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Abstract: A modified moving horizon estimator (mMHE) was proposed to estimate thin film
thickness, growth rate, surface roughness and refractive indices in situ from a dual-wavelength
reflectance measurement during chemical vapor deposition (CVD). mMHE was compared
with the commonly used recursive least squares fitting (RLS) method in both simulated and
experimental CVD processes. The results indicate that mMHE yielded more accurate estimates
than RLS by incorporating the a priori estimate in the objective function.
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1. INTRODUCTION

Chemical vapor deposition (CVD) is an industrially im-
portant process with a wide range of applications such
as IC fabrication, optical, and thermal coatings (Pierson
[1999]). Because the applications are largely dependent
on the microstructure of the deposited film (e.g. thick-
ness and roughness), it is highly desirable to control the
microstructure during the deposition. The control of film
microstructure has motivated research efforts on in situ

sensing for CVD processes (Buzea and Robbie [2005]).
Currently optical sensors like the reflectometer and ellip-
someter are the most common because they are compatible
with the processing environment of CVD, which involves
high temperature, low pressure and reactive materials. The
challenge of optical sensors is that film microstructure is
not measured directly and must be extracted from the
indirect optical measurement.

Various techniques have been reported to interpret the in

situ sensor data (Breiland and Killeen [1995], Balmer et al.
[2002], Stafford et al. [1998], Comina et al. [2005]). The
simplest method is recursive least squares fitting (RLS). In
RLS, film parameters such as growth rate and refractive
index are assumed to be constant in a fixed window and are
estimated by minimizing the square of the error between
the sensor model prediction and the measurement. When
new measurement data is acquired, the window is shifted
to include new data and to discard part of the old data.
The optimal solution in the previous window is passed into
the new window as an initial guess for the fitting. RLS
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usually assumes a smooth film surface so that a simple
optical model can be used. In practice, however, the film
surface may be rough depending on the processing con-
ditions and the resulting microstructure. The roughness
can affect reflectance by scattering the light. There are
some reports on extracting surface roughness from reflec-
tion measurements with limited success (Luo et al. [2002],
Zuiker et al. [1996]). In addition, RLS does not use the
a priori knowledge of the film microstructure to compute
the new estimate. The sensor model is highly nonlinear and
the error surface contains multiple local minima. Without
the a priori knowledge, the parameters may get caught in
these local minima.

One solution is to put constraints on the fitted parame-
ters. A more rigorous approach is to include the a priori

state estimates in the objective function. The framework
of this more general least squares fitting is provided by
the moving horizon estimator (MHE) (Robertson and Lee
[1995], Robertson et al. [1996], Rao et al. [2001, 2003],
Haseltine and Rawlings [2005]). MHE considers the error
not only from the sensor model, but also from the process
model and the a priori estimate. In addition, MHE ex-
plicitly considers uncertainty and the correlations between
fitted parameters. This is highly desirable when estimat-
ing parameters that are highly correlated, such as film
thickness and refractive index, or surface roughness and
film absorption. Xiong and Gallivan used MHE to extract
film growth rate, thickness and refractive index of yttrium
oxide film on silicon substrate from a single-wavelength in

situ normal reflectance measurement (Xiong and Gallivan
[2007]) and obtained more accurate results compared to
a simple least squares fitting method. The disadvantage
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of MHE, however, is that it is computationally expensive,
which limits online implementation.

In this paper a modified moving horizon estimator
(mMHE) is proposed to address the computational issues
of MHE. The idea is to assume a deterministic process
model so that only the initial state, instead of all states in
the window, has to be estimated. In mMHE the objective
function consists only of sensor model error and error from
the a priori estimate. We first compare mMHE with RLS
in a simulated film growth process in which the film growth
rate and surface roughening rate decrease slowly. We then
compare them on our CVD testbed where a yttrium oxide
film was deposited on a silicon substrate. The estimated
film thickness, roughness and refractive indices were com-
pared with ex situ ellipsometry and AFM characterization.
In a previous paper (Xiong et al. [2006]) we applied the
extended Kalman filter to the reflectance data, while this
paper focuses on the currently used least squares fitting
method, and the ability of the prior estimate to improve
upon that approach.

2. ALGORITHM

Consider a thin film deposition process with an in situ

dual-wavelength (λ1 and λ2) reflectance measurement.
The discrete state-space model can be written as
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where h, G, he,Ge, nf1 and nf2 are thickness, growth rate,
effective medium layer (EMA) thickness, EMA growth
rate, and refractive index of the film at wavelength λ1 and
λ2, respectively. The effective medium layer is commonly
used to model surface roughness (Carniglia and Jensen
[2002]). Eq. (1) is referred to as the process model f . As
shown, h and he are simply the integration of G and Ge

with time. G, Ge, nf1 and nf2 are assumed constant. w
represents uncertainty of the process model and is assumed
to be zero-mean and with a Gaussian distribution. The
function g in Eq. (2) is the sensor model. y ∈ R

2 is
the model prediction (reflectance at λ1 and λ2). v ∈ R

2

represents the uncertainty of the sensor model and is also
assumed to be zero-mean and Gaussian. The sensor model
is based on light interference on a three-layer structure
which consists of substrate, film and effective medium
layer. The sensor model can be derived from (Crook [1948])
and is shown in Eq. (3):

y =

∣
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where ϕ1 = 4πnehe/λ, ϕ2 = 4πnfh/λ, ne and nf are the
refractive indices of EMA and the film, respectively. r01,

r12 and r23 are the complex reflectance at the interface
between vacuum and EMA, between EMA and the film,
and between the film and the substrate, respectively. r01 =
1−ne

1+ne
,r12 =

ne−nf

ne+nf
and r23 =

nf−ns

nf +ns
. ns is the refractive

index of the substrate, and ne is the effective refractive
index of the EMA layer, where n2

e = (1 + n2
f )/2 .

2.1 Modified moving horizon estimator (mMHE)

The algorithm of the general moving horizon estimator can
be found in (Robertson and Lee [1995], Robertson et al.
[1996], Rao et al. [2001, 2003], Haseltine and Rawlings
[2005]). The difference of mMHE is that the process model
is deterministic so that only the initial state in the moving
window needs to be estimated. With the above state-space
model, given a sequence of measurements in a window
starting from k−m+1 to k, mMHE estimates the states in
the window by solving the following minimization problem:

min
xk−m+1

[

(xe
k−m+1)

T P−1
k−m+1|k−m

xe
k−m+1+

k
∑

l=k−m+1

vT
l R−1vl

]

(4)

s.t.

xe
k−m+1 = xk−m+1 − xk−m+1|k−m

vl = yl − g(f l−(k−m+1)(xk−m+1))

As shown, the objective function consists of two error
terms. The first term, xe

k−m+1, is the error between the ini-
tial state xk−m+1 and the a priori estimate xk−m+1|k−m.
The term xk−m+1|k−m denotes the estimate at time k −

m + 1 based on the measurements up to time k − m.
Pk−m+1|k−m is the covariance matrix of the a priori es-
timate. The inverse of Pk−m+1|k−m is used as a weighting
matrix for xe

k−m+1 in the objective function. The second
term, vl = yl−g(xl), is the error between the measurement
and sensor model prediction. R is the covariance matrix
of the sensor model uncertainty, v. The inverse of R is
used as a weighting matrix for v in the objective function.
When new measurement data is acquired, MHE shifts the
window to include the new data and discard some of the
old data. This is necessary to prevent the minimization
problem from growing in size without bound. When the
window shifts, a priori knowledge about the initial state
xk−m+2|k−m+1 and its covariance matrix Pk−m+2|k−m+1

must be updated so that the information obtained in the
previous window can be passed into the current window.
A common update scheme is to use the extended Kalman
filter (EKF) algorithm (Robertson et al. [1996]).

The update scheme for xk−m+2|k−m+1 and Pk−m+2|k−m+1

using EKF is shown in Eq. (5) and (6). The measurement-
correction terms of EKF are

Lk−m+1 = Pk−m+1|k−mCT
k−m+1|k

(Ck−m+1|kPk−m+1|k−mCT
k−m+1|k

+R)−1

xk−m+1|k−m+1 = xk−m+1|k−m (5)

+Lk−m+1[yk−m+1 − g(xk−m+1|k)
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−Ck−m+1|k(xk−m+1|k−m

−xk−m+1|k)]

Pk−m+1|k−m+1 = (I − Lk−m+1Ck−m+1|k)Pk−m+1|k−m

The measurement-prediction terms of EKF are

xk−m+2|k−m+1 = f(xk−m+1|k) (6)

+Ak−m+1|k(xk−m+1|k−m+1

−xk−m+1|k)

Pk−m+2|k−m+1 = Ak−m+1|kPk−m+1|k−m+1A
T
k−m+1|k

+Q

where Ck−m+1|k = ∂g(x)
∂x

∣

∣

x=xk−m+1|k
.

2.2 Recursive least squares (RLS)

RLS is a special case of mMHE when only the error
between the sensor model prediction and measurement is
considered. The minimization problem in RLS is shown in
Eq. (7)

min
xk−m+1

k
∑

l=k−m+1

vT
l R−1vl (7)

s.t.

vl = yl − g(f l−(k−m+1)(xk−m+1))

where f l−(k−m+1)(xk−m+1) denotes process model f was
applied l − (k − m + 1) times on xk−m+1 to calculate xl.
Once xk−m+1 is estimated, other states in the window can
be reconstructed through process model f . Because RLS
does not utilize the a priori estimate, it does not have
much control over the optimization. On the other hand,
mMHE allows users to tune the weighting matrices P1|0,
Q, and R to obtain an improved estimate.

3. SIMULATION

A simulated thin film deposition process with slowly
decreasing growth rate and surface roughening rate was
used to compare the performance of RLS and mMHE.
The process model used to generate the data is shown
in Eq. (8).
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The sensor model is the same as Eq. (2). The wavelengths
are λ1 = 950 nm and λ2 = 470 nm. The substrate
refractive index are those of silicon at 500oC and equal to
3.7687-0.0281j and 4.8438-0.1528j at 950 nm and 470 nm,
respectively (Jellison and Burke [1986], Jellison and Mo-
dine [1994]). The extinction coefficients of the film are
fixed and equal to 1 × 10−3 and 2 × 10−2 for 950 nm
and 470 nm, respectively. It would be possible to also
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Fig. 1. Simulated film deposition process. (top) measure-
ments (bottom) states.

estimate these parameters, although for yttria they are
negligible at room temperature and very small at high
temperature. We note that both he and k cause a decay in
the reflectance amplitude, and thus their estimates would
be highly correlated.

The initial state is xi = [0 5.4 0 0.5 1.9320 1.9730]T . The
covariance matrices are diag(xi)× 10−8 and eye(2)× 10−6

for the process model and the sensor model, respectively,
which are quite low. eye(2) denotes a 2×2 identity matrix.
The time interval is ∆t = 100 seconds, and the total
deposition time is 300 minutes. The simulated measure-
ment and states are shown in Fig. 1. The oscillation of
the reflectance is due to light interference. The oscillation
period gradually increases due to the decrease of growth
rate. The decrease of the amplitude of oscillation is due to
light scattering caused by surface roughness.

mMHE and RLS were used to extract states from the
simulated measurement. The process model used in esti-
mation is Eq. (1) which assumes a constant growth rate
and surface roughening rate. The question here is whether
or not mMHE and RLS can adapt to estimate the film
properties when the process model is incorrect. The sensor
model is the same as Eq. (2). Substrate refractive indices
and film extinction coefficients are assumed known. The
initial guess of film parameters is 10% offset from the real
state, i.e. x1 = [0 5.4 0 0.5 1.9320 1.9730]T × 1.1.
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All states were constrained to be positive. For mMHE,
there are three additional tuning parameters, i.e. P1|0,
the initial covariance matrix for x1, the covariance matrix
for the sensor model uncertainty R, and the covariance
matrix for the process model uncertainty Q. In this ex-
ample, P1|0 = diag(x1 × 0.1) × 102, R = eye(2) × 10−2

and Q = diag(x1 × 0.1) × 10−2. diag(x1 × 0.1) denotes
that the variance of each state is 10% of its initial value.
102 and 10−2 are scaling factors to scale the covariance
matrices. In this simulation study, we know the sensor
model is accurate and the initial guess is not. Therefore
we used large P1|0 and small R to indicate their relative
importance. Note that Q and R do not directly correspond
to the noise levels used in the simulation for vk and wk.
Q and R should be higher, because they also account for
unmodeled effects such as the drifting growth rate.

The estimated results are shown in Fig. 2. As shown,
the estimates by RLS are quite oscillatory and mMHE
yielded a more accurate estimate than RLS with the same
measurement and initial guess due to the incorporation
of the a priori estimate. Initially P was set large so that
in Eq. (4) the weighting matrix of xe

1 is very small and
the a priori x1 estimate is neglected when solving the
minimization problem. This is essentially the same as
RLS. However, after the first window, P was updated by
EKF. If a good fit was obtained in the first window, P
should become small to indicate more confidence on the
a priori estimate for the next window. Then in the next
window, the optimization algorithm weights more on the
a priori estimate and limits the change of the parameters.
In RLS, however, the a priori estimate was not used in the
objective function and this is equivalent to not updating
the covariance matrix P . Because of this the solution of
RLS in Fig. 2 oscillates more between windows, especially
for longer m since the process is changing over this window.
Figure 3 shows the evolution of variance of each state
in mMHE. As expected, the variance of growth rate,
roughening rate and refractive indices are large initially
but quickly dropped because of the EKF update due
to the good fit of the measurements. The variance of
thickness and roughness are large because they are the
integration of growth rate and roughening rate. Therefore
the error was amplified through the process model. It is an
additional advantage of mMHE to explicitly consider the
covariance matrix P because it computes the confidence
on the estimate and also the correlations between states.

4. EXPERIMENTAL

mMHE and RLS were also compared in an experimental
CVD testbed where a polycrystalline yttrium oxide thin
film was deposited on a silicon substrate by MOCVD. The
detailed description of the CVD apparatus can be found
elsewhere (Xiong et al. [2006]). The measured reflectance
at 950 nm and 470 nm is shown in Fig. 4. The time interval
between consecutive peaks at 470 nm are 39.6, 41.3, 44.2,
47.8, 52.0, 50.9 minutes. This indicated that growth rate
is gradually decreasing.

We first use RLS to extract thickness, roughness and
refractive indices. Initially x1 = [0 2.7 0 0.5 2 2]T .
According to Palik and Ghosh [1998], the refractive index
of yttrium oxide at room temperature is 1.9054 and 1.9455
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Fig. 2. Comparison between simulated states by RLS and
mMHE with window size equal to 10.
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Fig. 4. In situ reflectance signal during deposition of yttria
polycrystalline film on a silicon substrate.

for 950 nm and 470 nm, respectively. This CVD experi-
ment was carried out at approximately 650 oC. Refractive
indices of oxides usually increase with temperature. There-
fore we chose 2 as the initial guess for the refractive indices.
The initial guess of the growth rate was estimated from
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Fig. 5. Estimation result by RLS. (top) measurement
(bottom) states

previous experiments and is a typical average value. Be-
cause the sensor model is highly nonlinear, it is important
to have a good initial guess to start. Positive constraints
were applied to all states. The window size was chosen
to be 20 which corresponds to almost half oscillation for
470 nm reflectance and a quarter oscillation for 950 nm
(Breiland and Killeen [1995]). The time interval is 100
seconds. Figure 5 shows the estimation results by RLS. As
shown, although the measurement was fitted pretty well,
the estimated states are not physically reasonable. This
suggested that without considering the a priori knowledge
of the parameters, the fitting algorithm tends to overfit
the measurement data because the parameters are highly
correlated. In addition, the objective function in RLS con-
sists only the sensor model error. But in reality the sensor
model will not be perfectly accurate. For example, in the
experiment there will be slight calibration error and film
nonuniformity, which may be causing the large reflectance
values in the valleys. Further unmodeled effects include
film porosity. Therefore to only fit to an imperfect sensor
model could lead to very poor estimates.

On the other hand, mMHE allows more control over the fit
by including the a priori estimate and the estimated un-
certainty in the objective function. The initial covariance
matrices are P1|0 = diag(x1 × 0.1) × 10−2, Q = diag(x1 ×

0.1) × 10−2 and R = eye(2). Notice that P1 is smaller
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Fig. 6. Estimation result by mMHE. (top) measurement
(bottom) states

and R is larger than in the simulation study. This is
because the sensor model in the experimental study is not
perfect like in the simulation study. Therefore we need
to increase R to indicate less confidence on the sensor
model and decrease P1 to indicate a good starting point
for the fit. With the same initial guess and a window
size of 20, the estimation result by mMHE is shown in
Fig. 6. The estimated states become much smoother due to
the inclusion of the a priori estimate. The measurements
are not fitted perfectly like in Fig. 5. This is expected
because the sensor model is not perfect so the mMHE
weighted less on the sensor model. The estimated final
film thickness is 742 nm. The estimated refractive indices
are 1.96 and 2.03 for 950 nm and 470 nm, respectively.
We used an ellipsometer to measure film thickness and
refractive indices ex situ. The film thickness is 722 nm.
The refractive indices are 1.92 and 1.96 for 950 nm and
470 nm, respectively. The estimated film thickness is only
2.7% offset from the ex situ measurement which indicates a
very reasonable estimate. The estimated refractive indices
are slightly larger than the ex situ measurements. The ex

situ ellipsometry was carried out at room temperature and
the CVD was carried out at high temperature. Considering
temperature difference, the estimated refractive indices
are reasonable because the refractive index of metal oxide
usually increases with temperature. In fact this method
could be used to measure the refractive indices of metal

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10484



Fig. 7. AFM image of the deposited film

oxides at high temperature. For the surface roughness, we
used AFM to measure the surface profile. Figure 7 shows
the AFM image at a scan size of 5 micron. The RMS
roughness is reported to be 7 nm. The estimated final
effective layer thickness is 20 nm. According to Carniglia
and Jensen [2002], the RMS roughness σ and the effective
layer thickness d is related by σ = d/2 = 10 nm. The factor
of 2 is needed because the EMA thickness is peak-to-peak,
while the AFM value is only root-mean-square. Therefore
the roughness estimated by mMHE falls into a reasonable
range when considering the roughness reported by AFM.

5. CONCLUSION

In this paper we proposed a modified moving horizon
estimator (mMHE) to extract film microstructure from in

situ reflectance measurements. mMHE assumes a deter-
ministic process model to improve computation efficiency
and includes the a priori estimate in the objective function.
It also uses the extended Kalman filter to update the
a priori estimate and covariance. mMHE was compared
with RLS in both simulated and experimental CVD pro-
cesses. The results indicated that mMHE yielded more
accurate estimates by utilizing the a priori estimate. We
have applied mMHE to interpret in situ reflectance data
but the same technique can be used for other optical
sensors which face similar issues in data interpretation
such as the ellipsometer. Currently optical sensors with
RLS estimation have only limited applicability in ideal
systems like ultra-high vacuum molecular beam epitaxy.
But with a more robust estimation method, optical sensors
could have wider applicability, such as in CVD, enabling
the greater use of feedback control.
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