of SWP configuration tool

The concept of our configuration tool is the same as that of
configuration tool for AUTOSAR standard platform. But the
input interface file format is different from that of
AUTOSAR platform configuration tool. Therefore the 1st
version of our tool could not support AUTOSAR platform.
To overcome this problem, we have updated our tool to give
it the feature of interfacing input file format which
AUTOSAR already defined. The development of our new
tool was successfully completed and it has been being used
for our next project of developing the 1st CARNES
AUTOSAR platform.

pm_2nd_cfg.c pm_2nd_cfg.h

Function
Application

 OSEK

FBL

MB90 HAL (Hardware Abstraction Layer)

Services
MEM

CORE

COMM
SPI
ASC

ECU Abstraction
I/O
PM

CARNES Basic Software

K/Entry Wiper

ECU with MB90 Microcontroller

Standard API

XML project view

Editor

Error view etc.

Tool bar

Menu bar

Configuration tool

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9513

3.2 Project support through configuration tool

It was decided for SWP to be applied to 12 ECUs of 5
vehicles for mass production. Separate projects are now in
progress. The platform used for mass production is the
original one with the updated features that Vector CAN,
KWP2000 and some external device drivers like EEPROM
are successfully integrated. After customized SWP by the
requirement of Tier1 was created and converted into a library
and then it is delivered to them with our configuration tool.
The role of our configuration tool is to provide their
applications with high transferability reducing mistakes of
the developer. Tier1 suppliers try to reuse their application by
means of our configuration tool. Once their applications are
successfully launched into our SWP, it will be easily
transferred again by configuration tool under SWP
environment even though the SWP itself is changed as a new
one.

5. SWP VALIDATOR

The topic about how to test and evaluate the SWP is
discussed in this section. Many verification and validation
tests should be performed before the delivery of SWP library.
This job is very important for the reliability of ECUs.
However this type of job requires much time, efforts and
patience. Nevertheless, it is tedious and often causes many
mistakes decreasing the reliability. In general, the
development of SWP validator which is one of the automatic
testing tools is the mandatory to reach the reliable SWP
without faults.

5.1 The overview of SWP validator

The automotive ECUs usually require high reliability. To
meet this requirement many Tier 1 suppliers have their own
testing methods for their product. Our updated original
platform and the newly developed platform should be tested
as well before they are delivered to Tier 1 suppliers. A lot of
time and effort is put into testing SWP library according to
the increase of projects and vehicle events. To avoid a waste
of time and effort, CARNES has developed an SWP validator
which is one of the automatic testing tools for SWP
validation. This tool is composed of test code configurator,
the control part for automatic testing, the part creating test
report and diagnostic software executed on various
microcontrollers. Fig. 5 shows the overall configuration of
our SWP validator.

5.2 Test cases for SWP validator

All test cases executed on our SWP validator are created
based on the experiences of SWP development. After the
analysis of all functions belonging to SWP such as OS, FBL,
MEM, IO, COMM, and PM, it is decided that which tests
should be performed before the delivery of SWP library. All
test cases selected were implemented as diagnostic software
modules and all of those were managed in the test code
configurator. Test code configurator makes a decision which
functions should be tested considering the specification of

individual ECU before the delivery of our SWP library. Table
1. only shows a small part of all test items. All the test items
fit for both S12x and MB90 platform are created and
executed on the target board. All of the same functions were
simultaneously executed on two different platforms to
measure test results and compare the performance. This is
one of the obvious evidences proving that the reuse of
applications can be successfully realized under SWP
environment.

Fig. 5. The overall configuration of the SWP validator

Table 1. Test items

Function Test items
OS • Task scheduling

• Fast timer callback test CORE • system time test
FBL • EOL integration test

• EEPROM read/write test MEM • Controlled RAM test
• Read/write functions for digital output I/O • Controlled RAM test
• SPI transfer test COM • CAN communication test
• Transition to low power PM • Measure the period of low power task

Test code configurator

Test report

User interface for
automatic testing

CAN bus

 OS COM

TEST application for SWP library

SWP

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9514

5.3 SWP validation report

The SWP library and applications are separately developed in
the projects. When the problems occur between SWP library
and applications, it is not easy to inspect thoroughly which
part caused them. In many cases car manufacture usually
request a report how to verify SWP and applications. There is
a function to create validation report in our SWP validator.
After the test cases selected is performed, the test report is
created from the SWP validator. This is a brief report that
includes which item is tested and its test results are
summarized.

6. CONCLUSIONS

In this paper, the software platform HAL and some generic
component were developed for a new microcontroller. The
RTE was also created by the SWP configuration tool which
was developed based on JAVA & XML technologies. In
order to reach AUTOSAR standards, current configuration
tool was successfully upgraded to AUTOSAR platform
configuration tool. It has been being used for our next
AUTOSAR project. Additionally, SWP validator was
implemented to verify SWP library efficiently before the
delivery to Tier 1. The core technologies such as JAVA,
XML and configuration concept were acquired throughout
the SWP development project. This kind of core technologies,
which are needed for upgrading our platform to AUTOSAR
standards, will be spread widely in the near future. Finally the
possibility of application reuse was revealed by executing
same diagnostic module without any modification on two
different platforms. However, upgrading our platform to
AUTOSAR standards and implementing integrated design
tool step by step with the idea of AUTOSAR methodology
are still remained in no distant future.

REFERENCES

AUTOSAR initiative (2006). AUTOSAR – Enabling
technology for Advanced Automotive Electronics, Media
release, AUTOSAR.

Boddeker (2006). Experiences with RTE, AUTOSAR 5th
Premium Member Conference, AUTOSAR.

Thompson (2006). A Control Centric Perspective of
AUTOSAR, AUTOSAR 5th Premium Member
Conference, AUTOSAR.

Colombero, Zoeller (2006). Model Based Application
Development and AUTOSAR RTE interface, AUTOSAR
5th Premium Member Conference, AUTOSAR.

Freund, Moestel (2006). Model-Based OEM-Software
Branding of AUTOSAR ECUs, AUTOSAR 5th Premium
Member Conference, AUTOSAR.

Kohler, Kampfer (2006). VW-Hella internal AUTOSAR
Demonstrator, AUTOSAR 5th Premium Member
Conference, AUTOSAR.

Scott Loveland.,Geoffrey Miller.,Richard Prewitt Jr., Michael
Shannon.,(2004), Software Testing Techniques:
Finding the defects that Matter, Charles River
Media.

Claudia Dencker.,(2003), Common Mistakes in test
cases in pacific northwest Software Quality
Conference, Software SETT corporation.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9515

