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Abstract: In recent supply chain management, as the online use of inventory data becomes available with 
the development of Radio Frequency Identification (RFID) technology, it is now possible to monitor the 
performance measures in a timely fashion. Customer service level is a key performance measure that can 
be computed as the percentage of times that customer orders electronically received are fulfilled by on-
hand inventory. Online monitoring of the service level enables the management paradigm to progress 
toward the closed loop based control which keeps revising the operation policy to reach a target service 
level. This paper proposes a closed loop supply chain control based on a direct neural network controller. 
Simulation based experiments were performed to test the performance of the controller against two kinds 
of unstable customer demand curves. 

 

1. INTRODUCTION 

In recent supply chain management, as the online use of 
inventory data becomes available with the development of 
Radio Frequency Identification (RFID) technology, it is now 
possible to monitor the performance measures in a timely 
fashion. Customer service level is a key performance measure 
that can be computed as the percentage of times that 
customer orders electronically received are fulfilled by on-
hand inventory. Online monitoring of the service level 
enables the management paradigm to progress toward the 
closed loop based control (McFarlane, 2002) which keeps 
revising the operation policy (i.e. set of decision variables) to 
reach a target service level.  

In this paper, we propose a direct neural network controller 
for the closed loop based supply chain management. Until 
now, the neural network based control has been applied in 
mechanical system control areas such as robot, aircraft, and 
ship controls (Abdelhameed, 1999; Argiriou, Bellas-Velidis, 
Kummert, & Andre, 2004; Daosud, Thitiyasook, 
Arpornwichanop, Kittisupakorn, & Hussain, 2005; Sato & 
Ishii, 2006). It has a strength that it can be applied to unstable 
customer demands which rapidly change over time. 
Moreover, the direct neural network controller does not need 
the step to acquire the learning data in advance. The data 
required for the direct neural network are just those of the 
actual service level computed online during the operation of 
supply chain, possibly using the RFID technology. As shown 
in fig. 1, the direct neural network controller includes a 
multilayer neural network model as an intelligent decision 
maker and a real supply chain as the control subject. The 
controller continues adjusting decision values in order to 
make the actual service level keep close to the target. The 
actual service level may fluctuate severely if sudden 

customer demand change occurs. The error between the 
actual and the target is then propagated to the network 
learning and the neural network makes its effort to minimize 
the error in a short time. This sense-and-quick response 
mechanism is repeated for the operation stage of the supply 
chain. 
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Fig. 1. Architecture of direct neural network controller. 
 

2. DIRECT NEURAL NETWORK CONTROLLER 

2.1. Three-stage supply chain model 

We consider a well-known three-stage supply chain model. 
The operational logic of the supply chain model is 
established based on the beer game model (Macal and North, 
2003). The most upstream stage consists of three suppliers 
which produce different parts and supply them upon the order 
request of manufacturer. The manufacturer is the 
intermediate stage and uses a stock replenishment policy that 
determines order quantity per period based on the difference 
between a desired safety stock level and current safety stock 
level, the amount of backorders, and forecasted customer 
demands. In a manufacturing shop, products are assembled 

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 4476 10.3182/20080706-5-KR-1001.1819



     

according to a fixed rate. The most downstream stage 
consists of three wholesalers and they use the same stock 
replenishment policy as the manufacturer. 

The customers of the wholesalers are retailers, and they 
usually issue orders through the Internet. Unsatisfied orders 
are treated as lost sales. The actual service level of a 
wholesaler during period t can be computed using the on-
hand stock data that can be checked accurately using product 
RFID data (Wang and Liu, 2005) and customer order data 
stored in the wholesaler database. Finally, there is a 
transportation lead time between any two stages.  

The variables of the supply chain are classified as follows: 

•Decision variables: The elements which can be controlled by 
the supply chain manager. They are the manufacturing rate, 
desired safety stock, transportation time, etc. 

•External variables: The elements which are influenced by 
the external environment such as the customer demand and 
supply rate. They cannot be controlled by the supply chain 
manager. 

•Target variables: The performance measures of the supply 
chain such as the customer service level. 

A target variable is the output of a complex and nonlinear 
function of the decision variables and the external variables. 
The variables which constitute the three-stage supply chain 
model are described in table 1. 

Table 1. Variables 
Type Variable name 

Desired product safety stock 
at wholesaler i (i = 1, 2, 3) 

Desired product safety stock 
at manufacturer 

Desired safety stock for part j  
at manufacturer (j = 1, 2, 3) 

Transportation time  
from manufacturer to wholesaler i

(i = 1, 2, 3) 
Transportation time 

from supplier j to manufacturer  
(j = 1, 2, 3) 

Decision 
variables 

Manufacturing rate 

Customer demand at wholesaler i 
(i = 1, 2, 3) External 

variables Supply rate j (j =1, 2, 3) 
Target 

variable Customer service level 

 

2.2. Direct neural network controller 

The configuration of the direct neural network controller is 
shown in fig. 2. The multilayer neural network consists of an 
input layer, a hidden layer and an output layer. The input 
layer consists of one input node which takes a real-valued 

target service level. A network output node produces the 
learned value of a decision variable of the supply chain. The 
set of the output values is then reflected to the operation of 
the supply chain and an actual service level is acquired after a 
time period. 
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Fig. 2. Learning model of direct neural network controller. 

As shown in equation (1), Ok
t , the output of the kth node in 

the output layer at period t, is obtained by applying the 
sigmoid function to OutNetk

t which is the weighted sum of 
the output values Hj

t of the hidden layer as in equation (2). 
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The backpropagation algorithm (Haykin, 1998) is applied for 
the online neural network training. The training data are the 
differences between the target service level and actual ones 
which are periodically obtained during the supply chain 
operation. The squared error (Et) between the target service 
level (TSL) and the actual service level (SLt) at period t is 
defined as 

2)(
2
1 tt SLTSLE −=                               (3) 

The backpropagation algorithm uses the incremental (or 
stochastic) gradient descent rule to minimize the error E. At 
each time of collecting an actual service level, the network 
weights are updated by equation (4) where  η  is a positive 
constant called the learning rate and its range is (0, 1 ]. 
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To implement the incremental gradient descent rule, the 
chain rule is applied to the partial derivative t
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equation (4) for rewriting it as 
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In the case of the direct neural network controller, however, 
the error backpropagation for the weight learning cannot be 
directly applied. In equation (5), the partial derivative 

t
k

t OSL ∂∂ / , which means the amount of service level change 
to a small perturbation of the decision variable Ok, is not 
analytically computable, because the input-output 
relationship of the supply chain is quite complex and is 
usually a unknown stochastic function. To overcome the 
difficulty, Zhang et al. (1995) suggested the use of a unit 
value (1 or -1) as the approximated value by employing the 
sign function as  
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However, according to the results of a simulation based test, 
even when equation (6) is used for the learning, it took too 
much time for reaching the target service level. As for the 
supply chain, the error defined in equation (3) should be 
drastically reduced in a few on-line executions. Slow 
discovery of the best decision values is not acceptable in the 
supply chain operation from the viewpoint of time and cost. 

To achieve the purpose, we add an error amplification 
function   in equation (5) as  
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The error amplification function is defined as 

α
)( t

t SLTSLB −
=                                 (8) 

where α  is an amplification parameter and its range is (0, 1]. 
In this equation, the amplification value tB  is proportional to 
the error between TSL and SLt. Also, the less the α  value is, 
the more the amplification effect occurs. Accordingly, if a big 
error of TSL-SLt is generated, the tB  value which is greater 
than the error is reflected in equation (7) and, as the result, 
the weight in equation (4) is also modified greatly. 

 

3. EXPERIMENTS 

In this section, we perform simulation based experiments for 
testing the performance of the direct neural network 
controller. In all experiments, random numbers between -0.5 
and 0.5 were assigned as the initial weight values of the 

neural network and the learning rate was set to 0.3. The 
multilayer neural network is configured with one hidden 
layer and five hidden nodes. The simulation was 
implemented using the ARENA 7.0 software. The α  was set 
as 0.05. The performance measure is the average of the actual 
service levels of the three wholesalers. 

It is assumed that, at every period, the demand at a 
wholesaler follows a certain normal distribution. However, 
the mean demand changes over time. The standard deviation 
is assumed as 5% of the mean demand. Two scenarios of the 
mean demand change were created. The one is the step 
demand case and the other is the S-curve demand case. How 
to generate the two demand cases will be explained in detail 
in the following subsections. The target service level is 90% 
and the entire simulation period is 1400 days. 

3.1 Step demand case 

This is the case where the mean demand is constant during a 
certain time interval, jumps up or down suddenly, and keeps 
the changed value again. This change pattern is repeated until 
the end of the simulation time. This demand process is 
appropriate for modelling periodic demand variation or 
sudden economic impacts on the demand. In this paper, the 
step demand process was generated with two parameters: 
change cycle that is the mean change interval and fluctuation 
amount that determines the changed mean value. To consider 
different nonstationary levels, five scenarios were generated 
using the two parameters as in table 2, where the uniform 
distributions determine the fluctuation amount 
probabilistically. The initial mean customer demand and 
standard deviation are 200 and 10, respectively. 

Table 2. Five step demand scenarios 
Scenario Mean demand  

change cycle 
Fluctuation 

amount 

1 350 Uniform(190,210)

2 280 Uniform(180,220)

3 233 Uniform(170,230)

4 200 Uniform(160,240)

5 175 Uniform(150,250)

 
The fluctuation of the actual service level is reported in fig. 3. 
For the five scenarios, the average errors between the actual 
service level and the target during the entire simulation time 
are 1.94, 1.96, 1.98, 1.88, and 2.58, respectively, and these 
errors are considerably small. If the direct neural network 
controller cannot reflect the demand changes to its decision 
making in a short time, the average errors would be 
significantly high. Based on the analysis of the result, we 
conclude that the performance of the direct neural network 
controller is reliable on average. . In addition, the controller 
was verified to have the capability of adapting to the step 
demand changes very fast although the fluctuation of the 
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actual service level increases as with the nonstationary level 
of the demand. 

Step demand scenario 1
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Fig. 3. Actual service levels for five step demand scenarios 

3.2 S-curve demand case 

In general, the mean demand curves of products with short 
life-cycles show S-shape patterns - in the early stage of the 
sales, the demands grow up to peak levels, remain in the 
levels steadily for a while, and shrink gradually as new 
competitive products are introduced in the market. This 
research uses the sign function as in equation (9) to create the 
S-shape demand curves. 

   )sin( tt x
n

bademandMean ×+=
π                 (9) 

)2,1(1 Uniformxx tt +=+                      (10) 

In equation (9), a is a baseline value and it was determined 
using a uniform distribution (100, 200) in this experiment. 
The parameter b is the variation range of the mean demand 
and three demand scenarios were created by using different b 
values, which are 50, 100, and 200. The parameter n is the 
total demand forecasting time and it was set to 1400 days. 
The variable xt is the factor to determine the shape of the 
mean demand curve. x0 was determined according to a 
uniform distribution (0, n/10), and xt (t>0) is recursively 
computed by equation (10) to remove the symmetric feature 
from the demand curve.  

The fluctuation of the actual service level is shown in fig. 4. 
In particular, as for the scenarios 3, the direct neural network 
controller did not follow the mean demand change for a fairly 
long time; spent the time for the weight learning. However, 
as shown in the middle part of the scenario 3, the actual 
service level during the learning time does not deviate from 
the target distantly - the service level stays between 80 and 
100, except one case where the service level drops below 65. 
The average errors of the three scenarios are 1.52, 1.87 and 
3.45, respectively, and they are very small over all.  

In summary, throughout the simulation based experiments 
with the two nonstationary demand patterns, it was verified 
that the direct neural network controller is capable of making 
the actual service level reach the target service level in a short 
time and remain around the target with small average errors. 
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Fig. 4. Actual service levels for three S-shape demand 
scenarios. 
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4. CONCLUDING REMARKS 

In this paper, we proposed the direct neural network 
controller that detects the significant change of customer 
demand indirectly by the change of customer service level 
that is measurable online through the RFID technology, and 
generates appropriate decisions for maintaining the target 
service level by adjusting the network weights. As an 
improvement point, it is common that the costs required for 
the unit change of each decision variable are different. 
Therefore, the study on controlling customer service level 
with the consideration of the unit change costs is worthy of 
investigation in the future. 
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