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Abstract: This paper presents the optimal joint state filtering and parameter identification problem
for linear stochastic time-delay systems with unknown parameters. The original identification problem
is reduced to the optimal filtering problem for incompletely measured polynomial (bilinear) time-
delay system states over linear observations with an arbitrary, not necessarily invertible, observation
matrix, where the unknown parameters are considered standard Wiener processes and incorporated
as additional states in the extended state vector. The obtained solution is based on the designed
optimal filter for incompletely measured bilinear time-delay states over linear observations, taking into
account that the optimal filter for the extended state vector also serves as the optimal identifier for the
unknown parameters. In the example, performance of the designed optimal state filter and parameter
identifier is verified for a linear time-delay system with an unknown multiplicative parameter over linear
observations. Both, stable and unstable, linear systems are examined.

1. INTRODUCTION

The problem of the optimal simultaneous state estimation and
parameter identification for stochastic systems with unknown
parameters has been receiving systematic treatment beginning
from the seminal paper (Bar-Shalom, 1972). The optimal result
was obtained in (Bar-Shalom, 1972) for a linear discrete-time
system with constant unknown parameters within a finite fil-
tering horizon, using the maximum likelihood principle (see,
for example, (Rao, 1973)), in view of a finite set of the state
and parameter values at time instants. The application of the
maximum likelihood concept was continued for linear discrete-
time systems in (Elliott and Krishnamurthy, 1999) and linear
continuous-time systems in (Elliott and Krishnamurthy, 1997).
Nonetheless, the use of the maximum likelihood principle re-
veals certain limitations in the final result: a. the unknown
parameters are assumed constant to avoid complications in the
generated optimization problem and b. no direct dynamical
(difference) equations can be obtained to track the optimal state
and parameter estimates dynamics in the ”general situation,”
without imposing special assumptions on the system struc-
ture. Other approaches are presented by the optimal parameter
identification methods without simultaneous state estimation,
such as designed in (Duncan et al., 1999; Charalambous and
Logothetis, 2000; Zheng, 2003), which are also applicable
to nonlinear stochastic systems. Another approach, based on
the optimization of robust H∞-filters, has recently been intro-
duced in (Shi, 1998; Shi et al., 1999; Xu and Chen, 2002; Xu
and van Dooren, 2002; Mahmoud and Shi, 2003; Sheng et
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al., 2005; Gao et al., 2005) for linear stochastic systems with
bounded uncertainties in coefficients. The overall comment is
that, despite a significant number of excellent works in the area
of simultaneous state estimation and parameter identification,
the optimal joint state filter and parameter identifier in the form
of a closed finite-dimensional system of stochastic ODEs has
not yet been obtained even for linear time-delay systems.

This paper presents the optimal joint filtering and parameter
identification problem for linear stochastic time-delay systems
with unknown parameters over linear observations. The solu-
tion starts with reduction of the original identification problem
to the optimal filtering problem for incompletely measured bi-
linear time-delay system states over linear observations with an
arbitrary, not necessarily invertible, observation matrix, upon
considering the unknown parameters as additional system states
satisfying linear stochastic Ito equations with zero drift and
unit diffusion, i.e., standard Wiener processes. In doing so, the
unknown parameters are incorporated as additional states in the
extended state vector, which should be estimated mean-square
optimally in the optimal filtering problem for bilinear time-
delay states.

To deal with the new filtering problem for the extended state
vector, the paper presents the optimal finite-dimensional filter
for incompletely measured bilinear time-delay system states
over linear observations with an arbitrary, not necessarily in-
vertible, observation matrix, thus generalizing the results of
((Basin, 2003; Basin and Alcorta-Garcia, 2003; Basin et al.,
2006; Basin et al., 2008)). The optimal filtering problem is
treated proceeding from the general expression for the stochas-
tic Ito differential of the optimal estimate and the error variance
(Pugachev and Sinitsyn, 2001). Finally, the closed system of the
optimal filtering equations with respect to three variables, the
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optimal estimate, the error variance, and the error covariance
between the current-time and delay-shifted values is derived
in the explicit form in the particular case of a bilinear state
equation. The paper then focuses on the original optimal joint
state filtering and parameter identification problem for linear
stochastic time-delay systems with unknown parameters over
linear observations, whose solution is based on the obtained
optimal filter for incompletely measured bilinear time-delay
states. The designed optimal filter for the extended state vector
also serves as the optimal identifier for the unknown parame-
ters. This presents the optimal algorithm for the optimal joint
state estimation and parameter identification in linear time-
delay systems with unknown parameters over linear observa-
tions.

In the illustrative example, performance of the designed optimal
filter is verified for a linear time-delay system with an unknown
multiplicative parameter over linear observations. The simula-
tions are conducted for both, negative and positive, values of the
parameter, thus considering stable and unstable linear systems.

2. OPTIMAL STATE FILTERING PROBLEM STATEMENT

Let (Ω,F,P) be a complete probability space with an increas-
ing right-continuous family of σ -algebras Ft , t ≥ t0, and let
(W1(t),Ft , t ≥ t0) and (W2(t),Ft , t ≥ t0) be independent Wiener
processes. The Ft-measurable random process (x(t),y(t)) is
described by a nonlinear differential equation with a bilinear
polynomial time-delay drift term for the system state

dx(t) = f (x, t)dt +b(t)dW1(t), (1)

where f (x, t) = a0(t)+a1(t)x(t)+a2(t)x(t)x
T (t −h), with the

initial condition x(s) = φ(s), s ∈ [t0 −h, t0], h is the state delay
value, and a linear differential equation for the observation
process

dy(t) = (A0(t)+A(t)x(t))dt +B(t)dW2(t). (2)

Here, x(t) ∈ Rn is the state vector and y(t) ∈ Rm is the linear
observation vector, m ≤ n, a0(t) is an n-dimensional vector,
a1(t) is an n × n - matrix, a2(t) is 3D tensor of dimension
n× n × n. The initial condition x0 ∈ Rn is a Gaussian vector
such that x0, W1(t) ∈ Rp, and W2(t) ∈ Rq are independent.
The system state x(t) dynamics depends on the delayed state
x(t − h), which actually makes the system state space infinite-
dimensional (see, for example, (Malek-Zavarei and Jashmidi,
1987)). The observation matrix A(t) ∈ Rm×n is not supposed
to be invertible or even square. It is assumed that B(t)BT (t) is
a positive definite matrix, therefore, m ≤ q. All coefficients in
(1)–(2) are deterministic functions of appropriate dimensions.

The estimation problem is to find the optimal estimate x̂(t) of
the system state x(t), based on the observation process Y (t) =
{y(s), t0 ≤ s ≤ t}, that minimizes the Euclidean 2-norm J =
E[(x(t)− x̂(t))T (x(t)− x̂(t)) |FY

t ] at every time moment t. Here,
E[ξ (t) | FY

t ] means the conditional expectation of a stochastic
process ξ (t) = (x(t)− x̂(t))T (x(t)− x̂(t)) with respect to the σ
- algebra FY

t generated by the observation process Y (t) in the
interval [t0, t]. As known (Pugachev and Sinitsyn, 2001), this
optimal estimate is given by the conditional expectation

x̂(t) = m(t) = E(x(t) | FY
t )

of the system state x(t) with respect to the σ - algebra FY
t

generated by the observation process Y (t) in the interval [t0, t].
As usual, the matrix function

P(t) = E[(x(t)−m(t))(x(t)−m(t))T | FY
t ]

is the estimation error variance.

The proposed solution to this optimal filtering problem is
based on the formulas for the Ito differential of the conditional
expectation E(x(t) | FY

t ) and its variance P(t) (cited after
(Pugachev and Sinitsyn, 2001)) and given in the following
section.

3. OPTIMAL FILTER DESIGN

The stated optimal filtering problem is solved by the following
theorem.

Theorem 1. The optimal filter for the polynomial bilinear time-
delay state x(t) (1) over the incomplete linear observations
y(t) (2) is given by the following equations for the optimal
estimate m(t) = E(x(t) | FY

t ), the estimation error variance
P(t) = E[(x(t)−m(t))(x(t)−m(t))T | FY

t ], and the estimation
covariance P(t, t−h) = E((x(t)−m(t))(x(t−h)−m(t−h))T |
FY

t )

dm(t) = a0(t)+a1(t)m(t)+a2(t)[P(t, t −h)+m(t)mT (t −h)]

+P(t)AT (t)(B(t)BT (t))−1(dy(t)−(A0(t)+A(t)m(t))dt), (3)

dP(t) = (2a2(t)m(t −h)P(t)+(2a2(t)m(t −h)P(t))T +

a1(t)P(t)+P(t)aT
1 (t)+b(t)bT (t)−

P(t)AT (t)(B(t)BT (t))−1A(t)P(t))dt, (4)

dP(t, t −h) = (2a2(t)m(t −h)P(t, t −h)+

(2a2(t)m(t −2h)P(t −h, t))T +a1(t)P(t, t −h)+

PT (t, t −h)aT
1 (t)+1/2[b(t)bT (t −h)+b(t −h)bT (t)]−

−(1/2)[P(t)AT (t)(B(t)BT (t))(B(t)BT (t −h))−1×

(B(t −h)BT (t −h))A(t −h)P(t −h))+

P(t −h)AT (t −h)(B(t −h)BT (t −h))×

(B(t −h)BT (t))−1(B(t)BT (t))A(t)P(t)])dt. (5)

with the initial conditions m(s) = E(φ(s)), s ∈ [t0 − h, t0),
m(t0) = E(φ(t0) |FY

t0
), P(t0) = E[(x(t0)−m(t0)(x(t0)−m(t0)

T |

FY
t0

], and P(s,s−h) = E[(x(s)−m(s)(x(s−h)−m(s−h)T | FY
s ]

for s ∈ [t0, t0 +h). The system of filtering equations (3)–(5) be-
comes a closed-form finite-dimensional system after expressing
the superior conditional moments of the system state x(t) with
respect to the observations y(t) as functions of only three lower
conditional moments, m(t), P(t), and P(t, t −h).

Proof. The optimal filtering equations could be obtained using
the formula for the Ito differential of the conditional expectation
m(t) = E(x(t) | FY

t ) (see (Pugachev and Sinitsyn, 2001))

dm(t) = E( f (x, t) | FY
t )dt +E(x[ϕ1(x)−E(ϕ1(x) | FY

t )]T | FY
t )

×
(

B(t)BT (t)
)−1

(dy(t)−E(ϕ1(x) | FY
t )dt),

where f (x, t) = a0(t) + a1(t)x(t) + a2(t)x(t)x
T (t − h) is the

bilinear drift term in the state equation, and ϕ1(x) = A0(t) +
A(t)x(t) is the linear drift term in the observation equation.
Upon performing substitution, the estimate equation takes the
form

dm(t) = E(a0(t)+a1(t)x(t)+a2(t)x(t)x
T (t −h) | FY

t )dt+

E(x(t)[A(t)(x(t)−m(t))]T | FY
t )×

(B(t)BT (t))−1(dy(t)− (A0(t)+A(t)m(t)) =

(a0(t)+a1(t)m(t)+a2(t)[P(t, t −h)+m(t)mT (t −h)])dt+

P(t)AT (t)(B(t)BT (t))−1(dy(t)− (A0(t)+A(t)m(t))dt), (6)

where P(t, t −h) = E((x(t)−m(t))(x(t −h)−m(t −h))T | FY
t )

is the covariance of the estimation error values at the current
time t and the delay-shifted moment t − h. The equation (6)
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should be complemented with the initial condition m(s) =
E(φ(s)), s ∈ [t0 −h, t0), m(t0) = E(φ(t0) | FY

t0
).

Trying to compose a closed system of the filtering equations,
the equation (6) should be complemented with the equations
for the error variance P(t) and covariance P(t, t − h). For this
purpose, the formula for the Ito differential of the variance
P(t) = E((x(t)−m(t))(x(t)−m(t))T | FY

t ) is used (cited again
after (Pugachev and Sinitsyn, 2001)):

dP(t) = (E(((x(t)−m(t))( f (x, t))T | FY
t )+

E( f (x, t)(x(t)−m(t))T ) | FY
t )+

b(t)bT (t)−E(x(t)[ϕ1(x, t)−E(ϕ1(x, t) | FY
t )]T | FY

t )×
(

B(t)BT (t)
)−1

E([ϕ1(x, t)−E(ϕ1(x) | FY
t )]xT (t) | FY

t ))dt+

E((x(t)−m(t))(x(t)−m(t))[ϕ1(x, t)−E(ϕ1(x, t) | FY
t )]T | FY

t )

×
(

B(t)BT (t)
)−1

(dy(t)−E(ϕ1(x, t) | FY
t )dt),

where the last term should be understood as a 3D tensor
(under the expectation sign) convoluted with a vector, which
yields a matrix. Upon substituting the expressions for f (x, t)
and ϕ1(x, t) and using the variance formula P(t) = E((x(t)−
m(t))xT (t)) | FY

t ), the last equation can be represented as

dP(t) = (a2(t)E(((x(t)xT (t −h))(x(t)−m(t))T ) | FY
t )+

(a2(t)E(((x(t)xT (t −h))(x(t)−m(t))T ) | FY
t ))T +

a1(t)P(t)+P(t)aT
1 (t)+b(t)bT (t)−

P(t)AT (t)(B(t)BT (t))−1A(t)P(t))dt+

E(((x(t)−m(t))(x(t)−m(t))(x(t)−m(t))T | FY
t )×

AT (t)(B(t)BT (t))−1(dy(t)− (A0(t)+A(t)m(t))dt). (7)

The equation (7) should be complemented with the initial
condition P(t0) = E[(x(t0)−m(t0)(x(t0)−m(t0)

T | FY
t0

].

Applying now the Ito differential formula to the covariance
P(t, t − h) = E((x(t)−m(t))(x(t − h)−m(t − h))T | FY

t ), sub-
stituting the expressions for f (x, t) and ϕ1(x, t), and using the
formulas for the variance P(t) and covariance P(t, t − h) =
E((x(t)−m(t))(x(t −h)−m(t −h))T | FY

t ) yields

dP(t, t −h) = (a2(t)E(((x(t)xT (t −h))×

(x(t −h)−m(t −h))T ) | FY
t )+

(a2(t)E(((x(t −h)xT (t −2h))(x(t)−m(t))T ) | FY
t ))T +

a1(t)P(t, t −h)+PT (t, t −h)aT
1 (t)+

1/2[b(t)bT (t −h)+b(t −h)bT (t)]−

−(1/2)[P(t)AT (t)(B(t)BT (t))(B(t)BT (t −h))−1×

(B(t −h)BT (t −h))A(t −h)P(t −h))

+P(t −h)AT (t −h)(B(t −h)BT (t −h))×

(B(t −h)BT (t))−1(B(t)BT (t))A(t)P(t)])dt+

(1/2)[E((x(t)−m(t))(x(t −h)−m(t −h))×

(x(t −h)−m(t −h))T | FY
t )AT (t −h)(B(t −h)BT (t −h))−1×

(dy(t −h)− (A0(t −h)+A(t −h)m(t −h))dt)+

E((x(t −h)−m(t −h))(x(t)−m(t))(x(t)−m(t))T | FY
t )×

AT (t)(B(t)BT (t))−1(dy(t)− (A0(t)+A(t)m(t))dt)]. (8)

The equation (8) should be complemented with the initial
condition P(s,s− h) = E[(x(s)−m(s)(x(s− h)−m(s− h)T |
FY

s ] for s ∈ [t0, t0 +h).

The equations (6)–(8) for the optimal estimate m(t), the error
variance P(t), and the error covariance P(t, t − h) form a non-
closed system of the filtering equations for the nonlinear state

(1) over linear observations (2). The non-closeness means that
the system (6)–(8) includes terms depending on x, such as
E(((x(t)xT (t − h))(x(t) − m(t))T ) | FY

t ) and E(((x(t)xT (t −
h))(x(t − h)−m(t − h))T ) | FY

t ), which are not expressed yet
as functions of the system variables, m(t), P(t), and P(t, t −h).

As shown in (Basin et al., 2008), a closed system of the
filtering equations for a polynomial system state (1), without
time delays, over linear observations can be obtained. Using
the same technique, the optimal filtering equations (3)–(5)
are finally derived. The details are omitted here due to space
shortage. ¥

Thus, a closed form of the filtering equations is obtained
for a bilinear time-delay function f (x, t) = a0(t)+ a1(t)x(t)+
a2(t)x(t)x

T (t −h) in the equation (1).

4. JOINT STATE FILTERING AND PARAMETER
IDENTIFICATION PROBLEM

Let (Ω,F,P) be a complete probability space with an increas-
ing right-continuous family of σ -algebras Ft , t ≥ t0, and let
(W1(t),Ft , t ≥ t0) and (W2(t),Ft , t ≥ t0) be independent Wiener
processes. The Ft -measurable random process (x(t),y(t)) is
described by a linear delay-differential equation with unknown
vector parameter θ(t) for the system state

dx(t) = (a0(θ , t)+a(θ , t)x(t −h))dt +b(t)dW1(t), (17)

with the initial condition x(s) = φ(s), s ∈ [t0 − h, t0], h is the
state delay value, and a linear differential equation for the
observation process

dy(t) = (A0(t)+A(t)x(t))dt +B(t)dW2(t). (18)

Here, x(t) ∈ Rn is the state vector, y(t) ∈ Rm is the linear
observation vector, m ≤ n, and θ(t) ∈ Rp, p ≤ n × n + n, is
the vector of unknown entries of matrix a(θ , t) and unknown
components of vector a0(θ , t). The latter means that both
structures contain unknown components a0i

(t) = θk(t), k =
1, . . . , p1 ≤ n and ai j(t) = θk(t), k = p1 + 1, . . . , p ≤ n× n + n,
as well as known components a0i

(t) and ai j(t), whose values
are known functions of time. The initial condition x0 ∈ Rn is a
Gaussian vector such that x0, W1(t), and W2(t) are independent.
The system state x(t) dynamics depends on the delayed state
x(t − h), which actually makes the system state space infinite-
dimensional (see, for example, (Malek-Zavarei and Jashmidi,
1987)). The observation matrix A(t) ∈ Rm×n is not supposed
to be invertible or even square. It is assumed that B(t)BT (t)
is a positive definite matrix. All coefficients in (17)–(18) are
deterministic functions of time of appropriate dimensions.

It is considered that there is no useful information on values
of the unknown parameters θk(t), k = 1, . . . , p, and this uncer-
tainty even grows as time tends to infinity. In other words, the
unknown parameters can be modeled as Ft -measurable Wiener
processes

dθ(t) = dW3(t), (19)

with unknown initial conditions θ(t0) = θ0 ∈ Rp, where
(W3(t),Ft , t ≥ t0) is a Wiener process independent of x0, W1(t),
and W2(t).

The estimation problem is to find the optimal estimate ẑ(t) =

[x̂(t), θ̂(t)] of the combined vector of the system states and un-
known parameters z(t) = [x(t),θ(t)], based on the observation
process Y (t) = {y(s),0 ≤ s ≤ t}, that minimizes the Euclidean
2-norm J = E[(z(t) − ẑ(t))T (z(t) − ẑ(t)) | FY

t ] at every time
moment t. Here, E[ξ (t) |FY

t ] means the conditional expectation
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of a stochastic process ξ (t) = (z(t)− ẑ(t))T (z(t)− ẑ(t)) with
respect to the σ - algebra FY

t generated by the observation
process Y (t) in the interval [t0, t]. As known (Pugachev and
Sinitsyn, 2001), this optimal estimate is given by the condi-
tional expectation ẑ(t) = m(t) = E(z(t) |FY

t ) of the system state
z(t) = [x(t),θ(t)] with respect to the σ - algebra FY

t generated
by the observation process Y (t) in the interval [t0, t]. As usual,
the matrix function P(t) = E[(z(t)−m(t))(z(t)−m(t))T | FY

t ]
is the estimation error variance.

The stated optimal filtering problem for the extended state is
solved by the following theorem.

Theorem 2. The optimal finite-dimensional filter for the ex-
tended state vector z(t) = [x(t),θ(t)], governed by the equa-
tions (17),(19) over the linear observations (18) is given by
the following equations for the optimal estimate ẑ(t) = m(t) =

[x̂(t), θ̂(t)] = E([x(t),θ(t)] | FY
t ), the estimation error variance

P(t) = E[(z(t)−m(t))(z(t)−m(t))T | FY
t ], and the estimation

error covariance P(t, t −h) = E[(z(t)−m(t))(z(t −h)−m(t −
h))T | FY

t ]

dm(t) = (c0(t)+a1(t)m(t)+a2(t)[P(t, t −h)+m(t)mT (t −h)]

+P(t)[A(t),0m×p]
T (B(t)BT (t))−1[dy(t)−A(t)m(t)dt],

x̂(s) = E(φ(s)),s ∈ [t0 −h, t0),

x̂(t0) = E(φ(t0) | FY
t0

), E(θ(t0) | FY
t )], (20)

dP(t) = (a1(t)P(t)+P(t)aT
1 (t)+2a2(t)m(t −h)P(t)+

(2a2(t)m(t −h)P(t))T +(diag[b(t), Ip])(diag[b(t), Ip]
T ))dt−

P(t)[A(t),0m×p]
T (B(t)BT (t))−1[A(t),0m×p]P(t)dt,

P(t0) = E((z(t0)−m(t0))(z(t0)−m(t0))
T | FY

t ), (21)

dP(t, t −h) = (2a2(t)m(t −h)P(t, t −h)+

(2a2(t)m(t −2h)P(t −h, t))T +a1(t)P(t, t −h)+

PT (t, t −h)aT
1 (t)+(1/2)[(diag[b(t), Ip])(diag[b(t −h), Ip]

T )+

(diag[b(t −h), Ip])(diag[b(t), Ip]
T )]−

(1/2)[P(t)[A(t),0m×p]
T (B(t)BT (t))(B(t)BT (t −h))−1

(B(t −h)BT (t −h)[A(t −h),0m×p]P(t −h)+

P(t −h)[A(t −h),0m×p]
T (B(t −h)BT (t −h))×

(B(t −h)BT (t))−1(B(t)BT (t))[A(t),0m×p]P(t)], (22)

P(s,s − h) = E[(z(s) − m(s)(z(s − h) − m(s − h)T | FY
s ], for

s ∈ [t0, t0 + h), where 0m×p is the m × p - dimensional zero
matrix. This filter, applied to the subvector θ(t), also serves
as the optimal identifier for the vector of unknown parameters

θ(t) in the equation (17), yielding the estimate subvector θ̂(t)
as the optimal parameter estimate.

Proof. To solve this optimal filtering problem, the following
procedure is proposed for incorporating the unknown parame-
ters as additional states in the extended state vector and writing
the extended state vector equation in the polynomial form.

For this purpose, a vector c0(t) ∈ R(n+p), a matrix a1(t) ∈

R(n+p)×(n+p), and a cubic tensor a2(t)∈ R(n+p)×(n+p)×(n+p) are
introduced as follows.

The equation for the i-th component of the state vector (17) is
given by

dxi(t) = (a0i
(t)+

n

∑
j=1

ai j(t)x j(t −h))dt +
n

∑
j=1

bi j(t)dW1 j
(t),

xi(t0) = x0i
.

Then:

1. If the variable a0i
(t) is a known function, then the i-th

component of the vector c0(t) is set to this function, c0i
(t) =

a0i
(t); otherwise, if the variable a0i

(t) is an unknown function,
then the (i,n+ i)-th entry of the matrix a1(t) is set to 1.

2. If the variable ai j(t) is a known function, then the (i, j)-th
component of the matrix a1(t) is set to this function, a1i j

(t) =

ai j(t); otherwise, if the variable ai j(t) is an unknown function,
then the (i,n + p1 + k, j)-th entry of the cubic tensor a2(t) is
set to 1, where k is the number of this current unknown entry
in the matrix ai j(t), counting the unknown entries consequently
by rows from the first to n-th entry in each row.

3. All other unassigned entries of the matrix a1(t), cubic tensor
a2(t), and vector c0(t) are set to 0.

Using the introduced notation, the state equations (17),(19) for
the vector z(t) = [x(t),θ(t)] ∈ Rn+p can be rewritten as

dz(t) = (c0(t)+a1(t)z(t)+a2(t)z(t)z
T (t −h))dt+

diag[b(t), Ip×p]d[W T
1 (t),W T

3 (t)]T , (23)

where the matrix a1(t), cubic tensor a2(t), and vector c0(t)
have already been defined, and Ip×p is the p× p - dimensional
identity matrix. The equation (23) is bilinear with respect to the
extended state vector z(t) = [x(t),θ(t)].

Thus, the estimation problem is now reformulated as to find the

optimal estimate ẑ(t) = m(t) = [x̂(t), θ̂(t)] for the state vector
z(t) = [x(t),θ(t)], governed by the bilinear equation (20), based
on the observation process Y (t) = {y(s),0 ≤ s ≤ t}, satisfying
the equation (18). The solution of this problem is obtained
using the optimal filtering equations (3)–(5) for incompletely
measured bilinear time-delayed states over linear observations.
Indeed, directly applying the optimal filter (3)–(5) for incom-
pletely measured bilinear time-delayed states over linear obser-
vations to the bilinear state z(t) = [x(t),θ(t)], governed by (23),
and incomplete linear observations (18), the filtering equations

(20)–(22) are obtained for m(t) = ẑ(t) = m(t) = [x̂(t), θ̂(t)],
P(t) = E[(z(t)− m(t))(z(t)− m(t))T | FY

t ], and P(t, t − h) =
E[(z(t)−m(t))(z(t −h)−m(t −h))T | FY

t ]. ¥

Thus, based on the optimal filtering equations (3)–(5) for in-
completely measured bilinear time-delay states over linear ob-
servations, the optimal state filter and parameter identifier is
obtained for the linear time-delay system state (17) with un-
known parameters, based on the incomplete linear observations
(18). In the next section, performance of the designed optimal
state filter and parameter identifier is verified in an illustrative
example.

5. EXAMPLE

This section presents an example of designing the optimal filter
and identifier for an incompletely measured linear time-delay
system state with an unknown multiplicative parameter, based
on linear state measurements.

Let the bi-dimensional system state x(t) = [x1(t),x2(t)] satisfy
the linear time-delay equations with unknown parameter θ

ẋ1(t) = x2(t), x1(0) = x10, (24)

ẋ2(t) = θx2(t −h)+ψ1(t), x2(s) = φ(s), s ∈ [t0 −h, t0],

and the observation process be given by the linear equation

y(t) = x1(t)+ψ2(t), (25)
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where ψ1(t) and ψ2(t) are white Gaussian noises, which are
the weak mean square derivatives of standard Wiener processes
(see (Pugachev and Sinitsyn, 2001)). The equations (24)–(25)
present the conventional form for the equations (17)–(18),
which is actually used in practice (Åström, 1970). The param-
eter θ is modelled as a standard Wiener process, i.e., satisfies
the equation

dθ(t) = dW3(t), θ(0) = θ0,

which can also be written as

θ̇(t) = ψ3(t), θ(0) = θ0, (26)

where ψ3(t) is a white Gaussian noise.

The filtering problem is to find the optimal estimate m(t) =
[m1(t),m2(t),m3(t)] for the bilinear-linear state (23),(25),
[x1(t),x2(t),θ ], using linear observations (24) confused with
independent and identically distributed disturbances modelled
as white Gaussian noises. The filtering horizon is set to T = 10.

The filtering equations (20)–(22) take the following particular
form for the system (24)–(26)

ṁ1(t) = m2(t)+P11(t)[y(t)−m1(t)], (27)

ṁ2(t) = m2(t −h)m3(t)+P32(t, t −h)+P12(t)[y(t)−m1(t)],

ṁ3(t) = P13(t)[y(t)−m1(t)],

with the initial conditions m1(0) = E(x10 | y(0)) = m10, m2(s) =
E(φ(s)), s ∈ [t0 − h, t0), m2(t0) = E(φ(t0) | FY

t0
), and m3(0) =

E(θ0 | y(0)) = m30,

Ṗ11(t) = 2P12(t)−P2
11(t), (28)

Ṗ12(t) = P22(t)+2P13(t)m2(t −h)−P11(t)P12(t),

Ṗ13(t) = P23(t)−P11(t)P13(t),

Ṗ22(t) = 1+4P23(t)m2(t −h)−P2
12(t),

Ṗ23(t) = 2P33(t)m2(t −h)−P12(t)P13(t),

Ṗ33(t) = 1−P2
13(t),

with the initial condition P(0) = E(([x10,x20,θ0] − m(0))×
([x10,x20,θ0]−m(0))T | y(0)) = P0,

Ṗ11(t, t −h) = [P12(t, t −h)+P21(t, t −h)]−P11(t)P11(t −h),
(29)

Ṗ21(t, t −h) = P22(t, t −h)+2P31(t, t −h)m2(t −h)−

(1/2)[P11(t)P21(t −h)+P11(t −h)P12(t)],

Ṗ31(t, t −h) = P32(t, t −h)−

(1/2)[P11(t)P31(t −h)+P11(t −h)P13(t)],

Ṗ12(t, t −h) = P22(t, t −h)+2P13(t, t −h)m2(t −2h)−

(1/2)[P11(t −h)P12(t)+P11(t)P12(t −h)],

Ṗ22(t, t −h) = 1+2P32(t, t −h)m2(t −h)+

2P23(t, t −h)m2(t −2h)−

(1/2)[P12(t)P12(t −h)+P12(t)P21(t −h)],

Ṗ32(t, t −h) = 2P33(t, t −h)m2(t −2h)−

(1/2)[P12(t −h)P13(t)+P12(t)P31(t −h)],

Ṗ13(t, t −h) = P23(t, t −h)−

(1/2)[P11(t −h)P13(t)+P11(t)P13(t −h)],

Ṗ23(t, t −h) = 2P33(t, t −h)m2(t −h)−

(1/2)[P12(t)P13(t −h)+P21(t −h)P13(t)],

Ṗ33(t, t −h) = 1− (1/2)[P13(t)P13(t −h)+P13(t)P31(t −h)],

with the initial condition P(s,s−h) = E(([x1(s),x2(s),θ(s)]−
m(s))([x1(s − h),x2(s − h),θ(s − h)] − m(s − h))T | FY

s ) =
R(s) for s ∈ [t0, t0 +h).

Numerical simulation results are obtained solving the system
of filtering equations (27)–(29). The obtained values of the

estimates [m1(t),m2(t)] for [x1(t),x2(t)], and m3(t), estimate
for θ , are compared to the real values of the state variable
x(t) = [x1(t),x2(t)] and parameter θ in (24)–(26).

For the filter (27)–(29) and the reference system (24)–(26)
involved in simulation, the following initial values are assigned:
x10 = x20 = 1000, m10 = 0.1, m2(s) = 0.1 for any s ∈ [t0−h, t0],
m30 = 0, P110 = P220 = P330 = 100, P120 = 10, P130 = P230 = 0,
R11(s) = R22(s) = R33(s) = 100, R12(s) = R21 = 10, for any
s ∈ [t0, t0 +h), and the other entries of R(s) are equal to zero for
any s∈ [t0, t0 +h). The delay value is set to h = 5. The unknown
parameter θ is assigned as θ = 0.1 in the first simulation and as
θ = −0.1 in the second one, thus considering the system (24)
unstable and stable, respectively. Gaussian disturbances ψ1(t),
ψ2(t), ψ3(t) in (24)–(26) are realized using the built-in MatLab
white noise function.

The following graphs are obtained: graphs of the estimation
errors between the reference state variable x1(t) and the optimal
state estimate m1(t) and between the reference state variable
x2(t) and the optimal state estimate m2(t), graph of the optimal
parameter estimate m3(t) in the entire simulation interval [0,10]
for the unstable system (24) (θ = 0.1); graphs of the estimation
errors between the reference state variable x1(t) and the optimal
state estimate m1(t) and between the reference state variable
x2(t) and the optimal state estimate m2(t), graph of the optimal
parameter estimate m3(t) in the entire simulation interval [0,10]
for the stable system (24) (θ = −0.1) The graphs of all those
variables are shown in the entire simulation interval from t0 = 0
to T = 10 at the top three plots in Figs. 1 and 2 for the unstable
and stable cases, respectively. The bottom plots in Figs. 1 and 2
show the graphs of the optimal parameter estimate m3(t), with
more visualization details, in the simulation interval [9.99,10]
for the unstable and stable cases, respectively.

It can be observed that, in both cases, the state estimates
[m1(t),m2(t)] converge to the real state [x1(t),x2(t)] and the pa-
rameter estimate m3(t) converges to the real value (0.1 or -0.1)
of the unknown parameter θ(t). Thus, it can be concluded that,
in both cases, the designed optimal state filter and parameter
identifier (20)–(22) yields reliable estimates of the unobserved
system state and the unknown parameter value.

The simulation results show that the state and parameter esti-
mates calculated using the obtained optimal filter and parameter
identifier for linear systems with unknown parameters converge
to the real state and parameter values rapidly, in less than 10
time units. This behavior can be classified as very reliable, es-
pecially taking into account large deviations in the initial values
for the real state and its estimate and large values of the initial
error variances. Another advantage to be mentioned is that the
designed filter and parameter identifier works equally well for
stable and unstable systems, which correspond to operation
of linear systems in nominal conditions and under persistent
external disturbances, respectively.
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Fig. 1. Graphs of the estimation error between the reference state variable

x1(t) and the optimal state estimate m1(t) (1st from the top), the estima-

tion error between the reference state variable x2(t) and the optimal state

estimate m2(t) (2nd from the top), the optimal parameter estimate m3(t)
(3rd from the top) in the entire simulation interval [0,10], and the optimal

parameter estimate m3(t) (1st from the bottom) in the simulation interval

[9.99,10] for the unstable system (24).
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Fig. 2. Graphs of the estimation error between the reference state variable

x1(t) and the optimal state estimate m1(t) (1st from the top), the estima-

tion error between the reference state variable x2(t) and the optimal state

estimate m2(t) (2nd from the top), the optimal parameter estimate m3(t)
(3rd from the top) in the entire simulation interval [0,10], and the optimal

parameter estimate m3(t) (1st from the bottom) in the simulation interval

[9.99,10] for the stable system (24).
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