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Abstract: A surveillance system is required to gather the suffering information in the stricken
area safely and quickly after natural disasters. An autonomous blimp is the best option for
this purpose. Inverse optimal velocity field control is proposed for the blimp to keep a desired
trajectory. The desired trajectory based on velocity field is designed, and inverse optimal tracking
control is applied to be robust to input uncertainties. The transient performance to the desired
trajectory is very important to fly smoothly along the contour, because the blimp is affected by
wind easily. The inverse optimal control is expected to improve the robustness to uncertainties
of various dynamic parameters. Some experiments are performed to confirm the usefulness of
the proposed method by using an outdoor blimp whose length is 12.2m.

1. INTRODUCTION

After natural disasters such as earthquake, tsunami, and
flood, a surveillance system is required to gather the suf-
fering information in the stricken area safely and quickly.
From the reports of Kobe earthquake, which is called as
Great Hanshin-Awaji Earthquake and occurred around
Kobe City in Japan in 1995, 72 hours are very important
for victims to survive. If 72 hours have passed, the possibil-
ity to survive is decreasing largely even if they are rescued.
Ground vehicles are hard to carry out the task of searching,
because the fallen constructions in urban areas and the
fallen trees and landslides in local areas are obstructive to
search for survivors especially after earthquakes.

Aerial vehicles are the candidate of collecting information.
Unmanned aerial vehicles (UAVs) are better options to
perform the task precisely, safely, and quickly. Especially
an autonomous blimp is the best option. It is a kind
of LTA (Lighter Than Air) vehicles and it has some
advantages beyond the other UAVs like helicopters or
planes with regard to safety for victims, easy use to fly,
high mileage, and lower-sky availability. The blimp flying
in low sky can capture good quality images to offer 3D
images in disasters. The integration and representation of
the suffering information in the stricken area are required
for rapid rescue planning before rescue activities. For this
purpose, we propose the autonomous blimp system shown
in Fig. 1 with the rotational stereo camera system designed
like Fig. 2. This camera system is very useful to get much
information of three dimensional buildings and houses
because the rotational motion as flying permits to get
occluded points and surfaces.

The blimp is naturally designed as an underactuated sys-
tem, that is, there is no actuator to move directly in the
lateral direction, because the loss of energy is large. We
have to consider the effect of wind and design a robust
control system for the blimp. In this paper, we propose in-
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Fig. 1. Illustration of the proposed system

Fig. 2. Rotational stereo camera

verse optimal velocity field control of an outdoor blimp. A
desired trajectory based on velocity field [Li and Horowitz,
2003, Dixon et al., 2005] is designed, and inverse optimal
tracking control [R. Sepulchre and Kokotovic, 1996, Fukao,
2004] is applied to be robust with input uncertainties. The
velocity field is time invariant and consists of the desired
contours which are provided by velocity tangent vectors.
This is highly meaningful for the blimp which is affected by
wind easily, because the transient performance to the de-
sired trajectory is important to fly smoothly along the con-
tour. The inverse optimal control is extremely useful to im-
prove the robustness to input uncertainties which include
slowly varying dynamic parameters. The robustness was
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proved for nonholonomic wheeled mobile robots [Fukao,
2004]. One of alternatives is adaptive control for underac-
tuated systems with dynamic uncertainties [Dixon et al.,
2005, Fukao et al., 2000], but it is very hard to adjust many
gains of adaptive updating rules and control gains through
our experiments of indoor blimp [Fukao et al., 2003a,b]. We
perform some experiments to confirm the usefulness of the
proposed method by using an outdoor blimp whose length
is 12.2m (40feet).

2. DESIGN OF A CONTROL SYSTEM FOR A BLIMP

We show how to set a desired trajectory based on velocity
field and design an inverse optimal tracking controller
which is robust to input uncertainties. This approach is
confirmed to be appropriate for a blimp which is affected
by wind.

2.1 Velocity field

On usual tracking control problems, the task of a robot is
to track a prespecified trajectory which depends on time,
that is, the control objective is to reduce the tracking error
as time passes. But this type of tracking control is not
sufficient for contour following whose objective is to reduce
the contouring error. The relationship is shown in Fig. 3 [Li
and Horowitz, 2003].
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Fig. 3. Tracking error and contouring error

From this point of view, velocity field control has pro-
posed [Li and Horowitz, 2003]. The velocity field is time
invariant and consists of the desired contours which are
provided by velocity tangent vectors. In Fig. 4, a circular
contour is encoded by a velocity field. The velocity field
control approach intends to avoid the timing issue in a
timed trajectory formation which is restrictive for contour
following tasks.

Fig. 4. Circular velocity field

In addition, from the different point of view, we expect
velocity field control works for a blimp. A blimp should be

flying almost parallel to the wind direction because it is
affected by wind easily and a gust from the side makes the
blimp slide largely. This means the transient performance
to the desired trajectory is so important that the smooth
movement along a contour with a velocity tangent vector
is expected to avoid undesirable behaviors. One example
of reference trajectory is shown in Fig. 5.
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Fig. 5. One example of reference trajectory

2.2 Kinematic controller

In the same way of the indoor blimp, the vertical mo-
tion is assumed to be compensated by a separate simple
controller [Fukao et al., 2003a,b], which is described later.
We consider the two dimensional motion shown in Fig. 6,
where O − xy is a two dimensional coordinate system.

v1

O x

y

θ

Fig. 6. Kinematic model of a blimp on a plane

We set the generalized coordinates as following:

q = [ xc yc θ ]
T

, (1)

where xc, yc, θ(t) ∈R represent the position of the center
of gravity and the direction of the body axis.

We assume the following conditions [Fukao et al., 2003a,b].

Assumption 2.1. The rolling motion and pitching motion
are neglected. The center of gravity and the center of
buoyancy are on the vertical axis of a blimp. The axis
on yawing motion is the same vertical one. 2

The kinematics of a blimp is provided as following:

q̇ = S(q)v, (2)

where v(t) = [ v1 v2 ]
T
∈ R2 with the transitional velocity

v1 and the yaw rate v2 of the center of gravity, and the
matrix S(q) is defined as

S(q) =

[

cos θ 0
sin θ 0

0 1

]

. (3)
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2.3 Design of velocity field

A design method of velocity field for a wheeled mobile
robot was proposed in Dixon et al. [2005]. We refer to
the method for a blimp because the kinematics of a blimp
except the vertical motion is assumed to be same as a
wheeled mobile robot as described above.

The desired velocity field is defined as following:

ϑ(q) =





ẋd

ẏd

θ̇d



 =

[

cos θd(q) 0
sin θd(q) 0

0 1

]

vd(q), (4)

where vd(q) = [ vd1 vd2 ]
T
∈ R2, and ϑ(q), ẋd, ẏd,

∂ ϑ(q)
∂ q

are

designed to be bounded. The velocity field is also designed
such that limt→∞ ||vd(t)|| 6= 0.

Circular velocity field

For a desired contour of a circle around the origin with
a radius of R, the velocity field is derived by referring
to Dixon et al. [2005]. In the desired velocity field (4), θd

is given by

θd(q) = arctan 2 (ρ2(q), ρ1(q)), (5)

where arctan2(·) is the four quadrant inverse tangent
function, π < θd ≤ π, and

v1d =
√

ρ2
1(q) + ρ2

2(q), (6)

v2d = θ̇d (7)

=

{

d

dt
arctan 2 (ρ2(q), ρ1(q)), − π < θd < π

1, θd = π

with the auxiliary functions ρ1, ρ2 ∈ R are defined as

ρ1(q) = k1(R
2 − x2

c − y2
c )xc + k2yc, (8)

ρ2(q) = k1(R
2 − x2

c − y2
c )yc − k2xc, (9)

where k1 and k2 are added to adjust the desired velocity.

In (7), θ̇d is rewritten as

θ̇d =

[

∂θd

∂xc

∂θd

∂yc

] [

ẋc

ẏc

]

, (10)

where

∂θd

∂xc

=

[

−ρ2

ρ2
1 + ρ2

2

ρ1

ρ2
1 + ρ2

2

]







∂ρ1

∂xc
∂ρ2

∂xc






, (11)

∂θd

∂yc

=

[

−ρ2

ρ2
1 + ρ2

2

ρ1

ρ2
1 + ρ2

2

]







∂ρ1

∂yc
∂ρ2

∂yc






. (12)

Then, the following equation is derived from (8) – (12)

θ̇d =

[

−ρ2

ρ2
1 + ρ2

2

ρ1

ρ2
1 + ρ2

2

]







∂ρ1

∂xc

∂ρ1

∂yc
∂ρ2

∂xc

∂ρ2

∂yc







[

k1(R
2 − x2

c − y2
c )xc + k2yc

k1(R
2 − x2

c − y2
c )yc − k2xc

]

. (13)

Fig. 4 shows the case of R = 1.0 and k1 = k2 = 1.

Straight velocity field

For a desired contour of a straight line, a desired velocity
field (4) is designed. The auxiliary functions ρ1, ρ2 of θd(q)
are provided by

ρ1(q) = kv, (14)

ρ2(q) =−c2yc, (15)

where kv is the constant velocity along x axis and c2 is the
rate of convergence to y axis. θ̇d is calculated as

θ̇d =

[

−ρ2

ρ2
1 + ρ2

2

ρ1

ρ2
1 + ρ2

2

]







∂ρ1

∂xc

∂ρ1

∂yc
∂ρ2

∂xc

∂ρ2

∂yc







[

kv

−c2yc

]

.

One example is shown in Fig. 7 in the case of c2 = 3.0,
kv = 10.0.
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Fig. 7. Straight velocity field

2.4 Kinematic control

As a kinematic controller of a blimp, we apply an inverse
optimal control approach [R. Sepulchre and Kokotovic,
1996] which we introduced to nonholonomic mobile robots
and showed the robustness [Fukao, 2004]. This was also
shown to be very useful for image-based control of an
indoor blimp [Fukao et al., 2005].

Inverse optimal design

The optimal stabilizing control problem [Sepulchre et al.,
1991] is to find a feedback control u(x) for the system

ẋ = f(x) + g(x)u, (16)

with the following properties:

(1) u(x) achieves asymptotic stability of the equilibrium
x = 0.

(2) u(x) minimizes the cost functional

J =

∞
∫

0

(l(x) + uT R(x)u)dt (17)

where l(x) is positive semidefinite and R(x) is positive
definite matrix for all x.
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We have to solve the following Hamilton-Jacobi-Bellman
equation

l(x) + LfV (x) −
1

4
LgV (x)R−1(x)(LgV (x))T = 0,

V (0) = 0, (18)

where V (x) is a positive semidefinite scalar function and

LfV (x) is a Lie derivative which is defined as ∂f
∂x

V (x). But
this task is not feasible in general.

We consider the inverse approach where a stabilizing
feedback is designed first and shown to be optimal for
a cost functional as (17) [Li and Slotine, 1997]. The
following concept of a control Lyapunov function (CLF)
of Artstein [Arstein, 1983] and Sontag [Sontag, 1983] plays
an important role for the approach.

Definition 2.1. (Control Lyapunov function)
A smooth, positive definite, and radially unbounded func-
tion V (x) is called a control Lyapunov function (CLF) for
the system (16) if for all x 6= 0,

LgV (x) = 0 ⇒ LfV (x) < 0. (19)

2

Proposition 2.1. (Optimal stabilizing control from a CLF)
The control law given by Sontag’s formula:

u(x) =































−

(

c0 +
a(x) +

√

a2(x) + (bT (x)b(x))2

bT (x)b(x)

)

b(x),

b(x) 6= 0

0,
b(x) = 0

(20)

is optimal stabilizing for the cost functional

J =

∞
∫

0

(
1

2
p(x)bT (x)b(x) +

1

2p(x)
uT u)dt (21)

where a(x), b(x), p(x) are defined by

a(x) = LfV (x), (22)

b(x) = LgV (x), (23)

p(x) =







c0 +
a(x) +

√

a2(x) + (bT (x)b(x))2

bT (x)b(x)
, b(x) 6= 0

c0, b(x) = 0

(24)

with a CLF V (x). 2

A consequence of the optimality is that the designed
system by the control law (20) has a stability margin called
sector margin ( 1

2 , ∞). The sector margin is defined as the
following definition [Sepulchre et al., 1991].

Definition 2.2. (Sector margin)
The nonlinear feedback system (H, k), which consists of
a nonlinear plant H and a control law k, shown in Fig. 8
is said to have a sector margin (α, β) if the perturbed
closed-loop system (H, k, ∆) is globally asymptotically
stable for any input uncertainty ∆ which is of the form
diag{ ψ1(·), . . . , ψm(·)} where ψi(·)s are locally Lipschitz
static nonlinearities which belong to the sector (α, β). 2

u x y

-
H k∆

Fig. 8. Nonlinear feedback loop with control k(x) and
uncertainty ∆

We apply this inverse optimal tracking control design to
an underactuated outdoor blimp robot in the following.

Inverse optimal tracking control of a blimp

For a kinematic model, we define the error coordinates:
[

xe

ye

θe

]

=

[

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

][

xd − xc

yd − yc

θd − θ

]

, (25)

where xe, ye, θe are the relative errors between a real robot
and a reference robot.

The error equation is derived as

ẋe = v2ye − v1 + vd1 cos θe,

ẏe =−v2xe + vd1 sin θe, (26)

θ̇e = vd2 − v2.

To design an inverse optimal tracking controller, we select
a CLF referring the Lyapunov function provided in Jiang
and Nijmeijer [1997] which is designed for the semi-global
tracking controller.

First, we define a function:

ϕ(s) =
s

1 + s2
, (27)

which satisfies the conditions that sϕ(s) > 0, ∀s 6= 0, and
ϕ(0) = 0.

Then, we transform the coordinate as

θ̄e = θe + ϕ(yevd1). (28)

The error equation (26) is represented as

ẋe = v2ye − v1 + vd1 cos (θ̄e − ϕ),

ẏe =−v2xe + vd1 sin (θ̄e − ϕ), (29)

˙̄θe = vd2 − v2

+ϕ′(−v2xevd1 + v2
d1 sin (θ̄e − ϕ) + yev̇d1),

where ϕ′(s) means the derivative of ϕ(s) at s, that is,

ϕ′(s) = 1−s2

(1+s2)2 .

We rewrite the error equation (29) as the normal form of
nonlinear systems like the system (16):

d

dt





xe

ye

θ̄e



 =





vd1 cos (θ̄e − ϕ)
vd1 sin (θ̄e − ϕ)
vd2 + ϕ′(v2

d1 sin (θ̄e − ϕ) + yev̇d1)





+





−1 ye

0 −xe

0 −1 − ϕ′xevd1





[

v1

v2

]
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≡ f + [ g1 g2 ]

[

v1

v2

]

. (30)

The following function satisfies the condition (19) as a CLF
[Fukao, 2004], and the controller (20) is designable:

V (xe, ye, θ̄e) =
1

2
k1x

2
e +

1

2
k2y

2
e +

1

2
k3θ̄

2
e , (31)

where k1, k2, k3 are positive constants, and

Lg1
V =−k1xe, (32)

Lg2
V = (k1 − k2)xeye − k3θ̄e(1 + ϕ′xevd1), (33)

LfV = k1xevd1 cos (θ̄e − ϕ) + k2yevd1 sin (θ̄e − ϕ)

+k3θ̄e{vd2 + ϕ′(v2
d1 sin (θ̄e − ϕ) + yev̇d1)}.

(34)

Remark 2.1. As examples of the uncertainties, the rela-
tionship between the velocity of the outdoor blimp and
the power of two engines cannot be measured correctly,
and the dynamic parameters of the blimp are variable
according to the altitude and temperature. Consequently,
the inverse optimal approach is expected to be effective to
such a blimp with input uncertainties [Fukao, 2004].

3. SIMULATION

3.1 Velocity field of a desired trajectory

The velocity field of the desired trajectory to capture
images by a rotational stereo camera consists of long lines
and turning half circles shown in Fig. 5 because the blimp
should fly parallel to the wind not to be affected largely.

The core of the reference trajectory is lines and half circles.
Therefore, we consider the simplified trajectory shown in
Fig. 9. This is designed by setting appropriate functions
ρ1, ρ2, and θ̇d, although the continuity is not completed.
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Fig. 9. Velocity field of reference path for simulation

3.2 Simulation results

We perform a simulation in the case of no wind by the
above method, where the velocity field is like Fig. 9. The
initial configuration is x = −40, y = 20 and θ = 0. The
radius of half circle is R = 20, and the parameters of
velocity field are kv = 20.0, c1 = 400.0. The length of
straight line is w = 40, and the parameter of velocity field

is c2 = 1.0. The control gains are c0 = 0.1, k1 = 100.0,
k2 = 100.0, k3 = 1.0. The simulation result is shown in
Fig. 10.
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Fig. 10. Simulation result

4. OUTDOOR EXPERIMENT

4.1 Configuration of the blimp

Our blimp is shown in Fig. 11.

Fig. 11. Pictures of the blimp

Its length is about 12.2m (40feet). It has two 62cc engines
and a X tail wing system. It also has a thruster and a
baronet system. The payload is about 15kg which depends
on temperature. The loaded equipments are a small PC
with WLAN, a RTK-GPS, an IMU, a wind sensor, and
a rotational stereo camera. The outline is also shown in
Fig. 12.

Fin

Sensor  & Computer Unit

Ballast Box

Baronet
Blower Valve Unit

Stereo Camera

Wind Sensor

GPS Antenna

Helium Exhaust Valve

Flight Control Box

(4-blade)

Gondola

Fig. 12. Outline of the blimp

The system architecture is also drawn in Fig. 13.

4.2 Experimental results

We performed many experiments. One example is shown
in Fig. 14. The desired trajectory is a straight line whose
length 30m, a left turn whose radius is 15m, and a straight
line. The results are shown in Fig. 14. The origin of the
position is the position when starting to control. The
average wind speed is about 3m/s.

We cannot control the velocities directly and have to
compensate the error between the kinematic control v1

and v2 provided by (20) and the real velocities.
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Fig. 13. System architecture

The real control input is given by the followings:

τ1 = Kd1(v́1 − v1), (35)

τ2 = Kd2(v́2 − v2), (36)

where v́1, v́2 are the real velocities, and Kd1, Kd2 are
positive constants.

Furthermore, the control input to keep the altitude con-
stant is simply provided by

τ3 = Kd3(h − hd), (37)

where h is the real altitude, hd is the desired, and Kd3 is
positive. The separation from the other motion is assumed
and it works under mild wind.

The control parameters are provided in Tab. 1.

Table 1. Control parameters

Velocity Field Kinematics Dynamics

c1 1400.0 c0 0.1 Kd1 1.0

c2 1.0 k1 100.0 Kd2 1.0

kv 3.0 k2 100.0 Kd3 1.0

k3 1.0

From these experiments, the proposed method was con-
firmed to work well in wind. As a comparison, we applied
Kanayama’s method [Kanayama et al., 1990] based on
velocity field, but it failed completely. Furthermore, the
blimp system was confirmed to be a very safe system in
low sky. It is very important for a surveillance system in
disasters. The remaining issue is that the current system
cannot deal with strong wind. It seems that the reason is
the neglection of the pitching motion. We are extending
the method and developing a new control system.

5. CONCLUSION

An inverse optimal control system for a blimp was pro-
posed to keep a desired trajectory based on velocity field.
From the experiments, the proposed method was con-
firmed to work well in mild wind.
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