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Abstract: We believe that a standard control software framework which enables rapid, reliable
and evolvable application development is the key for the proliferation of the networked control
systems. Accordingly, we have been working on developing a domainware for general purpose
control system, called Etherware. Even though Etherware supports many of the distributed
system domain requirements, it still needs further advances to be more suitable as a middleware
for control systems. In this paper, we present an architecture and mechanisms for an enhanced
middleware that supports networked control system design through enabling temporally correct
interactions. We also propose an architecture and mechanisms for enhancing the robustness of
networked control systems to faults, that we are currently implementing.
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1. INTRODUCTION

Advances in wireless communication, embedded comput-
ing, sensor and actuator technologies, are leading to a
third generation of control systems. This next generation
of systems however raises several issues that we need
to overcome to take advantage of the opportunities. In
particular, developing a general purpose domainware, an
application domain specific middleware, for distributed
control systems, which enables rapid, reliable and evolv-
able application development, is critical for the large scale
development of (wireless) networked control systems (Gra-
ham et al. [2004]).

An early version of such a middleware, called Etherware
(Baliga [2005]), has been developed and implemented in
the Information Technology Convergence laboratory at
the University of Illinois. To enhance the usefulness of
Etherware as a domainware for control systems, it is
important to extend it to provide real-time guarantees
and fault-tolerance. In this paper we extensively address
middleware architecture and mechanisms that can provide
such real-time and fault-tolerant capabilities to Etherware.

There have been several research works aimed at devel-
oping a middleware for distributed real-time embedded
(DRE) control systems (Brinkschulte et al. [2001], Arzen
et al. [2007]). Even though they are targeted at the domain
of control systems, most of them focus on the issue of
real-time. In recent years, some research has been aimed
at developing a more reliable real-time middleware sys-
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tem, by combining Real-Time CORBA and Fault-Tolerant
CORBA (OMG [2003, 2004]). However, there are several
issues with conventional Fault-Tolerant CORBA which are
not quite compatible with real-time systems. To resolve
these problems, (Gokhale et al. [2004]) and (Balasubra-
manian et al. [2007]) propose a SEMI-ACTIVE replication
strategy and a resource utilization based replication selec-
tion algorithm, respectively. However, there are still sev-
eral issues which need to be considered, such as additional
communication overhead for fault-tolerant operation and
unpredictable delays for timely fault management.

Therefore, in this paper, we take a different approach
to provide both real-time and fault-tolerant capabilities
to Etherware. We believe that our approach can achieve
the goal more efficiently since it can not only provide
a simple programming model for real-time and fault-
tolerant application development, but it can also reduce
the unpredictable behavior of fault-tolerant operation by
eliminating interactions over the communication network
while preserving predictability in real-time scheduling.

2. REQUIREMENTS ANALYSIS

We begin our discussion by first introducing key do-
main requirements to show why both real-time and fault-
tolerance issues are important to domainware for general
purpose networked control systems.

2.1 Location Transparency

In distributed systems, entities comprising the system
are not located in one physical location. They are usu-
ally connected to each other through a communication
network. Therefore, an application developer wanting to
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develop an application has to first deal with the existence
of a network, in order to make application components
interact each other. However, since network application
programming is much harder to design, implement and
debug than single computer applications, the time, cost
and effort for application development are much higher in
general. Therefore, if middleware can hide the existence of
the underlying communication network from users, then it
can mitigate a lot of burden of the application developer.

2.2 Hiding Time Discrepancy

All clocks are different in distributed systems. This can
potentially cause some serious problems in control systems
because the stability and performance of control systems
is highly sensitive to delays and time synchronization ac-
curacy, in general. For example, if a controller component
receives a measurement from a sensor component, it needs
to know when the measurement from the plant was taken
to calculate an appropriate control command. There are
two mechanisms to cope with time discrepancy problems.
First, data exchanged between components can be time
stamped. Second, the time at another computing node can
be translated into the time at the local machine. Since
these tasks should be done in every distributed control
application, it is not an efficient way to make application
developers handle these tasks by themselves whenever they
develop an application.

2.3 Semantic Addressing

For interactions among components, each component
should have a name. One way of naming each component
is by using the IP address of the computing node where
the component is executing. However, it is not desirable
for portability or reusability to use IP address for naming.
For example, if a controller component calls a sensor com-
ponent using its IP address, the controller component has
to be rewritten whenever either the sensor component is
migrated to another computing node or the controller com-
ponent needs to be used in another environment. Instead,
if the controller component can use semantic names such
as ‘room temperature sensor’, it might be not only easier
to develop the controller component but it also increases
portability of the sensor component and reusability of the
controller component.

2.4 Supporting System Evolution

Deployed systems are always being changed. Not only
the system itself, but also the decisions of system users,
undergo change as time goes on. For example, the char-
acteristics of a control system are continuously changing
from its initial conception when the controller is designed,
as its operation environment changes. System developers
may want to deploy a newly designed control algorithm
to compensate for system changes. In other situations, the
system developer may want to move a software compo-
nent from one computing node to another. This is called
software component migration. In these situations, if the
controller cannot be replaced or migrated at runtime,
then there is no way to do it without stopping the whole
system. However there are many control systems where the

whole system cannot be stopped for runtime management.
Therefore, it is desirable for a middleware to support
runtime management functionalities to allow the system
to continuously evolve.

2.5 Supporting Timeliness

The stability and performance of control systems are very
dependent on the latencies involved in the interaction with
physical entities through control behavior such as sensing
and action. For example in a mobile robot system, the
robot should be able to avoid a collision with obstacles
while it is moving. However, this collision avoidance activ-
ity is possible only if the robot detects an obstacle in a
timely fashion, the decision about how to avoid collision
is made in a timely fashion, and finally the decision is
delivered to the actuation module in a timely fashion. If
any of these tasks does not execute in a timely fashion,
for example the detection module suffers excessive delay
in informing the decision module about the existence of
an obstacle, then the robot can collide with the obstacle.
Therefore, the ability to execute every critical task in time
is an essential requirement for control systems. More gen-
erally, the middleware should provide mechanisms to build
systems with guarantees on temporally correct behavior.

2.6 Enhancing Reliability

In many cases, a control system is a safety-critical system.
A safety-critical system is one in which the cost of system
failure is very expensive, such as severe damage or harm to
people, equipment or environment. Avionics, road traffic
control systems and robotic surgery systems are examples
of safety-critical systems. However, it is very important for
system developers to make sure that the control system
will not fall into an uncontrollable state that threat safety.
If this is not guaranteed or verifiable, then the system
cannot be used in operation. Therefore, the reliability of
systems is a crucial requirement for any type of safety-
critical control system.

3. ETHERWARE

3.1 Component Model

Our earlier generation middleware (Baliga [2005]), Ether-
ware, was developed to support component-based applica-
tion development. In Etherware, each component interacts
with other components by exchanging messages. Message
is a well-defined XML document object. A new type of
message can be defined by utilizing the Message class
hierarchy. The type of message prescribes the semantics
of interaction. In every message, profile tag and content
tag are pre-defined. In content tag, arbitrary types of
interaction semantics can be specified. The profile tag
contains the message recipient’s semantic address.

In designing the component model, several software design
patterns (Gamma et al. [1995]) were used to support the
domain requirement of system evolution. Shell performs
a central role in the component model. First, it manages
the life-cycle of a component which is encapsulated by it.
Second, Shell provides a unique channel which allows a
component to interact with the system. The basic design
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Fig. 1. Etherware architecture and component model

to implement Shell is based on the Facade design pattern.
The Strategy design pattern is used to design a uniform
interface between Shell and all components. Due to this
Strategy design pattern, Shell can do runtime component
replacement. For component migration, the execution state
of a component should be continued smoothly after the mi-
gration to reduce the performance degradation. Therefore,
the Memento design pattern was adopted to support this
feature.

3.2 Etherware Architecture

The architecture of Etherware is based on the concept
of microkernel in operating systems. Roughly, Etherware
consists of a Kernel, Etherware service components and
application components. In Kernel, several core function-
alities for middleware operation, such as component life-
cycle management, message delivery among local compo-
nents, and scheduler for message delivery are implemented.
In Etherware, a message can be delivered to a recipient
component by scheduling a job, a scheduling entity of
Etherware, which is a pair of message and Shell of recipient
component, within Kernel. The scheduler’s role in Kernel
is to take the job from the messenger of Kernel and then
enqueue it into the queue of the job execution module,
called TASK.

3.3 Etherware Services

Etherware supports several functionalities that are com-
monly required for distributed control applications as
Etherware services. ProfileRegistry is a naming service
which is implemented in Etherware to support the se-
mantic addressing requirement. All the details about the
network are hidden from the user by the NetworkMessen-
ger service which is responsible to deliver messages over
the network. NetworkTime service performs automatic
time-stamp translation. It translates the time stamp from
the clock of the remote computing node to that of the
local machine, for every message which is received by
NetworkMessenger.

Basically, Etherware is an event-driven system such that a
component gets executed only when it receives a message.
However, in many cases, control actions need to be taken
based on time. In such situations, the Notification service
enables a component to execute at the time when it has
to, by sending a notification message to that component.

4. ADDITIONAL FUNCTIONALITIES NEEDED
BEYOND ETHERWARE

As shown in Table.1, Etherware satisfies several require-
ments of the distributed system. However, it still needs

Requirements Etherware Implementation

Location Transparency NetworkMessenger service

Hiding Time Discrepancy NetworkTime service

Semantic Addressing ProfileRegistry service

System Evolution Component model

Timeliness

Reliability

Table 1. Domain requirements vs. Etherware

additional features to satisfy requirements which are es-
sential for control systems. For example, Etherware does
not support any timeliness guarantees at all. It also needs
enhancements for reliability. Therefore, we propose several
middleware mechanisms to support these requirements. In
the following sections, we discuss these one by one.

5. PROPOSED MECHANISMS FOR REAL-TIME
GUARANTEES

5.1 Issues for Real-Time Properties

One of the most important issues for real-time behavior
is predictability of the system (Buttazzo [2004]). However,
predictability depends on everything, including H/W sys-
tem, operating system, communication network, program-
ming language, etc. Since we are looking at the problem at
the level between application and platform (including com-
munication network), the issues of platform predictability
are out of the scope of our discussion. Therefore, from now
on we assume that the underlying platform itself provides
predictable characteristics. We focus on several issues at
the middleware level which should be taken care of for
real-time application.

Fig. 2. Hierarchical real-time scheduling mechanism

5.2 Real-Time Scheduling

Real-time scheduling is the very first step for supporting
predictability. Many different types of QoS, from static
(e.g., period) to dynamic attributes (e.g., deadline), are
used for real-time scheduling. The scheduling policy itself
can be arbitrarily complex and have multiple layers of
scheduling decisions using many types of QoS. In this pa-
per, we adopt the concept of hierarchical scheduling (Gill
et al. [2001]) to support an arbitrary scheduling policy.
The main idea behind this design is that at the first stage
the scheduler schedules jobs based on some static QoS,
so that it can classify the static class, and then, at the
second stage, the scheduler schedules the jobs within the
same static class using some dynamic QoS. By combining
these two static and dynamic scheduling hierarchies, it is
possible to realize many scheduling policies from complete
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static at one extreme to complete dynamic at the other.
As shown in Figure 2, the real-time scheduler (RT sched-
uler) in middleware does not make any decision about the
scheduling rule employed. Its primary role is to support
any specified job placement rule (JPR), a decision about
where a job will be placed in the queue of TASK. The mod-
ule specifying the particular JPR should be implemented
by the middleware user. Once the JPR is available, the
RT scheduler picks TASK, and enqueues the job in the
appropriate position within the queue.

5.3 CPU Resource Manager Service

Temporal protection is another important issue for pre-
dictability (Buttazzo [2004]). The schedulability analysis
for real-time scheduling completely relies on the timing
constraints specified in a job. Even though there are tech-
niques, such as static analysis and sampled input based
testing, to estimate or measure the WCET (Wegener et al.
[2001]), it is very difficult to get the exact execution
time parameters in practice. Therefore there is always
some possibility that a job can overrun its WCET while
it is executing. If this happens, it may lead to missing
its deadline in many tightly scheduled systems. This is
called a temporal fault. This can cause further temporal
fault propagation and make yet other jobs to miss their
deadlines too.

Fig. 3. CPU RMS and TFMS

CPU resource manager service (CPU RMS ) is an Ether-
ware service which is responsible for CPU resource sharing
among TASKs. However, since a pure fixed priority based
scheduling can be more appropriate in some situations,
the decision about whether a temporal protection mech-
anism will be used or not should be made by the user.
This decision should be described in a configuration file,
called Thread Scheduling Rule (TSR). In TSR, information
such as how many static classes will be running, which
scheduling model will be used, and what are the attributes
for the specified scheduling model, should be specified.
The scheduling model can be either a fixed priority or
a CPU resource sharing. If a fixed priority scheduling
model is specified, then RT scheduler schedules jobs based
only on the priorities inferred from JPR as explained in
Section 5.2. If a CPU resource sharing scheduling model
is specified, all TASKs share the CPU resource based on
the specification. How to share the CPU resource among
TASKs depends on the resource sharing model which has
been used in implementing CPU RMS. For example, the
constant bandwidth server (CBS, Buttazzo [2004]) can be
used for implementing CPU RMS. For dynamic TASK
life-cycle management, RT scheduler interacts with TASK
Factory and CPU RMS. Whenever a new TASK needs

to be created, RT scheduler first calls TASK Factory and
then registers the created TASK into CPU RMS so that
it can be controlled for CPU resource sharing. Temporal
fault manager service (TFMS ) is discussed in Section 6.4.

5.4 Expedited State Update Scheduling

The state estimator design pattern was proposed in Ether-
ware for Local Temporal Autonomy (LTA) (Graham et al.
[2004], Robinson et al. [2005]). However even though an
estimated state can be used as a surrogate when measure-
ments are delayed, performance will be degraded as the
update delay time increases (Baliga [2005]). Therefore, the
new data for a component which has been experiencing
update delay longer than other components should be
delivered in an expedited fashion to prevent performance
degradation. Expedited state update scheduling (ESUS ) is
an end-to-end type of scheduling to support this. The
main idea of ESUS is that whenever a real-time job is
scheduled, it advances the deadline of the job based on
the update delay time. This advanced deadline, called
expedited deadline, will be used by the real-time scheduler
in scheduling. For this purpose, a scaling factor, called
expedited scaling factor (ESF ), is computed by calling the
ESF calculation module which should be implemented by
the user. More generally, this feature allows modification
of priority based on runtime information, i.e., adaptation.

6. PROPOSED MECHANISMS FOR RELIABILITY

6.1 Issues for Reliability Enhancement

Etherware’s approach to reliability is to increase local
temporal autonomy by reducing operational dependencies
among components. However, the system cannot be made
reliable enough without having appropriate fault detection
and management mechanisms, since faults can occur in un-
expected situations. Therefore, in this section, we discuss
our proposed systematic fault detection and management
mechanisms to improve reliability.

6.2 Types of Faults

One type of important fault is an execution fault. This fault
can occur when a software component or the computer
system crash while it is executing. In a distributed environ-
ment, the operational correctness of a component might
depend on the operational correctness of other components
or the communication network. Therefore, an operational
fault can occur at runtime even though the component
itself operates correctly. We call this an interaction fault.
A third type of fault, called semantic fault, can occur
even though everything in the system is operating func-
tionally correctly, i.e., even though there are no execution
or interaction faults. For example, the performance of a
control system depends on the performance of the control
algorithm. For the same target system, some controllers
can control the system with very small error, while others
can even make the system unstable. However, there is
nothing wrong with the latter controller vis-a-vis its func-
tional correctness. We call this a semantic fault because the
semantics of a component’s operation can cause a failure.
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Fig. 4. Component model for fault-tolerance

6.3 Component Model for Fault-Tolerance

To improve reliability, we propose a fault-tolerant com-
ponent model (FT component model). The fundamental
philosophy behind this is that the best place to detect and
handle faults is the very place where the fault occurs. The
FT component model is designed on top of Etherware’s
component model. So, most of the fault management ac-
tivities are performed within Shell. The FT component
model provides an application developer with a mechanism
to detect and handle semantic faults, execution faults and
interaction faults. In addition to this, the FT compo-
nent model also supports redundancy based fault-tolerance
by allowing multiple components which are functionally
equivalent to be managed within Shell for redundant op-
eration.

Since a semantic fault is related to a component’s op-
erational semantics, only the component developer can
determine whether the result of component operation is
a fault or not. Therefore, the user of the FT component
model should implement a semantic fault detector within
the component model. There are two different types of
execution faults, exception faults and temporal execution
faults. Exception faults can be caused by logical pro-
gramming errors such as divide-by-zero, and this type of
fault can be treated within Shell by making use of the
exception handling mechanism of programming languages
such as Java. Temporal execution faults can occur when a
component overruns its WCET due to some reasons such
as an infinite loop or blocking. Since this type of fault
cannot be detected within Shell, middleware support is
necessary. The source of interaction faults, such as network
failure or another component’s execution fault, resides
outside of a component. Therefore, their detection also
should be done outside of a component, using middleware
support. In any case, it is important to handle these faults,
no matter where they are detected, at one place, where
an application developer can appropriately manage them.
The fault handler in FT component model is the place
where a user can implement such fault handling logic.

The primary role of fault manager is to coordinate all the
interactions among components within the FT component
model. The fault management policy (FM policy) provides
decisions about how to coordinate them. As replication
strategies in FT-CORBA, four types of FM policies are
pre-defined and implemented in current FT component
model. These FM policies are shown in Figure 5.

A conventional Etherware component model can be em-
ulated by using the default FM policy. In the passive

Fig. 5. Fault management policies

FM policy, the primary component processes all incoming
messages first, and then the result, called state message,
is processed by a semantic fault detector to check for
any semantic fault. If a semantic fault is detected, the
fault manager calls fault handler to make it handle the
fault. The sequential FM policy repeats the passive policy
until the processed result is non-faulty. If all redundant
components generate faulty results, then fault manager
calls fault handler. In the active FM policy, fault manager
calls all functional components one by one and collects
results from all of them before it calls the semantic fault
detector. When the active FM policy is used, a user needs
to implement an appropriate data fusion method, which is
an abstract method of fault manager.

6.4 Relevant Middleware Services

As mentioned above, temporal execution faults and in-
teraction faults need to be detected outside of the FT
component model. For this purpose, we propose two mid-
dleware services. Basically, temporal fault manager service
(TFMS ) supports temporal protection at the granularity
of a job. The detection of a job’s temporal fault is possible
if the platform supports overrun (or deadline if necessary)
handler registration and callback mechanism (real-time
specification for Java (Bollella et al. [2000])). TFMS is
registered as a default callback handler for all TASKs in
the system by the real-time scheduler when it creates a new
TASK. Then, as shown in Figure 3, whenever a temporal
fault is detected while executing a job, the platform calls
TFMS. Once TFMS is called, it first determines which job
is the source of the fault. Then it sends a temporal fault
message notifying the temporal execution fault to the fault
manager of the corresponding component. The interaction
fault detector service (IFDS ) determines whether an in-
teraction fault has occurred or not, using the maximum
data update delay time specified. If a component wants
to receive interaction fault detection service from IFDS, it
first needs to send a request message with the maximum
data update delay time in it. Whenever the component
receives new data from other component, the component
sends to IFDS a reset message to reset the watchdog timer
in IFDS. If the watchdog timer expires, IFDS sends an
interaction fault message to the component. This fault
message is then to be processed by the fault handler of
the component.
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Fig. 6. Real-time and fault-tolerant Etherware architecture

7. CONCLUSION

In this paper, we first investigate what are the require-
ments that a domainware for (wireless) networked control
systems should satisfy, in order to support rapid, reliable
and evolvable application development. Based on this, we
determine that two essential requirements that need to
be provided, beyond what is provided by Etherware, are
real-time support and support for mechanisms to enhance
fault-tolerance. Based on this, we propose several middle-
ware mechanism designs to support these domain require-
ments. For real-time support, we design a hierarchical real-
time scheduling mechanism which can flexibly adapt to
many different types of scheduling policies. We also pro-
vide a mechanism for temporal protection in TASK level
via CPU RMS, and job level via TFMS. ESUS is an end-to-
end scheduling model which considers the interaction delay
time in real-time scheduling, to expedite data delivery if
the delay is longer than specified. To enhance reliability,
we categorize faults into three types. An FT component
model is proposed to provide a simple but effective fault
detection and management mechanism for the application
developer. Two middleware services for fault detection are
also designed to complete the fault-tolerant middleware
mechanism.

Figure 6 is the proposed Etherware architecture which
represents all the important functional modules which
comprise the overall proposed middleware infrastructure.
Since the proposed architecture and mechanisms are based
on the assumption of the predictability of underlying
platform, they can be used in any types of networked
control systems regardless of communication medium.

8. FUTURE WORK

The proposed design for a real-time and fault-tolerant
Etherware is currently being implemented. Many parts
of the proposed FT component model have been imple-
mented and have undergone functionality testing through
several examples. However, several mechanisms such as
TFMS and IFDS still need to be implemented. For real-
time support, we use a real-time java virtual machine
which implements RTSJ as an implementation platform.
To implement the hierarchical RT scheduler, the existing
Etherware has already been modified to support multiple
concurrent message processing. Currently, the hierarchical
RT scheduler itself is under implementation. The CPU

RMS and ESUS will also be implemented after implement-
ing scheduler.
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