Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

[FAC

Extended Luenberger Observer for a
MIMO Nonlinear Nonholonomic System

Edgar Ergueta® Robert Seifried ** Roberto Horowitz *
Masayoshi Tomizuka *

* Mechanical Engineering Department, University of California,
Berkeley, CA 94720, USA (e-mails: eerqueta@me.berkeley.edu;
horowitz@me.berkeley.edu; tomizuka@me.berkeley.edu)

** Institute of Engineering and Computational Mechanics,
University of Stuttgart, 70550 Stuttgart, Germany
(e-mail: seifried@itm.uni-stuttgart.de)

Abstract: State of the art high speed color printers require sheets being accurately positioned
as they arrive to the image transfer station (ITS). This goal has been achieved by constructing a
steerable nips mechanism, which is located upstream from the ITS. This mechanism consists of
two rollers which not only rotate to advance the paper along the track, but also steer the paper
in the yaw direction. A recently developed nonlinear control strategy for the position of the sheet
is briefly reviewed. The core of this paper focuses on the addition of a nonlinear observer used to
estimate the longitudinal, lateral, and angular positions of a sheet, by detecting its motion along
two of its perpendicular sides. The success of the approach presented is corroborated through
simulations, in which the estimates from the extended Luenberger observer designed are used

on a nonlinear feedback control strategy.

1. INTRODUCTION

State of the art paper path control currently requires
the sheets to be accurately positioned as they arrive to
the image transfer station (ITS). This is achieved by
using a registration device, which not only corrects for
longitudinal, lateral and angular errors, but also delivers
the sheet on time to the ITS. However, current designs
cannot correct position errors at high speeds or cannot do
it without marking the page. In Sanchez et al. [2006], a new
mechatronic solution to this problem is presented using the
steerable nips device depicted in Fig. 1 (US Patent Number
6,634,521), which consists on two rollers separated by a
fixed distance, which can both rotate and steer.

The control strategy used in Sanchez et al. [2006] to correct
errors in the lateral, longitudinal and skew directions of the
sheet is based on linearization by state feedback (Sastry
[1999]) with the addition of internal loops for the local
control of the process direction velocity (along vector v in
Fig. 1) and steering position of the rollers. Ergueta et al.
[2007] presents a methodology for the calibration of the
controller gains.

Sanchez et al. [2006], however, estimates the lateral, longi-
tudinal, and skew positions of the sheet through the use of
an open-loop observer, based on the kinematics relations
of the system and the direct measurement of the angular
position. In this paper we use a lateral laser sensor and a
process direction sensor (see Fig. 1) to detect the motion of
two perpendicular edges of the sheet. These measurements
are in term used in a closed-loop extended Luenberger
observer, which is based on the work by Bestle and Zeitz
[1983] and Birk and Zeitz [1988]. Such an observer is
an extension to the normal form observer developed by
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Fig. 1. Schematic of steerable nips Fixture

Krener and Isidori [1983], where some of the conditions
required by the latter are relaxed.

Even though there is not a general equivalent to the
separation principle for nonlinear systems, we first design
a control law assuming the state vector can be measured,
then we construct an observer, whose error dynamics
converge to a specified bound within a certain time, and
finally we apply the previously determined controller using
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Fig. 2. Steerable nips with paper buckle

observer states, similar to the technique proposed by
Vidyasagar [1980].

The remainder of this paper is organized as follows. Section
2 briefly describes the steerable nips and mathematical
model of the system. Section 3 shows the control strategy
used. Then, section 4 presents a summary of the extended
Luenberger observer for SISO and MIMO systems. Section
5 shows an application of this observer for the steerable
nips mechanism. Conclusions are stated in Section 6.

2. STEERABLE NIPS MECHANISM

The steerable nips mechanism has been designed so that it
can correct for lateral errors without inflicting any damage
on the paper. This is possible by independently steering
two rollers, which are underneath a backer ball. Each roller
is driven by a servo motor attached to a rotating table,
which is in turn steered by another servo motor through a
coupling. This mechanism has been built and is described
in Sanchez et al. [2004]. As we can see in Fig. 2, the page
moves along a flat surface (not shown for clarity purposes)
in the direction of the arrow labeled v, which henceforth
will be referred as the process direction of the paper, and
passes between the backer balls and the rollers.

The two rollers, located at points 1 and 2, are separated
by a fixed distance 2b. The space-fixed coordinates of the
system (z,y,¢,d) locate the leading right corner of the
sheet, point C, which will be used to track the position of
the page. Note that x and y are the lateral and longitudinal
positions, respectively, ¢ is the angular position, and ¢
is the amount of buckling along the sheet, which is the
difference between the distance separating points 1 and 2,
as measured along the paper (2b—4§) and along the straight
line (2b), as shown in Fig. 2. Also note that a negative
0 represents the amount of buckle on a sheet whereas a
positive § occurs when the paper stretches, which needs
to be avoided at all times. Also note that the origin (0,0)
of the space-fixed frame is located in the middle of points
1 and 2. Furthermore, 6; (i = 1,2) represent the angular
velocity of the rollers in the direction parallel to the sheet,
and ¢; (i = 1,2) represents their angular position in the
direction perpendicular to the sheet.

Note also that the steerable nips mechanism is a four-
input, four-output nonlinear system with four nonholo-
nomic constraints. These constraints come from non slip
conditions on the rollers, and local velocities (of the paper)
being zero in the direction perpendicular to the rotation
of the rollers. Additional details on these constraints can
be found in Sanchez et al. [2004]. The kinematic model

of the system is derived so that these four nonholonomic
constraints are satisfied at all times. This model, whose
complete derivation can be found in Sanchez et al. [2006],
is represented by the following equations:

. . Y ; T2y ;
& = r1(sin ¢4 ST cos ¢1)01 + %13 cos by (1)
. x+b . ro(x +b) .
y=r cos¢1(2b+ 5 1)6, — Y cos oty (2)
. 1 . .
o= T (r1 cos 101 — 12 cos pabs) (3)
§ = ro sin (Z)gég — 7y sin </>191 (4)

As mentioned in Sanchez et al. [2006], a simple model
that adequately described both the process direction and
steering actuator dynamics, reads

0; + cpili = Bpi Vi
bi + ity = BsiViis

(i=1,2) (5)
(i=1,2) (6)

where V; is the voltage input to the motor, and «; and §;
are coefficients that depend on the inertias and rotational
viscous damping coefficients of the different components of
the steer-able nips mechanism. Subindexes p and s stand
for process direction and steering actuators, respectively,
and subindex ¢ corresponds to each of the two rollers.

Finally, using Eqs.(1)-(6) and letting

z=[r y ¢ & ¢1 é2 62 62 é1 ¢2]7 be the state vec-
tor, we obtain the following state space representation:

x fz(z) 0 0 0 0
Yy fy(z) 0 0 0 O
¢ fo(z) 0 0 0 O
s fs(z) 0 0 0 0 V1
d | ¢ 1 0 0 0 0 Vipo
dat | 2 |~ b2 1 o o o o v | @
9.1 70{1719'1 Bpr 0 0 O Vsa
0_2 —apgég 0 Bp2 0 O
<?1 7Ozs1¢.>1 0 0 le 0
b2 —as22 0 0 0 fBs
g=(131¢5)T (8

where f.(z), fy(z), fo(z), and fs5(z) are given by Eqgs.(1)-
(4), respectively.

3. CONTROL STRATEGY

The block diagram of the control system is shown in Fig. 3.
Here, the Plant is represented by the kinematic equations
(1)-(4), the process direction actuators, P, and Ppa, by
Eq.(5), and the steering actuators, Ps; and Pso, by Eq.(6).
Furthermore, if we differentiate Eq.(8) twice, we obtain
61
. 02
j=m@+N@) |2 (9)

b2

where m(z) is a 4x 1 vector and N(z) is a 4x 4 matrix, both
of which depend nonlinearly on the system states. Thus,
we design the nonlinear feedback control law, Crpy,, which
is based on feedback linearization, and is given by:
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§ _
Q-fd = N"'(z)(v—m(z)) (10)
D1d
$24

Note that we also use a feedback plus feedforward control
strategy to control locally the velocity of the process
direction motors:

LI Ol:i); (i=1,2) (11)

Crp,;(s) = npi + %; Crr,,;(s) = —

i
where 7,; and y,; are the PI controller gains, and o,,; and
Bpi are defined in Eq. (5) for ¢ = 1,2. We use a similar

strategy to control locally the position of the steering
actuators:

CrB,,;(s) =

Nsi +pis; Crp,(s) = —(1+ Sl) (i=12) (12)

IBSZ

where 7g; and 7s; are the PD controller gains, and ag; and
Bsi are defined in Eq. (6) for ¢ = 1,2. As shown in Fig. 3,
in order to use feedforward for steering position control,
we need to generate the steering acceleration estimate,
¢id, through the use of a first order filter with gain =
(i = 1,2); if 7; is sufficiently small, the value of ¢;4 will be
very close to that of ¢,. In order to ensure that the state
errors converge to zero Ergueta et al. [2007] shows that
vector v needs to be defined as

Fg+ (Ky + Ap )(:Ud—ac)—i—Kx)\a(acd—ac)
| da Ky + Ay (e — ) + KyAy(ya — y)
ET Ga+ (Ko + Ap)(0d — §) + Koo (da — ¢)
bd+ (K54 Xs)(0a — 8) 4+ KsAs(64 — 0)

(13)

where all gains, K, A, in Eq.(13) need to be positive.
Note that the success of this control strategy depends
on the invertibility of matrix N(z). In Sanchez et al.
[2006] it is shown that this matrix is invertible as long
as the sheet is always moving in the process direction.
Furthermore, a methodology to obtain the controller gains
required to correct the position and amount of buckling of
a finite-length page with any predetermined initial errors
is presented in Ergueta et al. [2007], where simulation and
experimental results are also shown.

4. EXTENDED LUENBERGER OBSERVER THEORY

One approach for nonlinear observer design, is the normal
form observer (Krener and Isidori [1983] and Bestle and
Zeitz [1983]). A normal form observer has linear error
dynamics in the coordinates of the observer normal form.
The design of a normal form observer requires the trans-
formation into observer normal form and output injec-
tion. This approach, also called exact error linearization,
is dual to feedback linearization (Isidori [1995], Sastry
[1999]). However, the transformation to observer normal
form requires the solution of partial differential equations,
whose solvability conditions are very strict. The extended
Luenberger observer is a modification of the normal form
observer, and due to Bestle and Zeitz [1983] and Birk and
Zeitz [1988]. This type of observer has a typical Luen-
berger structure and is based on an extended Jacobian
linearization of the error dynamics in coordinates of the
observer normal form. The conditions for the use of the
extended Luenberger observer are less strict. The following
summarizes briefly the underlying theory for the extended
Luenberger observer.

4.1 Local Observability and Observer Normal Form

Let us first consider the following nonlinear unforced
single-output system

= f(z), y=h(z)

where the smooth vector fields f M — IR"™ and

smooth output function h : M — IR are defined on the
open set M C IR". The observability map ¢(z) and the
observability matrix Q(z) are given by

(14)

i Lohe)

Lih(z . dLsh(z

a(@) = | ew =22 ; (15)
L} h(z) AL}~ h(z)

Therein L';} denotes the i*" Lie-derivative, and the differ-
ential of the Lie derivative is denoted by dL}. System (14)

is said to be locally observable if the n x n observability
matrix Q(z) has rank n for all 2 within a local region.

The observer design problem is simplified if system (14)
can be transformed into observer normal form by the
diffeomorphic coordinate transformation
" =F(g), z=F(") (16)
As proven in Isidori [1995], the Jacobian matrix of the
transformation, computed in original coordinates reads

OF .
O a1y — B adrsl@), s adlys(w)] ()

where adi_f§(§) is the i'" Lie-bracket and vector s(z)
is given by the last column of the inverse observability
matrix,

(18)

From this transformation, the observer normal form is
i*=Ez" +aly); y=ua, (19)

where F is a n X n matrix with 1 entries on the first lower
sub-diagonal, while all other elements are 0. Note, that the
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output only depends on z},. In these new coordinates an
observer can be constructed in such a way, that it posses
linear error dynamics. This yields the so called normal
form observer. However, the transformation into observer
normal form requires:

(1) rank(Q) =n

(2) |ad ss(a),ad’ ps(2)] =0, ij=0,1,....n—1
Not only is the second condition very strict, but even if
both conditions are met, the transformation involves the
solution of a set of partial differential equations, which is
difficult to obtain even for low order systems.

4.2 Eztended Luenberger observers for SISO systems

The extended Luenberger observer is based on the typical
Luenberger observer structure,

&= f(&)+ @)y - h(@)]

where Z is the observer state vector and [(Z) is the observer
gain. In the coordinates of the observer normal form,
observer (20) is given by

i =B+ a(@)) + I (@")[z) - &)

n

(20)

(21)

where the observer gains in the original and normal
coordinates are related by

1) = (%52 r@)

22
i =F-1(2) (22)

Thus, the error dynamics in normal form coordinates reads
¢ =E¢" +a()) —a(},) - 1"(@")[x), — 23] (23)

where e* = 2*—2" is the observer error. Then, an extended
Jacobian linearization of a(x}) — a(Z}) in Eq.(23) around

the observer trajectory & yields for small e = z} —
2y < 1 the following error dynamics

. % * a— * [ Ak * *
b - |2 orw@)|arore) e
Using the special choice for the observer gains
Oa
'z = =— 2
r(z") e +p (25)

and neglecting higher order terms in Eqn.(24) we obtain
the following approximated linear and time-invariant error
dynamics

& = Be' +pe, (26)
whose poles can be placed arbitrarily by an appropriate
choice of the coefficients p = [po,p1,...,Pn_1]7 of its

characteristic polynomial.

Finally, from Eqs.(17), (22), (25), and the following rela-
tion proven in Bestle and Zeitz [1983],

OF(z") da

or* 0z

= adﬁfﬁ(i) (27)
the observer gain in the original coordinate frame is
() = [poad(lf +p1ad£f +... +pn,1adﬁ;l + adﬁf} os(@) (28)

Note that the computation of the observer gain in Eq.(28)
for the extended Luenberger observer (20) can be directly

performed in original coordinates using symbolic programs
such as Mathematica. From Eqs.(18) and (28) also note
that matrix Q(z) needs to have full rank, but condition
(2) in section 4.1 does not need to be satisfied.

4.8 Extended Luenberger observers for MIMO systems

Since the steerable nips mechanism is a MIMO system, it is
necessary to use an extension to the extended Luenberger
observer, which is given by Birk and Zeitz [1988]. For a
system with output y = h(z) = (hi(z),...,hnm(z))?, the
observability map is given by

a@) = (haseo o, L7 r

Py L ) (29)

where the observability indices satisfy mq +...+m,, = n.
The system is locally observable if the observability matrix
Q(z) resulting from Eqn. (29) has rank n. Vector s,,. is
the k" vector of the inverse observability matrix, where
k; = Z;:1 m;. In the observer design process the system is
decomposed into m decoupled subsystems. The dimensions
of the subsystems are given by the observability indices m;.
The desired observer error dynamics of the i** subsystem
is described by the characteristic polynomial a;(A) = p;o+
Pin At ..+ pi,, A4 A Then, as in the SISO case,
the observer gain matrix L reads in original coordinates

L(z) = [a1(ad—y) 0 5y, ..., am(ad_ys)os,,] - B~ (30)

where matrix B (see Roebenack [2004]) is defined by
Oh(L)

B=
0%

[ad™ 7, adm (31)

It should be noted that the symbolic computations can be
greatly simplified by scaling vectors s; appropriately (Birk
and Zeitz [1988]).

Despite the fact that input w occurs in the observer prob-
lem of controlled systems, the presented overview of the
extended Luenberger observer is restricted to unforced sys-
tems. A common approach to handle system with inputs
is to assume that the inputs are constant in the design
process and then their values are constantly updated in
the implementation. This approach can be assumed to be
valid, as long as the inputs do not vary strongly, such us in
the case of the steerable nips system. If this is not the case,
the inputs have to be considered explicitly in the design of
the extended Luenberger observe as proposed by Birk and
Zeitz [1988].

5. OBSERVER DESIGN

In this section the observer described in the previous
section will be used in combination to the control strategy
described in section 3. Before engaging into this task, let
us first set up our observer problem.

In order to determine the position, orientation, and the
amount of buckling of the sheet, it is required to measure
some of the system states and estimate others. Each of
the motors used has a built-in encoder, which let us have
measurements for angular positions. Angular velocities are
also obtained through numerical differentiation of position
due to the high resolution of the encoders and the fast
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sampling rate. As seen in Fig. 1, in order to detect a
point of the lateral edge of the sheet, a laser sensor is
located on the right hand side of the nips section along
the line connecting the two rollers (at y = 0); this sensor
produces measurement z. Furthermore, we also use a long
sensor located between the rollers (at x = 0) to detect a
point of the leading edge of the sheet; this sensor produces
measurement g. Further details on the sensor scheme can
be found in Sanchez et al. [2006]. By looking at Fig. 4 we
can write Z and ¢ in terms of the system states as

[z T+ ytano

y="hz)= <y) - (y—actanqb)
Furthermore, since we can also measure states ¢1, ¢o,
01, 02, ¢1, and ¢o through encoders, we do not need
to estimate them. Thus, we should look at a reduced
order observer that only estimates x,y, ¢, and J, using
Egs.(1)-(4) as state equations, considering the other states
from Eq.(7) as inputs, and taking Eq.(32) as the available

measurements. Let us then define the observer states
by 2 = (2 9 ¢ 0)7 and the observer inputs by v =

(¢1 @2 0, 92)T-

Now, proceeding in a similar manner as in section 4 we
can obtain the observability matrix by finding the Lie
derivatives of each of the two measurements. Such a matrix
is given by,

(32)

Yy
1
tan ¢ o2
Q(l’) —_ Q21 Q22 Q2I3 Q24 (33)
Z _ 1 __*
tan ¢ o2
Qa1 Q2 Quz Qu
where
_ (r1é1 cos ¢1 — r960s cos ¢2) tan ¢
Q21 = . % 16
Oz = (r101 cos ¢1 — 1262 cos ¢2) tan? ¢
221_ 2 +06
Q23 = T (—p052 3 (r101cospr(b+8 —x —2ytand)  (34)
41262 cos g2 (b + x + 2y tan ¢)))
Qo4 = — p (rlél cos ¢1 — 7905 cos 2)

(2b + 6) cos?
X ((b+ x) cos ¢ + y sin ¢ tan ¢)

(r1 91 cos 1 — T2 62 cos ¢2) tan? ¢
Qa1 = —
. 2b 46
_ (1161 cos ¢p1 — 1202 cos ¢2) tan ¢
B 2b+6

Qa2
Qus = m(—@b + 8)r101 sin ¢y (35)

47161 cos ¢1(y — 2z tan @) — 7905 cos ¢2(y — 2z tan ¢))
Qua =

B S .y L
221 9) ((r161 cos p1 — 72 2COS¢2)COSQ¢

X(b— x4+ (b+ ) cos(2¢) + ysin(2¢)))

By looking at the equations above we can see that matrix
Q(z) becomes singular when r; = 79, 61 = 62, and
¢1 = @2, since in that case buckling becomes unobservable.
However, since we are interested in correcting the sheet
position errors only to within a desired tolerance we
minimize the possibility for this to happen. In all other
cases matrix Q(z) has full rank and satisfies the conditions
for the extended Luenberger observer. We then find the
inverse of Q(x), and define its second and fourth columns
as s; and s,, respectively. It follows from Eq.(31) that for
the vectors s; and s, used, matrix B is the identity matrix.
Therefore we obtain the following observer gain:

L(z) = [ar(ad_s) 0 5,, az(ad_f) o s,] (36)

where
ai(ad_g) o s; = po1s; + priad_gs, + ad’ ;s (37)
az(ad_y) o sy = poasy + pr2ad_gsy + ad’ ;s,
and where p;; are the design parameters that let us set the
eigenvalues of the observer error dynamics at any desired
location. The observer dynamics are then given by

b= f2)+ L)y — hz)] (38)
where
[0)=(HEY HEY HEY HEw) g
h(z) = (h1(2) ha(2))"

and where f@(é,z), f@(zaz)v f@(zvk)’ and fé(z’z) are
equal to fu(z), fy(z), fe(x), and fs(z) with z,y, ¢, and

6 replaced by Z, 9, ¢, and §, respectively.

Using the controller presented in section 3 and the observer
presented in this section we obtain the simulations results
shown in Figs. 5 and 6 for the observer errors and the
paper state errors, respectively.

For this simulation we chose the observer gains so that the
observer error dynamics converge as fast as possible to zero
and we designed the controller gains so that we can correct
the position of a letter-sized sheet moving at a nominal
longitudinal velocity of 0.5m/s along a 20.8cm section,
which gives 0.42 seconds of control time. The controller
and observer gains used are:

K,=73; Ky,=132; Ky4=79; Ks;=6.0
Az = 60; Ay = 60; Ap =60; A5 =60
Np1 = 0.14;  ~vyp1 = 1.95; mpe = 0.14; vp2 = 1.95
Ns1 = 52.8; 51 = 6.81; 1nse = 52.8; v52 = 6.81
71 = 0.0042; 79 = 0.0013; pg; = 4356; p1; = 132

poz = 4356; p12 = 132

(40)

As seen in Fig. 5, all observer errors have a transient
response with initial peaks, which then converge close to
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Fig. 6. Paper state errors

zero in about 0.2 seconds. Due to these initial peaks, it was
decided that control action will not be used for 0.2 seconds
after the page enters the nips section. In other words, we
first let the observer errors converge close to zero by letting
the page move in open loop, and then the controller is
turned on. This strategy can be seen in Fig. 6, where some
of the sheet position errors even increase slightly during
the first 0.2 seconds. After the initial delay, the controller
takes full action and reduces the state errors within the
desired tolerance. In particular Fig. 6 shows that we were
able to reduce the state errors within the allowed 0.42 sec-
onds from (Zo, Yo, Do, 00) =(8mm,40mm,0.25rad,—1mm)
to (xf,yf,¢f,0f) =(2.3mm,2.7mm,0.0045rad,—0.17mm)
with initial observer states of

(ZosTos oy 00) = (8.8mm,44mm,0.275rad,—1.1mm), which
represent an error of 10 percent of the initial state values.

6. CONCLUSION
In this paper we have presented an innovative design that

permits a swifter correction of lateral, longitudinal and
angular position errors in a paper path control system for

xerographic and printing devices. We accomplished this
task by using a mechanism with steerable nips.

We have designed the controller and observer indepen-
dently from one another. The controller implemented is
based on state feedback linearization with inner loops
for the local control of the roller rotational velocity and
steering position. The reduced order observer designed is
based on the extended Luenberger observer for MIMO
systems.

Simulation results show that, by using the presented
nonlinear observer and nonlinear controller, it is possible
to correct position errors of the sheet while the page
is continuously moving in the process direction with a
predefined desired longitudinal velocity.

In the near future we plan to implement the proposed
observer in the experimental setup that has been already
built and is described in Sanchez et al. [2006].
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