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Abstract: We present a high-level modeling formulation based on a conserved quantities approach, with 

the goal of making the physical modeling process reliable and repeatable. The system of equations 

generated as a result of this formulation will, in general, be non-linear differential algebraic equations 

(DAEs). We make use of symbolic reduction techniques in order to eliminate spurious, non-physical 

solutions as well as to reduce to a system of ordinary differential equations, if possible.  

 

1. INTRODUCTION 

The complexity of physical models is rapidly increasing, 

while development cycles are getting shorter. While dealing 

with these constraints, we need to ensure quality and 

accuracy of the models that are produced. A modeling 

process is needed that formalizes a reliable and repeatable 

path towards high quality models. 

We present a modeling approach that is based on conserved 

quantities.  Since the conservation of these quantities is 

strictly enforced, the resulting model quality increases, 

because the model engineer is lead to consider or explicitly 

ignore physical phenomena that are often neglected or 

forgotten when using other modeling techniques.  For 

example, when modeling a resistor, the thermal energy it 

dissipates is often neglected. However, using the conserved 

quantities approach compels the user to consider the 

conversion of electrical energy into other energy forms such 

as thermal energy.  This leads to a formalized, predictable, 

and repeatable modeling process that makes the modeling 

assumptions visible, facilitating a rigorous model review 

process to ensure quality. 

2. MODELING WITH CONSERVED QUANTITIES 

The method presented here is based on a conserved quantities 

approach (Ohata et al., 2004), which describes multi-domain 

systems using a single domain-neutral methodology.  The 

overall system is described by a nested hierarchy of sub-

systems made out of a collection of components and other 

sub-systems as shown in Fig. 1.  At each level the state of 

each sub-system is described by conserved quantities, such as 

charge, energy, momentum, mass, which must be conserved.  

The application of conservation laws at each component or 

sub-system ensures that no conserved laws are violated.  The 

individual components and sub-systems interact with each 

other by exchanging conserved quantities. Other conservative 

approaches, such as bond graphs, are more restrictive w.r.t. 

the types of conservation equations that can be defined 

(Ohata et al., 2004).  The systems modeled with this 

methodology can be exported to traditional tools such as 

Simulink or Modelica.  

 

To illustrate the modeling technique using the conserved 

quantity approach, a simple model of a capacitor is shown in 

Fig. 2. 

Fig. 1. The modeling of a sub-system using the conserved 

quantities approach 

 

Fig. 2. The model of a capacitor using conserved quantity 

approach 

The corresponding equations used to model the capacitor are: 
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where EC and QC represent the energy stored in the capacitor 

and the charge on one of the capacitor’s plates respectively, C 
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is the capacitance value, p1 and p2 represent the power 

(energy flow) entering and exiting the capacitor respectively, 

i1 and i2 represent the current (flow of charge) entering and 

exiting the capacitor respectively. 

3. SYMBOLIC MANIPULATION 

While having many advantages as described above, the 

conserved quantity approach leads to a number of difficulties 

in the simulation stage; the models typically generate systems 

of differential algebraic equations (DAEs) that require 

sophisticated solvers to get accurate solutions; the conserved 

quantities approach also results in systems of equations that 

typically have spurious, non-physical solutions that need to 

be identified and removed in order to get useful simulation 

results; finally, the systems of equations are complex and 

need to be simplified in order to be able to run simulations in 

a reasonable amount of time. We propose to take advantage 

of symbolic techniques, as for example found in Maple 

(Maplesoft, 2007), to address these difficulties. 

3.1 DAE Solutions 

The systems of DAEs are intrinsically more difficult to solve 

than a system of ordinary differential equations (ODE), and 

therefore require special purpose symbolic and numeric 

approaches to make the solution tractable. 

A popular way to deal with a system of DAEs is index 

reduction (Pantelides, 1998) that converts it to a system of 

ODEs.  One way to do this is by repeatedly differentiating 

and manipulating the algebraic equations until they 

essentially become a system of differential equations.  The 

resulting system of ODEs can then be solved by standard 

techniques.  The original algebraic constraints are no longer 

present in this system, and as the system is integrated, the 

solution may drift and the algebraic constraints may no 

longer be satisfied. Some of the techniques to prevent this 

drift include: manifold projection (Ascher et al., 1998) and 

constraint stabilization (Baumgarte, 1972). 

With the Pantelides method of index reduction, an additional 

problem is with the initial condition selection.  As the 

algebraic equations are differentiated, additional states are 

introduced.  These artificially created states require initial 

conditions for the ODE solver to function, however the initial 

conditions are not defined in the original formulation.  A 

combination of symbolic and numeric techniques is used to 

derive the missing initial conditions. 

3.2 Spurious Solutions 

The conserved quantities modeling approach inherently leads 

to non-linear systems, which may lead to multiple solutions.  

The additional solutions manifest themselves as spurious 

solutions, which are non-realizable solutions that still satisfy 

the system of equations.  These solutions would not be 

present by using more traditional formulation.  The spurious 

solutions arise in the form: 

0=⋅ qp                                                                               (5) 

where p and q are both sub-expressions containing 

differential terms.  This leads to two different cases: p=0 and 

q=0, and a decision must be made which case to select.  

Given a system of equations, we use a symbolic technique 

called differential elimination (Wittkopf, 2004) to both 

identify different cases and eliminate the cases that 

correspond to spurious solutions. 

3.3 Complex Systems 

Systems of equations that are automatically generated from a 

high level description tend to have a high degree of 

redundancy.  For example, there will be many trivial 

equations of the form xi(t)=xj(t).  Symbolic manipulation 

techniques can remove the redundancy and, therefore 

significantly reduce the size of the system. 

Additionally, through symbolic analysis, the system can be 

rewritten in terms of a different set of state variables.  The 

resulting formulation is more compact, and therefore the time 

required to solve the overall system is also decreased.  In 

some cases the appropriate co-ordinate selection can reduce a 

DAE system to an ODE system (Arczewski et al., 1996).   

4. CONCLUSIONS 

We presented a high level physical modeling approach that 

uses conserved quantities to increase the reliability and 

predictability of the modeling process.  The complications 

that arise in the presented formulation are being resolved 

through the application of symbolic methods.  The symbolic 

manipulation includes DAE model simplification, complexity 

reduction, and the elimination of spurious solutions.  
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