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Abstract: In this paper, the zero-order-hold (ZOH) discretization of higher-order sliding mode control
(SMC) systems is studied. The equivalent control based SMC systems with relative degree higher than
one is first formulated into a canonical form which is easy for control design. Theoretical results for
the ZOH-discretized SMC systems with relative degree higher than one are given, including accurate
estimates of the bounds of steady states and higher order sliding mode functions. Simulation results are
presented to show the effectiveness of the analysis.
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1. INTRODUCTION

Sliding mode control (SMC) has been successfully applied to
solving many practical control problems (Utkin (1992); Utkin
et al. (1999)) due to its attractive features such as invariance
to matched uncertainties (Drazenovic (1969)). When a sliding
mode is realized, the system exhibits robustness properties with
respect to external matched uncertainties.

Despite the claimed robustness properties, high frequency os-
cillations of the state trajectories around the sliding manifold
known as chattering phenomenon are the major obstacle for
the implementation of SMC in a wide range of applications.
A number of methods have been proposed to reliably overcome
chattering, for example, the boundary layer solution (Slotine
(1984)); the observer-based solution (Utkin et al. (1999)) and
the higher-order SMC (Levant (1993); Fridman and Levant
(1996); Levant (2003); Bartolini et al. (1998)), which has at-
tracted an increasing attention due to its effectiveness of reduc-
ing chattering (Levant and Fridman (2004)). Its main idea can
be described as follows (Laghrouche et al. (2007)). Let s(x, t)
be the sliding variable and r ∈ N (r > 1) the sliding order. The
control drives s and its (r − 1)th order time derivatives to zero
in finite time by acting discontinuously on the rth order time
derivative of s. As a result, the chattering effect is reduced and
higher-order precision is provided.

Discretization effect study has attracted a lot of attention in
the digital control of dynamical systems and digital imple-
mentation. A primary reason is that there are some intrinsic
dynamic properties within the discretized systems which do not
appear in their continuous-time counterpart systems. Periodic
phenomenon is common in the discrete switching systems (Yu
and Galias (2001); Yu and Chen (2003)). So far, there are sev-
eral key discretization methods that are used in industrial appli-
cations, such as the Zero-Order-Hold (ZOH), Euler method and
Tustin method. ZOH has been most frequently used in practice,
especially in feedback control implementation. When ZOH is
applied to digital implementation, the control signal is ’frozen’
as a constant during the time interval. ZOH effect on SMC
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systems has been studied recently in Yu and Chen (2003); Wang
et al. (June 2006); Yu et al. (February 2008). Nevertheless, in
those cases we mentioned, the sliding mode systems are only
with relative degree one.

Higher-order SMC systems play an important role in SMC
application due to its desirable chattering reduction. However,
sampled higher-order SMC systems are not easy to implement
(Bartolini et al. (2001); Yu et al. (2007)). In this paper, the
ZOH discretization of higher-order SMC systems is studied.
Boundary conditions for the steady states are derived. Some
intriguing periodic behaviors are depicted. Finally, simulation
examples are presented to verify the theoretical results.

2. THE CONCEPT OF HIGHER-ORDER SLIDING MODES

First, let us introduce the higher-order SMC systems. Consider
a smooth dynamic affine system ẋ = v(x) + g(x)u where x ∈
Rn is the system state and u ∈ R1 the scalar control, and v(x)
and g(x) are smooth functions. For a smooth output function
σ, which is considered as the sliding variable, provided that

successive time derivatives σ, σ̇, · · · , σ(r−1) are continuous
functions, and the r-sliding point set (r > 1)

σ = σ̇ = σ̈ = · · · = σ(r−1) = 0 (1)

is non-empty and consists locally of Filippov trajectories, the
motion on set (1) is called r-sliding mode (rth- order sliding
mode (Levant (1993); Fridman and Levant (1996)). The sliding
order characterizes the dynamics smoothness degree in some

vicinity of the sliding mode. If s(r) is steered to zero, we call
this the r-sliding mode.

Suppose that σ, σ̇, σ̈, · · · , σ(r−1) are differentiable functions of
x and that

rank[∇σ,∇σ̇, · · · ,∇σ(r−1)] = r (2)

Equality (2) together with the requirement for the correspond-
ing derivatives of σ to be differentiable functions of x is referred
to as r-sliding regularity condition. If regularity condition (2)
holds, then the r-sliding set is a differentiable manifold and

σ, σ̇, · · · , σ(r−1) may be supplemented up to new local coor-
dinates.
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In a simplified way the equality of the relative degree to r
means that u first appears explicitly only in the rth order time-
derivative of σ. In that case regularity condition (2) is satisfied
(Isidori (1995)).

3. THE 1-SLIDING MODE SYSTEM MODEL AND ZOH
MODEL

Before studying ZOH of higher-order SMC systems, let us
first recall the results for ZOH discretization of the 1-sliding
mode systems. Consider the general controllable system with
canonical form

ẋ = Ax + bu (3)

where x ∈ Rn is a state vector, u ∈ R and

A =













0 1 0 · · · 0
0 0 1 · · · 0
...

. . .

0 0 0 · · · 1
−a1 −a2 −a3 · · · −an













, b =













0
0
...
0
1













(4)

The switching manifold is defined as σ(x) = cx = c1x1 + cz,
where c = [c2, c3, · · · , 1] and z = (x2, x3, · · · , xn)⊤. The
coefficients c1, c2, · · · , cn−1 constitute a Hurwitz polynomial.
Here, the relative degree of σ(x) with respect to the control u
is one. The equivalent control based sliding mode control is

u = ueq + us (5)

where ueq = −(cb)−1cAx and us = −α(cb)−1sgn(s) with
α > 0. With this control, one has σσ̇ < −α|s|. Therefore, the
ideal 1-sliding mode is guaranteed to be reached in finite time.

Substituting (5) into (3) and taking into account that cb = 1
yield

ẋ = Acx − αsgn(cx)b (6)

where

Ac = (I−bc)A =













0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
0 −c1 · · · −cn−2 −cn−1













=

[

0 Ac1

0 Ac2

]

(7)
with Ac1 = [1, 0, · · · , 0] ∈ Rn−1 and

Ac2 =









0 1 · · · 0
...

. . .
. . .

...
0 · · · 0 1

−c1 · · · −cn−2 −cn−1









(8)

The expression of Ac is illustrative to demonstrate the dynamics
of system states. With the equivalent control based sliding mode
control (5), the sliding mode σ = 0 can be reached in finite
time. The subsystem z is asymptotically stable because the
eigenvalues of Ac2 are zeros of the characteristic equation

λn−1 + cn−1λ
n−2 + · · · + c2λ + c1 = 0

which is Hurwitz.

Through the ZOH dicretization, u(t) = u(k) over the time
interval [kh, (k + 1)h], where h is the sampling period. The
continuous-time system (3) with the ZOH can be converted into
the discrete form as

x(k + 1) = eAhx(k) +

∫ h

0

eAτdτbu(k) (9)

The control law in discrete-time is

u(k) = −(cb)−1cAx(k) − α(cb)−1sgn(σ(x(k)) (10)

In the following, for simplicity, we denote sgn(σ(x(k))) as sk,
the aforementioned discrete system can then be rewritten as

x(k + 1) = Φx(k) − αΓsk (11)

where Φ = eAh −
∫ h

0
eAτdτbcA =

[

1 v⊤(h)
0̄ D(h)

]

and Γ =

∫ h

0
eAτdτb =

[

Γ1

Γ2

]

. Here, v(h) is an (n − 1)-dimensional

vector, 0̄ is an (n − 1)-dimensional zero vector, D(h) is an
(n − 1) × (n − 1) matrix. Γ1 is a scalar and Γ2 is an (n − 1)-
dimensional vector. Then, the discretized SMC system can be
represented by (Yu and Chen, 2003)

x1(k + 1) = x1(k) + v⊤z(k) − αΓ1sk (12)

z(k + 1) = Dz(k) − αΓ2sk (13)

In Yu and Chen (2003), the properties of the discretized be-
haviors of SMC systems have been analyzed and a bound for
steady states was given. However, deriving that bound needs a
quite strict condition which is hard to satisfy in practice. In Yu
et al. (February 2008), a new bound under a relatively loose
condition for steady states has been derived:

Theorem 1. The discretized SMC system (12) and (13) is even-
tually bounded if supk ‖cΦ(h) − c‖ < αcΓ and ‖D‖ < 1.
Furthermore, the system states are bounded by

‖x1(∞)‖ ≤ α‖c−1
1 c‖‖Γ2‖(1 − ‖D‖)−1 + 2α‖c1‖−1cΓ

‖z(∞)‖ ≤ α‖Γ2‖(1 − ‖D‖)−1 (14)

Here, ‖ · ‖ is the spectral norm.

4. ZOH DISCRETIZATION OF HIGHER-ORDER SLIDING
MODE SYSTEMS

We now consider the single-input linear system with relative
degree r > 1. In classical SMC systems, one has σ = 0.
In higher-order SMC systems, that is, r-sliding mode systems,

σ = σ̇ = σ̈ = · · · = σ(r−1) = 0. The single-input higher-order
SMC systems in the controllable canonical from is the same as
in (3) except for the switching function, which is now defined
as

σ(x) = c1x1 + c2x2 + · · · + cn−r−1xn−r−1 + xn−r (15)

Here, c1, c2, · · · , cn−r−1 are assumed to be coefficients of a
Hurwitz polynomial. To apply the equivalent control based
sliding mode control to the system, we need to construct a new
switching function,

σ̄(w) = c̄w = c̄1σ̄1 + c̄2σ̄2 + · · · + c̄rσ̄r + σ̄r+1 (16)

where σ̄1 = σ, σ̄2 = σ̇, · · · , σ̄r+1 = drσ/dtr and w =
(σ̄1, σ̄2, · · · , σ̄r+1)

T ∈ Rr+1. It is assumed that the coef-
ficients c̄1, c̄2, · · · , c̄r also constitute a Hurwitz polynomial.
Then, a new system state y is built as y = (x̄, w) ∈ Rn

with x̄ = (x1, x2, · · · , xn−r−1)
T ∈ Rn−r−1. Let’s denote

x = (xn−r, xn−r+1, · · · , xn)T ∈ Rr+1. We can reformulate
the system with form (3) to the new state y through a state
transformation matrix P ,

[

x̄
w

]

= P

[

x̄
x

]

(17)

where

P =

[

In−r−1 0
P1 P2

]

(18)
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with

P1 =









c1 c2 · · · cn−r−1

0 c1 · · · cn−r−2

...
...

. . .
...

0 0 · · · · · ·









P2 =













1 0 · · · 0 0
cn−r−1 1 · · · 0 0

...
...

. . .
...

...
· · · · · · cn−r−1 1 0
· · · · · · cn−r−2 cn−r−1 1













One has
[

x̄
w

]′

= PAP−1

[

x̄
w

]

+ Pbu

If we denote Ā = PAP−1, then the new system is

ẏ = Āy + bu (19)

where Ā is shown in (20 on the next page. The new sliding
mode is σ̄(y) = σ̄(w). Then it can be easily derived that

[ā1, ā2, · · · , ān] =

[a1, · · · , ar+1, ar+2 − c1, · · · , an − cn−r−1] P
−1 (21)

Now consider the new system (19) with the new coordinates of
y, the equivalent control can be derived from ˙̄σ = 0. Since

˙̄σ =

r
∑

i=1

c̄iσ̄i+1 + ˙̄σr+1

=

r
∑

i=1

c̄iyn−r+i + ẏn

=

r
∑

i=1

c̄iyn−r+i −
n

∑

i=1

āiyi + u

The equivalent control based SMC is then

u(y) = −
r

∑

i=1

c̄iyn−r+i +

n
∑

i=1

āiyi − αsgn(σ̄(y)) (22)

This control results in σ̄ ˙̄σ = −α|σ̄|, which ensures the finite
time convergence. Substituting (22) into (19) yields

ẏ = Ācx − αsgn(σ̄(y))b (23)

where Āc is shown in (24)on the next page. In the following, we
will show that all the system states are asymptotically stable.

Denote

Āc =

[

Āc1 Āc2

0 Āc3

]

(25)

where Āc1 ∈ R(n−r−1)×(n−r−1), Āc2 ∈ R(n−r−1)×(r+1) has
all zero rows except the last row, which is [1, 0, · · · , 0] ∈ Rr+1

and Āc3 ∈ R(r+1)×(r+1),

Āc1 =













0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
−c1 −c2 · · · −cn−r−2 −cn−r−1













(26)

Āc3 =













0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
0 −c̄1 · · · −c̄r−1 −c̄r













(27)

The control law (22) ensures that the sliding mode σ̄ = 0 can
be reached in finite time. Taking into account that σ̄(y) is an
explicit function of w, i.e. σ̄(y) = σ̄(w), we can decompose
(23) as

˙̄x = Āc1x̄ + Āc2w (28)

ẇ = Āc3w − αsgn(σ̄(w))b̄ (29)

where b̄ = [0, 0, · · · , 0, 1]⊤ ∈ Rr+1.

First we consider the subsystem (29). Notice that it is equivalent
to (6), which was analyzed in Section 3. It follows that the states
of the subsystem w are asymptotically stable.

Now we turn to the other subsystem x̄. Here, yn−r = 0 since
yn−r is the first state of subsystem w. Then, the subsystem x̄
can be rewritten as

˙̄x = Āc1x̄ (30)

Note that Āc1 is just analogous to (8), then from the same
analysis procedure as shown in Section 3. We can draw the
conclusion that subsystem x̄ is also asymptotically stable. Thus,
all the system states are asymptotically stable. Since the state
transformation matrix P is invertible, we have the conclusion
that the original state x = [x̄, x]⊤ is asymptotically stable.

In the following, the ZOH discretization will be applied to the
new system model (28) and (29). For simplicity to study to
reveal intriguing characteristics of the ZOH effect on higher-
order SMC systems, the ZOH discretization is applied to (23),
which leads to

y(k + 1) = Φy(k) − αΓsgn(σ̄(y(k))) (31)

where Φ = eĀch and Γ =
∫ h

0
eĀcτdτb. Furthermore, Φ = I +

Āch + Ā2
ch

2/2! + · · · and
∫ h

0
eĀcτdτ = hI + h2/2!Āc +

h3/3!Ā2
c + · · · + hi+1/(i + 1)!Āi

c + · · · . With the expression
of Āc (25), one can derive

Φ =

[

Φ1 Φ2

0 Φ3

]

(32)

Φ1 = eĀc1h, Φ3 =

[

1 v̄T

0̄ D̄

]

Φ2 = Āc2(Āc1 − Āc3)
−1(Φ1 − Φ3) (33)

Here, the dimension of each block in Φ is as same as the corre-
sponding block of Āc in (25). In Φ3, v̄T is an r-dimensional row
vector, D̄ is a r× r matrix and 0̄ denotes an r-dimensional zero
column vector. Hence, the ZOH discretization of system (23)
gives rise to the following discrete-time dynamical system:

x̄(k + 1) = Φ1x̄(k) + Φ2w(k) − αΓ1s̄k (34)

w(k + 1) = Φ3w(k) − αΓ2s̄k (35)

where s̄k = sgn(σ̄(y(k))) and Γ = [Γ⊤
1 ,Γ⊤

2 ]⊤, Γ⊤
1 ∈ Rn−r−1,

Γ⊤
2 ∈ Rr+1.

Note that (35) is equivalent to system (11) except that its
dimension is r+1, which was analyzed in the previous section.
We rewrite σ̄ as

σ̄(y) = σ̄(w) = c̄1w1 + dv

where d = [c̄2, c̄3, · · · , c̄r, 1] and v = [w2, w3, · · · , wr+1]
⊤.

Let’s assume eigenvalues of D̄ are within the unit circle. Then,
the bounds for the steady states of subsystem w can be given by
(14):
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Ā =

































0 1 0 · · · 0 0 0 · · · 0 0
0 0 1 · · · 0 0 0 · · · 0 0
...

...
. . .

. . .
...

...
...

. . .
...

...
0 0 · · · 0 1 0 0 · · · 0 0

−c1 −c2 · · · −cn−r−2 −cn−r−1 1 0 · · · 0 0
0 0 · · · 0 0 0 1 0 · · · 0
0 0 · · · 0 0 0 0 1 · · · 0
...

...
. . .

...
...

...
...

. . .
. . .

...
0 0 · · · 0 0 0 0 · · · 0 1

−ā1 −ā2 · · · −ān−r−2 ān−r−1 −ān−r −ān−r+1 · · · −ān−1 −ān

































(20)

Āc =

































0 1 0 · · · 0 0 0 · · · 0 0
0 0 1 · · · 0 0 0 · · · 0 0
...

...
. . .

. . .
...

...
...

. . .
...

...
0 0 · · · 0 1 0 0 · · · 0 0

−c1 −c2 · · · −cn−r−2 −cn−r−1 1 0 · · · 0 0
0 0 · · · 0 0 0 1 0 · · · 0
0 0 · · · 0 0 0 0 1 · · · 0
...

...
. . .

...
...

...
...

. . .
. . .

...
0 0 · · · 0 0 0 0 · · · 0 1
0 0 · · · 0 0 0 −d1 · · · −dr−1 −dr

































(24)

‖w1(∞)‖ ≤ α‖c̄−1
1 d‖‖Γ22‖(1 − ‖ D̄‖)−1 + 2α‖c̄1‖−1c̄Γ2

‖v(∞)‖ ≤ α‖Γ22‖(1 − ‖ D̄‖)−1

where Γ2 = [Γ21,Γ
⊤
22]

⊤, Γ21 is a scalar and Γ22 is a r-
dimensional vector. According to the definition of spectral

norm, ‖w‖ ≤
√

2max{‖w1‖, ‖v‖}.

Let us now consider the subsystem (34). Assume the eigenval-
ues of Φ1 lie within unit circle. It follows from (34) that

‖x̄(k + 1)‖ ≤ ‖Φ1‖‖x̄(k)‖ + ‖Φ2‖‖w(k)‖ + α‖Γ1‖
Iterating n times on the above inequality yields

‖x̄‖ ≤ ‖Φ1‖n‖x̄(0)‖ + (‖Φ2‖‖w(k)‖ + α‖Γ1‖)
n−1
∑

0

‖Φ1‖n−1−i

= ‖Φ1‖n‖x̄(0)‖ + (‖Φ2‖‖w(k)‖ + α‖Γ1‖)
(1 − ‖Φ1‖n)(1 − ‖Φ1‖)−1

Since ‖Φ1‖ < 1, as n → ∞, one has

‖x̄‖ ≤ (‖Φ2‖‖w‖ + α‖Γ1‖)(1 − ‖Φ1‖)−1

Using the state transformation (17), one has

x = P−1
2 w − P−1

2 P1x̄

Then, the bound for the subsystem state x can be derived as

‖x‖ ≤ ‖P−1
2 ‖(‖w‖ + ‖x̄‖‖P1‖)

The above analysis and inference result in the following theo-
rem:

Theorem 2. If eigenvalues of Φ1 and D̄ are all within the unit
circle, then the states of system (34) and (35) converge to
the steady state solutions of the discretized higher-order SMC
system (28) and (29) bounded by

‖w1‖ ≤ α‖c̄−1
1 d‖‖Γ22‖(1 − ‖D̄‖)−1 + 2α‖c̄1‖−1c̄Γ2

‖v‖ ≤ α‖Γ22‖(1 − ‖D̄‖)−1

‖x̄‖ ≤ (β‖Φ2‖ + α‖Γ1‖)(1 − ‖Φ1‖)−1

‖x‖ ≤ ‖P−1
2 ‖(β + (β‖Φ2‖ + α‖Γ1‖)(1 − ‖Φ1‖)−1‖P1‖)

where β =
√

2 max{‖w1‖, ‖v‖}.

Note that it is the first time the specific bounds of ZOH-
discretized higher-order SMC systems states have been derived.
In Theorem 2, Φ and Γ are all functions of h. It is difficult
to derive their general analytic expressions. But we could still
draw some convergence properties from the above analysis. It
can be easily seen that if we rewrite (31) as

y(k + 1) − y(k)/h = (Φ − I)y(k)/h − αΓs̄k/h

From definitions of Φ and Γ, one has limh→0(Φ − I)/h = Āc

and limh→0 Γ/h = b. That means when h → 0, the solution of
discretized system converges to the corresponding continuous-
time higher-order SMC system solution. Thus, systems states
converge to 0 as h → 0.

We now specify the convergence accuracy of the discretized
higher-order SMC systems, which would be helpful in engi-
neering applications. The concept of ”boundary layer” was first
introduced for eliminating the chattering phenomenon in SMC
systems (Slotine (1984)). In discrete SMC systems, the conver-
gence accuracy is usually measured by the width of boundary
layers. It has been known that higher-order SMC systems can
achieve higher-order convergence precision (Levant (1993)).
By the big O notation, we have known that if h is the sampling
period, the width is O(h) in standard SMC systems (Furuta
(1990)) whereas it is O(hr) in the rth order SMC systems
(Levant (1993)).

Consider the subsystem w given in (35),

w(k + 1) = Φ3w(k) − αΓ2s̄k

Denote the width of boundary layer wi as εi, i = 1, 2, · · · , r +
1. According to the definitions of wi, we have w1 = s and
wj+1 = dwj/dt, j = 1, 2, · · · , r. Then, when h → 0, the
convergence accuracy can be inferred as ε1 = O(hr). It means
that the steady state motion lie within an O(hr) vicinity of
sliding manifolds. An illustrative simulation will be presented
in the next section to verify the above conclusion.
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5. SIMULATIONS

For illustration, consider a sixth order system

A =















0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0















, b =















0
0
0
0
0
1















Let the designated sliding mode be defined by

s(x) = x1 + 2x2 + x3 + x4

Here, the relative degree r is 2. Make the new switching
function as

s̄(y) = s̄1 + s̄2 + s̄3 = y4 + y5 + y6

Whereas the state transformation matrix P is

P =















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 2 1 1 0 0
0 1 2 1 1 0
0 0 1 2 1 1















Here, d = (1, 1). Therefore, according to (24) Āc is defined by

Āc =















0 1 0 0 0 0
0 0 1 0 0 0
−1 −2 −1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 −1 −1















In the simulation, the gain α = 1 and the sampling period is
selected as h = 0.1. As an example, a system trajectory with
the initial state x0=(1, 1, 0,−3, 1, 4)⊤ is shown in Fig. 1 and
Fig. 2. It finally converges to a period-2 orbits (Fig. 3 and Fig.
4) which are (0.05, 4.1667 · 10−8,−8.3502 · 10−8,−4.1667 ·
10−5, 8.3500 · 10−5, 0.05) and (0.05,−4.1667 · 10−8, 8.3502 ·
10−8, 4.1667 ·10−5,−8.3500 ·10−5,−0.05) within the bounds
derived from Theorem 2 as ‖x̄‖ ≤ 3.8871 and ‖x‖ ≤ 4.0879.
To verify the convergence accuracy, several simulation results
with selected sampling periods 0.0001 and 0.001 are presented
in Table 1, which clearly shows the reduction of chattering
amplitude for different order sliding functions ε1, ε2, ε3.

Notice that all the simulation examples in this paper are with
period-2. However, periodic sequences with period 4, 6, 8, · · ·
can be found by assigning different initial conditions under the
same sampling time. For example, if the system trajectory starts
from the original point with the sampling time h = 0.1, it will
converge to a period-4 orbits. (Fig. 5 and Fig. 6). Despite the
fact that the amplitude of periodic orbits decreases with h, it
is possible that periodic orbits with complex switching patterns
exist for arbitrary small sampling period.

6. CONCLUSION

In this paper, the ZOH discretization of higher-order SMC
systems has been studied. The boundary layer issue has been
considered as well, which confirms the higher-order accuracy
performance. This work allows us to estimate the maximum
chattering amplitude when the ZOH is applied to SMC systems.

It should be noted that after discretization, there are some com-
monalities between classical 1-sliding mode control systems
and r-sliding mode systems such as periodic phenomenon.
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However, due to the page limit, this topic has not been dis-
cussed. Further work will be focused on the ZOH sampling of
the higher-order multi-input SMC systems.
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