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Abstract:
Being widely used in industrial systems and manufacturing lines, precision position control
systems need to use high feedback control gains to reject disturbances. However, phase-lag
in velocity estimation resulting from encoder measurement imposes a limitation on maximum
allowable feedback gains, when system stability and control smoothness are concerned. In this
paper, use of velocities derived from both acceleration and position measurements is suggested.
The derived velocity possesses a much higher bandwidth without having theoretical phase-lag.
Experimental results reveal that the use of velocities derived from practical accelerometers and
encoders allows a typical position control system to substantially increase its feedback gains
without compromising stability and control smoothness. It in turn results in much smaller
tracking errors, compared to scenarios when velocities are created from position sensors only.

Keywords: Velocity estimation, Accelerometer; Control precision; Position control; Motion
control; High-gain feedback; High accuracy pointing; Manufacturing plant control;
Data-fusion; Multi-sensor systems; Estimation algorithms.

1. INTRODUCTION

Position servo control is a fundamental technology in both
feed drives and robotics. Some representative works can
be found in Tomizuka (1987), Zhu et al. (1992), Yao
et al. (1997), Van Brussel and Van den Braembussche
(1998), Pritschow (1998), Altintas et al. (2000), Renton
and Elbestawi (2000), and Zhu et al. (2001).

The objective of a position control system is to make the
position of a plant track its desired trajectory as precise
as possible. No matter how accurate a plant model can be
produced, system uncertainties always exist. Given system
uncertainties, the solution for achieving high-accuracy
position control is to use high feedback gains. Let

ms2x(s) + f(s) + d(s) = u(s) (1)

be a SISO point-mass plant in s-domain (Laplace trans-
form), where m is the plant mass, x denotes the plant
position, f denotes the known dynamics, d represents the
plant uncertainty, and u denotes the control input.

For a given referenced (desired) trajectory xd with
bounded second-order time derivative, a typical position
control law ensuring precise position tracking control can
be found in Zhu et al. (1992), Altintas et al. (2000),
and Zhu et al. (2001) as

vr = ẋd(t) + λ[xd(t) − x(t)] (2)

u(t) = mv̇r(t) + f(t) + kp[vr(t) − v(t)]

+kI

∫

[vr(t) − v(t)]dt (3)

where v = ẋ denote the velocity of the plant, λ > 0, kp > 0,
and kI > 0 are three control gains, and vr is named the
required velocity of the plant.

Substituting (2) and (3) into (1) yields

m[v̇r(t) − v̇] + kp[vr(t) − v(t)] + kI

∫

[vr(t) − v(t)]dt

= d(t) (4)

which can be further written as

(ms + kp + kI/s)[vr(s) − v(s)] = d(s) (5)

or

(ms2 + kps + kI)(s + λ)[xd(s) − x(s)] = sd(s). (6)

Remark 1. The theoretical transfer function from the de-
sired position xd to the actual position x exactly equals
one with a unlimited bandwidth that is independent from
the control gains. This is the unique advantage of using
control laws (2) and (3) with respect to any point-mass
SISO plant described by (1).

Remark 2. Many industrial systems can be modeled as
point-mass SISO systems, such as single-axis motor drives,
linear drives, and actuated axes in any Cartesian-type
robot.

Equation (6) indicates that for given uncertainty d the
position tracking error xd−x is directly affected by control
gains within the frequency range specified by

ω ∈
[

0,max{λ,
√

kI/m}
]

. (7)
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Therefore, the solution to minimizing position tracking
error is to use the highest possible feedback gains λ, kI ,
and kp. By doing so, however, the control smoothness and
system stability are compromised. Therefore, finding the
highest allowable control gains that guarantee stability is a
critical task in controller tuning, see Zhu and De Schutter
(2002), Zhu and Piedboeuf (2005), and Zhu et al. (2006)
for examples.

In this paper, it is revealed that the way of creating
velocity v(t) = ẋ(t) has a substantial impact on the highest
allowable control gains to be used. In the next section, the
motivation of using high-bandwidth velocities in position
control is discussed, and an approach of estimating velocity
from a combination of both accelerometer and encoder is
presented. In section 3, experimental results demonstrate
that the position tracking error can be reduced by an
order of magnitude with smoother controls, when the novel
velocity estimation approach is engaged.

2. VELOCITY ESTIMATION FROM
ACCELEROMETER AND ENCODER

A common practice of obtaining velocity is using either a
position sensor or a tachometer. Regardless of various ver-
sions of variation, the velocity numerically generated from
position measurements can be representatively written as

x(k) − x(k − 1)

T

where x(k) denotes the position measurement by an en-
coder at the sampling time k and T denotes the sampling
period. Due to the problem’s nature, the quantization error
of the derived velocity is proportional to the sampling
frequency. For a 1000 (Hz) sampling rate, the quantization
error of the velocity in SI unit is 1000 times larger than the
original quantization error of the encoder. This observation
suggests a 10-bit resolution-reduction in velocity estima-
tion. In an effort to reduce this quantization error, a low
pass filter is commonly employed, which, in turn, causes
very undesirable phase-lag in the estimated velocity. The
same issue of phase-lag occurs when the velocity signal is
measured from a tachometer, and again filtered to reduce
measurement noise.

Alternatively, accelerometers measure acceleration signals
that have a 90-degree phase lead over the corresponding
velocity signals. An apparent way to generate velocities
from accelerometer signals is through integration. How-
ever, this approach is very prone to uncertainties at low
frequencies, such as the gain uncertainty and the offset,
which can result in unbounded errors through integration.

In this paper, velocity estimation with high-bandwidth
is concerned. An approach using a combination of both
imperfect accelerometer and encoder, developed by Zhu
and Lamarche (2007) for the first time in publications, is
applied to position tracking control. This approach uses a
frequency shaping technique to recover velocity from both
acceleration and position measurements through two inde-
pendent frequency-weighted channels. Parameter adapta-
tion mechanism can be applied to update the gain of the
accelerometer by projecting the acceleration signal onto
the encoder signal channel.

In the following development, the Laplace transform is ap-
plied to transfer a time-domain signal to its representative
signal in s-domain. Define

y(s) = L (y(t))

and

y(t) = L−1 (y(s))

where operator L denotes the Laplace transform.

Without abusing of notation, y(s) can be expressed as
(y(t)) (s), and y(t) can be expressed as (y(s)) (t) through-
out this paper.

2.1 Two-Channel Approach with Known Accelerometer
Gain

The output of an accelerometer can be expressed as

a∗(t) = kaẍ(t) + c (8)

where a∗(t) denotes the output of the accelerometer, ka is
its gain, while x(t) denotes the position, and c denotes the
offset.

An intuitive approach to remove the offset is to apply a
high-pass filter

H(s) =
s

s + k1

(9)

where k1 is a small positive number characterizing the by-
pass frequency.

Note that the intuitive approach of obtaining the velocity
from the acceleration is through a pure integral operation
1/s. Consider the fact that the integral operation possesses
an infinite gain at zero frequency. Therefore, a low-pass
filter

L(s) =
k2

s + k2

(10)

is used instead, where k2 > 0 determines the cut-off
frequency of the low-pass filter. The low-pass filter is used
as an integrator. Therefore, unlike the usual course, the
low-pass filter in this paper comes into play for frequencies
beyond its cut-off frequency. Consequently, the velocity
obtained from the accelerometer channel in s-domain is

v∗

1(s) =
1

k2ka

L(s)H(s)a∗(s)

=
s2

s2 + (k1 + k2)s + k1k2

sx(s) (11)

where v∗

1 represents the velocity extracted purely from the
accelerometer.

When k1 → 0 and k2 → 0, it gives v∗

1(s) → sx(s) = v(s) as
expected. However, practical concerns stated early prevent
k1 → 0 and k2 → 0 from being used. Therefore, a second
channel from the encoder is used as

v∗

2(s) = F (s)x∗(s) (12)

to make up the difference between v∗

1(s) and the true
velocity sx(s) = v(s), where
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F (s) = (k1 + k2)

+
[k1k2 − (k1 + k2)

2]s − (k1 + k2)k1k2

s2 + (k1 + k2)s + k1k2

=
(k1 + k2)s + k1k2

s2 + (k1 + k2)s + k1k2

s (13)

x∗(s) = x(s) + δ(x) (14)

and x∗(s) denotes the position measurement in s-domain
and δ(x) denotes the quantization error of the encoder.

When a perfect encoder is used with δ(x) = 0, substituting
(13) and (14) into (12) yields

v∗(s)
∆
= v∗

1(s) + v∗

2(s) = v(s). (15)

Remark 3. With a relatively high resolution encoder,
δ(x) → 0 can be obtained.

Theorem 1. With an accelerometer (8) and an encoder
(14), the velocity estimate obtained from (9)-(13), and (15)
gives the true velocity provided that δ(x) = 0.

Remark 4. In view of (11)-(15), it can be concluded that
the frequency weightings of the position and acceleration
channels are determined by the two parameters k1 and k2.
Roughly speaking, in the frequency range from zero to k1,
the encoder fully contributes to the velocity estimation
with the accelerometer being less significant. In the fre-
quency range from k1 to k2, both devices play a part. For
frequencies beyond k2, the accelerometer fully contributes
to the velocity estimation.

2.2 Adaptive Mechanism for Unknown Accelerometer Gain

Eqs. (11) and (12) define two frequency-weighted channels
to estimate the true velocity under two assumptions that
the encoder resolution is sufficiently high and that the
acceleration gain of the accelerometer is known. While hav-
ing an encoder with a sufficient resolution is commercially
possible, having a solid-state accelerometer with known
acceleration gain is very difficult, if not impossible, since
solid-state devices always demonstrate signal drift with
time and temperature. A solution is to use an adaptive
mechanism to estimate the gain of the accelerometer on-
line. To this end, Eq. (11) is rewritten as

v∗

1a(t) = ξ̂(t)
1

k2

(L(s)H(s)a∗(s)) (t)

= kaξ̂(t)

(

s2

s2 + (k1 + k2)s + k1k2

sx(s)

)

(t)(16)

where ξ̂(t) denotes the estimate of 1/ka, and is governed
by

ξ̂(t) = P
(

−e(t)(L(s)H(s)a∗(s))(t), γ, ξ−, ξ+
)

(17)

e(s)
def
=

λc

s + λc

(v∗

1a(s) + v∗

2(s)) −
λcs

s + λc

x∗(s)

=
λc

s + λc

[(v∗

1a(s) + v∗

2(s)) − v(s) − sδ] (18)

where λc > 0 is a constant defining a low-pass filter which
gives the filtered velocity error signal denoted as e, and the
P function is defined in Appendix A with γ > 0 being the

update gain and ξ− and ξ+ being the lower and upper
bounds of ξ = 1/ka. In (17), the first argument of P

is used to drive
˙̂
ξ with the update gain specified by the

second argument, within the range specified by the third
and fourth arguments. It can be seen from the definition
of the P function in Appendix A that

(ξ − ξ̂(t))
{

−γe(t)(L(s)H(s)a∗(s))(t) −
˙̂
ξ(t)

}

≤ 0. (19)

Note that e in (18) denotes the filtered velocity estimation
error based on the fact that the filtered velocity can be
obtained from the encoder. When δ(x) = 0, substituting
(11), (15), and (16) into (18) yields

e(s) =−
λc

s + λc

1

k2

(

(L(s)H(s)a∗(s)) (t)[ξ − ξ̂(t)]
)

(s)

(20)

which is equivalent to

ė(t) =−λce(t) −
λc

k2

(L(s)H(s)a∗(s)) (t)
(

ξ − ξ̂(t)
)

.

(21)

It can be clearly seen that the filtered velocity error e is
directly related to the accelerometer gain estimation error

ξ−ξ̂(t), and e is also used to drive
˙̂
ξ through the P function

defined by (17).

The asymptotic stability of e(t) is necessary for the conver-

gence of ξ− ξ̂. To make this objective work, a non-negative
function is defined as

Va(t) =
1

2

[

e(t)2 +
λc

k2γ
(ξ − ξ̂(t))2

]

. (22)

In view of (19) and (21), the time derivative of (22) can
be written as

V̇a(t) = e(t)ė(t) −
λc

k2γ
(ξ − ξ̂(t))

˙̂
ξ(t)

= e(t)

[

−λce(t) −
λc

k2

(L(s)H(s)a∗(s)) (t)

(

ξ(t) − ξ̂(t)
)]

−
λc

k2γ
(ξ − ξ̂(t))

˙̂
ξ(t)

=−λce(t)
2 +

λc

k2γ
(ξ − ξ̂(t))

[

−γe(t) (L(s)H(s)a∗(s)) (t) −
˙̂
ξ(t)

]

≤−λce(t)
2. (23)

In view of (22), integrating (23) over time yields

e(t)∈L∞

⋂

L2 (24)

ξ − ξ̂(t)∈L∞. (25)

The boundedness of a∗(t) leads to the boundedness of
(L(s)H(s)a∗(s)) (t) and the boundedness of
d
dt

(L(s)H(s)a∗(s)) (t), which further lead to the bounded-
ness of both ė(t) and ë(t), in view of (9), (10), (21) and its
time derivative, and (24). It follows from Lemmas B1 and
B2 in Appendix B that
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e(t)→ 0 (26)

ė(t)→ 0 (27)

when the acceleration output is bounded.

Re-write (18) in time-domain as

ė(t) + λce(t) = λc

[

(v∗

1a(t) + v∗

2(t)) − v(t) − δ̇(t)
]

. (28)

When the encoder quantization error is negligible with
δ(x) = 0 and δ̇(t) = 0, it follows from (26) and (27) that

v∗

1a(t) + v∗

2(t) → v(t). (29)

Theorem 2. With an accelerometer (8) and an encoder
(14), the velocity estimate obtained from (9), (10), (16)-
(18), and (12)-(14) yields an asymptotic estimation of the
true velocity in the sense of (29) provided that a∗(t) ∈ L∞

and δ(x) = 0.

Bounded accelerometer output a∗(t) ∈ L∞ and negligible
encoder quantization error δ(x) = 0 lead to (26) and (27).
Thus, In view of (21), the asymptotic convergence of the
parameter error

ξ − ξ̂(t) → 0 (30)

requires (L(s)H(s)a∗(s)) (t) �= 0 or v∗

1a(t) �= 0, ∀t, that is,
the output of the acceleration channel is not zero.

Theorem 3. The parameter adaptation law (17), together
with (8)-(10) and (18), yields an asymptotic estimation of
the true parameter ξ = 1/ka in the sense of (30) provided
that a∗(t) ∈ L∞, v∗

1a(t) �= 0, ∀t, and δ(x) = 0.

3. EXPERIMENTS

The experimental setup is photographed in Fig 1 with
a drawing in Fig 2. A rail-guided mass is driven by a
brushless motor through two cranks with l = 0.0983
(m). The mass is permitted to move horizontally without
subject to gravity. A linear encoder with a resolution of
one-micron is used to measure the linear position x(t) and
a motor attached encoder is used to measure the motor
angle q(t). The trigonometric structure gives

ẋ(t) =
−x(t)l sin(q(t))

x(t) − l cos(q(t))
q̇(t) (31)

which can also be used to relate the horizontal mass
driving force to the motor torque. A real-time control
system with a sampling rate of 1000 (Hz) is used.

The experimental results of using the velocity estimated
from (8)-(10), (16)-(18), and (12)-(14) are demonstrated
in Figs. 3 and 4. The filter parameters k1 = 0.1 (1/s) and
k2 = 20 (1/s) are used. One percent of accelerometer gain
uncertainty is assumed, leading to ξ− = 0.99, ξ+ = 1.01
in (17), while the parameter adaptation gain γ = 1 (s/m2)
is chosen. The desired position trajectory is designed as

xd(t) = 0.008 sin(5t) + 0.1346 (m). (32)

In Fig. 3, the upper plot represents the position tracking
error and the lower plot represents the control force. In
Fig. 4, the upper figure shows the estimated velocity
(solid line) versus the desired velocity (dashed line). The
lower figure shows the accelerometer gain adaptation. The

MotorMass
Linear

encoder

CranksAccelerometer

Rail

Fig. 1. Experimental setup.

Mass

Motor

Crank

)(tx

)(tq

l

Rail

Fig. 2. Setup drawing.
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Fig. 3. Position control by using velocity from an ac-
celerometer and an encoder.

estimated accelerometer gain is relatively stable within the
range from 1.0021 to 1.0022 (about 0.01% in variation).

Remark 5. The desired trajectory given in (32) is a si-
nusoidal signal. The frequency is randomly selected with-
out compromising the generality. It is expected that the
responses to trajectories comprised of multiple sinusoidal
inputs will be quite similar.

In Figs. 5 and 6, experimental results of using the velocity
estimated from an encoder through

v(s) =
200s

s + 200
x(s)
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Fig. 4. Velocity estimation and accelerometer gain adap-
tation corresponding to Fig. 3.
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Fig. 5. Position control by using velocity from an encoder
with lower control gains.
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Fig. 6. Position control by using velocity from an encoder
with higher control gains.

Table 1. Control parameters and position
tracking results.

Velocity from Velocity from
accelerometer encoder
and encoder

Figures Fig. 3 Fig. 5 Fig. 6

λ (1/s) 40 10 20

kp (Ns/m) 200 50 100

kI (N/m) 5000 500 2000

m (kg) 3.0 3.0 3.0
√

kI/m (1/s) 40.8 12.9 25.8

max |e| (m) 3.72 × 10−5 3.46 × 10−4 9 × 10−5

in s-domain or

v(k) =
200(z − 1)

z − 0.8
x(k)

in z-domain are presented. Lower control gains are used
in Fig. 5, and higher control gains are used in Fig. 6 .
The control parameters corresponding to Figs. 3 to 6 are
summarized in Table 3.

In view of Fig. 3 and Fig. 5, the position tracking error is
reduced by about an order of magnitude with comparable
control smoothness. In view of Fig. 3 and Fig. 6, both
advantages of having smaller position tracking error and
smoother control are shown. It is clear that the use of
velocity from both accelerometer and encoder allows a
motion controller to use much higher feedback gains with-
out compromising the control smoothness. Consequently,
the use of higher control gains substantially reduce the
position tracking error (about an order of magnitude de-
pending on the system).

Remark 6. Compared to velocities estimated from en-
coders along, velocities estimated from both position and
acceleration sensors are having faster responses, much less
phase lags, and much smoother profiles. An example has
been given in Zhu and Lamarche (2007).

4. CONCLUSION

High-bandwidth velocities derived from both acceleration
and position sensors are suggested to be used in po-
sition tracking control of industrial plants. The use of
the suggested velocity estimation allows a typical posi-
tion controller to substantially increase its control gains
leading to much smaller position tracking errors without
compromising control smoothness, as demonstrated in the
experiments.
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Appendix A. P FUNCTION FOR PARAMETER
ADAPTATION

The P function defined in (Zhu and De Schutter, 1999,
page 311) takes the following form:

Definition A1. P (s(t), k, a, b) ∈ R is a differentiable scalar
function, where s(t) ∈ R is a scalar variable and k, a, b
are three constants with k > 0, a ≤ b, such that

Ṗ = ks(t)κ (A.1)

with κ =

{

0 P ≤ a & s(t) ≤ 0
0 P ≥ b & s(t) ≥ 0
1 otherwise

.

Lemma A1.: Consider a P function defined by (A.1). For
any scalar P∗ with a ≤ P∗ ≤ b, it follows that

(P∗ − P)

(

s(t) −
1

k
Ṗ

)

≤ 0. (A.2)

Appendix B. MATHEMATICAL LEMMAS

The following lemma is from Tao (1997).

Lemma B1. If ǫ(t) ∈ L2 and ǫ̇(t) ∈ L∞, then limt→∞ ǫ(t) =
0.

The following lemma is from Narendra and Valavani
(1980).

Lemma B2. If g is a real function of the real variable t
defined and uniformly continuous for t > 0 and if the limit
of the integral

t
∫

0

g(τ)dτ

as t tends to infinity exists and is a finite number, then

lim
t→∞

g(t) = 0.
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