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Abstract: SpiderCrane is a three-dimensional crane, whose main particularity lies in the
absence of large inertial moving parts. This paper presents experimental results obtained
with the novel jet-scheduling control methodology that is based on differential flatness. Jet
scheduling consists essentially in using measurements to regenerate the derivatives associated
with a reference trajectory. Through this regeneration, the feedforward control law, which
is computed from the reference trajectory using the flatness property, is transformed into a
feedback control law. Jet-scheduling control takes full advantage of the dynamic possibilities of
SpiderCrane as it allows operation far away from the quasi-static mode of operation. In contrast
to proportional-like compensators, the proposed control scheme does not over-react whenever
the load is displaced in a persistent way, mainly because only higher derivatives are scheduled.
Furthermore, the position of the upper pulley can be adapted without requiring a change in
the load position, that is, without over-pulling the main cable. This general compliance makes
the control methodology “user friendly” without cutting down on dynamic performance. Both
point stabilization and trajectory tracking can be implemented.

Keywords: Differential flatness, Crane control, Underactuated mechanical systems, Tracking,
Stabilization.

1. INTRODUCTION

Crane control has been addressed by many researchers
through various methodologies, for example Corriga et al.
(1998), Gustafsson (1996), Fang et al. (2003), Yoshida and
Kawabe (1992), Sakawa and Sano (1997), Overton (1996),
Lee et al. (2006), Yang and O’Connor (2006), Zhang et al.
(2005). Linear classical designs such as LQR, although
locally guaranteeing stability and performance, cannot be
extended over a very large domain, mainly because of
the intrinsic nonlinearities (Corriga et al. (1998), Gustafs-
son (1996)). These nonlinearities are essentially due to
the gyroscopical coupling such as centrifugal force and
centripetal acceleration (Kiss et al. (1999), Fang et al.
(2003)) and to variations associated with the cable length,
i.e. the natural pendulum frequency changes with cable
length. Hence, passivity-based design (Fang et al. (2003),
Kiss et al. (2000)) and geometrical approaches (Kiss et al.
(2001), Kiss et al. (1999)) have been introduced to operate
the crane over a wider domain and possibly away from the
quasi-static mode (Kiss et al. (2001)).

Most crane operators move the load with the cable almost
vertical; only very few of them, probably skilled through
many hours of practice, venture to shift the upper trolley
in anticipation of the swing and the desired final load
position. To a certain extent, they avail themselves of the
crane model based on their observation and experience.

This paper presents a control design methodology tailored
— without real loss of generality — to SpiderCrane,
1 Supported by Swiss NSF grant number 510.524.

allowing fully automated and efficient load positioning.
Truly dynamic load displacement can be implemented
through meticulous exploitation of the dynamic couplings
within the mathematical model.

SpiderCrane can also be considered as a wire-driven ma-
nipulator. Normally, classical driven manipulators such as
those described in (Choe et al. (1996)) and (Kawamura
et al. (1995)) are designed so that there are as many actua-
tors as degrees of freedom. However, SpiderCrane is under-
actuated since both angles specifying the orientation of the
payload cable are not actuated, which is the main property
shared with all cranes. Nevertheless, the Jet Scheduling
methodology could also enrich the field of fully actuated
wire-driven manipulators, especially whenever the elas-
ticity becomes the main bottleneck in achieving high-
precision positioning (Kawamura et al. (1995)). Indeed,
because a pendulum is analogous to a mass-spring system,
the elasticity introduces, in a certain sense, an un-actuated
coordinate. Therefore, the Jet-Scheduling method could be
applied to improve the positioning.

Classically, the flatness property ensures the construction
of a feedforward input based on a planned motion of
the flat outputs by simply combining values of the flat
outputs and their time derivatives, i.e. without having
to integrate differential equations (Fliess et al. (1995),
Fliess et al. (1999), Kiss et al. (1999)). Therefore, in
the absence of disturbances, this mechanism is sufficient
to move the system from one state to another, once a
trajectory compatible with the initial and final positions
is designed. However, if the system has some unmodeled
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dynamics, an additional mechanism must be provided to
make sure that the planned trajectory is indeed tracked
accurately.

The point of view adopted in this paper is that, instead of
specifying a trajectory and tracking it explicitly, a dynam-
ical system called “jet scheduler” provides the derivatives
(the jets) of an ideal stabilizing trajectory. These jets are
updated regularly according to measurements so as to re-
act to unknown disturbances. The proposed controller can
be seen as an extension of Kiss et al. (2001) that achieves
a wider domain of attraction at the cost of requiring full-
state measurement.

SpiderCrane, its mathematical model, and its flatness
property are presented in Section 1.1. Section 2 introduces
the three parts of the jet-scheduling control methodology.
Section 3 presents and discusses the experimental results
that are all based on real-time experiments. Both stabi-
lization and tracking properties are illustrated. Remarks
concerning the application of Jet-Scheduling control to real
cranes are given in Section 4. Finally, conclusions are given
in Section 5.

1.1 SpiderCrane Setup

SpiderCrane is laboratory-scale crane design whose main
particularity lies in the absence of heavy mobile compo-
nents (Buccieri et al. (2005)). As a result, SpiderCrane
can work at a considerably high pace, which makes it
particularly useful as a laboratory setup to test advanced
control laws. A slight modification of the setup described
in Buccieri et al. (2005) has recently been built in the
Automatic Control Laboratory of EPFL (see Figure 1).
The main difference between the two designs lies in the
absence of the fourth pylon (the one guiding the hosting
cable). Instead, the three secondary cables are directly
attached to the ring so that the load can be hoisted and
lowered lowered through a combination of the three cable
lengths that can be adjusted through the motor positions.
The length of the main cable between the ring and the load
is fixed. A short description of the setup is given next.

1.1.0.1. Setup description SpiderCrane is made of three
fixed pylons. A pulley is mounted at the top of each
pylon, allowing the cable to slide. The three cables are
attached to a ring, and by varying their length, the ring
can be moved in the surrounding space. A main cable goes
through the centre of the ring and is attached to the load.
The positioning of the load in space is done by adjusting
the position of the ring. The position of the load of mass
m is given by (x1, x2, x3), that of the ring of mass m0

by (x01, x02, x03). The positions of the three motors are
(x11, x12, x13), (x21, x22, x23) and (x31, x32, x33), respec-
tively. Furthermore, the motor inertias are considered to
be equivalent to the masses m1, m2 and m3, respectively,
suspended to the cables. The length of the cable connect-
ing the ring to the load is L0. The geometrical and inertial
values of SpiderCrane are given in Table 1.

The cables to the ring of length L1, L2 and L3 are
controlled by means of DC motors equipped with encoders,
making it possible to measure the length as well as
the speed of the cables. The load position (x1, x2, x3)

Load, (x1, x2, x3)

LED

(x01, x02, x03)

DC motors

L1

L0

L2L3

Linear cameras

Fig. 1. Experimental setup with the three winching mo-
tors, the load with the LED, the ring, and the linear
cameras.

Param. Values Param. Values Param. Values

x11 0[m] x12 0[m] x13 0[m]
x21 −0.36[m] x22 0.64[m] x23 0[m]
x31 0.36[m] x32 0.64[m] x33 0[m]
L0 0.34[m] m 0.49[kg] m0 0.02[kg]
m1 0.54[kg] m2 0.54[kg] m3 0.54[kg]

Table 1. Geometrical and inertial values of
SpiderCrane

is measured through a sensor consisting of three linear
cameras. The position of an infrared LED positioned on
the load can be reconstructed with a precision smaller than
1 [mm].

The measurement readings, the control law, and the volt-
ages applied to the motors are handled by a real-time
kernel implemented in C. The control loop runs at 100 Hz.
The user interface that exchanges information between the
user and the real-time kernel is implemented in LabVIEW.
For the interested readers, all the implementation details
regarding the real-time kernel can be found in Salzmann
et al. (2000).

1.2 Dynamic model

The mathematical model of SpiderCrane is derived using
tools of analytical mechanics. A set q of coordinates are
defined, the cardinality of which exceeds the minimal
number of required generalized coordinates:

q = (x1, x2, x3, x01, x02, x03, L1, L2, L3).

This set of coordinates is constrained by a set of holonomic
constraints:

C1 =
3∑

i=1

(xi − x0i)
2
− (L0)

2 = 0 (1)
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Cj+1 =

3∑

i=1

(x0i − xji)
2
− L2

j = 0 j = 1, ..., 3 (2)

describing the geometrical relationship between the posi-
tion of the crane components and the length of the cables.
The external forces acting in the directions associated with
the variables q are given by the three motors:

Fext = (0, 0, 0, 0, 0, 0, T1, T2, T3)

The Lagrange method of analytical mechanics is applied,
and suitable Lagrange multipliers are introduced to handle
the constraints (Greenwood (1977)). For SpiderCrane, this
yields:

mẍ1 = (x1 − x01)λ1, (3)

mẍ2 = (x2 − x02)λ1, (4)

mẍ3 = (x3 − x03)λ1 − gm, (5)

m0ẍ01 = (x01 − x1)λ1 + (x01 − x11)λ2 +

(x01 − x21)λ3 + (x01 − x31)λ4 + (6)

m0ẍ02 = (x02 − x2)λ1 + (x02 − x12)λ2 +

(x02 − x22)λ3 + (x02 − x32)λ4 (7)

m0ẍ03 = (x03 − x3)λ1 + (x03 − x13)λ2 +

(x03 − x23)λ3 + (x03 − x33)λ4 − gm0, (8)

m1L̈1 = T1 − L1λ2 − L0 (9)

m2L̈2 = T2 − L2λ3 − L0 (10)

m3L̈3 = T3 − L3λ4 − L0 (11)

where λj with j = 1, ..., 4 are the Lagrange multipliers.

These equations, together with (1)-(2), result in a set
of differential-algebraic equations (DAE) describing the
dynamics. Standard integration techniques can be used
(Gear and Petzold (1984)). Here, however, it is sufficient
to express the Lagrange multipliers with the help of
the holonomic constraints: Differentiating the constraints
twice and introducing the dynamic equations results in an
expression that can be solved for the Lagrange multipliers.
If the initial conditions satisfy the constraints, and in
the absence of numerical drift, the conditions remain
satisfied throughout the simulation. However, care should
be taken here not to allow large time steps. That is, either
some constraint-enforcing mechanism or more involved
integration technique should be considered.

1.3 Flatness of SpiderCrane

As shown in Buccieri et al. (2005), SpiderCrane is a flat
system. This property is useful for computing the open-
loop inputs to transfer the load from one equilibrium
point to another, or to track a reference trajectory. Jet-
scheduling control is a feedback law that is based on the re-
generation of derivatives appearing in the correspondence
between the flat outputs and the original states and inputs.
For this reason, a brief reminder of the definition of flatness
and an intuitive explanation of why SpiderCrane is flat is
given next.

Definition 1. A system ẋ = f(x, u) with u ∈ R
m and

x ∈ R
n is said to be flat if there exists an output y ∈ R

m

such that:

- the components of y are independent;
- x and u can be expressed as functions of y and its
derivatives up to the r-th order

x = ϕx(y, ..., y(r−1)) u = ϕu(y, ..., y(r)) r ∈ N

with ϕx and ϕu satisfying identically ϕ̇x = f(ϕx, ϕu)

Now, if the flat output describes a specific trajectory, the
states and inputs will automatically follow corresponding
trajectories. This is extremely useful for designing a feed-
forward controller.

The choice of the flat output y and the explicit calculation
of the function ϕx and ϕu are usually not trivial. In the
case of SpiderCrane, one has:

x = (x1, x2, x3, x01, x02, x03, L1, L2, L3

ẋ1, ẋ2, ẋ3, ˙x01, ˙x02, ˙x03, L̇1, L̇2, L̇3)

y = (x1, x2, x3)

u = (T1, T2, T3)

Using (3), (4) and (5), x01, x02 and λ1 can be expressed
as:

x01 = x1 −
mẍ1

λ1

= ϕx1
(x1, ẍ1) (12)

x02 = x2 −
mẍ2

λ2

= ϕx2
(x2, ẍ2) (13)

λ1 =
mẍ3 + gm

x3 − x03

= ϕλ1
(x3, x03, ẍ3) (14)

Differentiating (12) and (13) gives:

ẋ01 = ϕẋ1
(x1, ẋ1, ..., x

(3)
1 ) (15)

ẋ02 = ϕẋ2
(x2, ẋ2, ..., x

(3)
3 ) (16)

Solving the constraint equations (1)-(2) for Lj with j =
1, ..., 3, and using (12) and (13), leads to:

Lj = ϕLj
(x1, ẍ1, x2, ẍ2, x3, ẍ3) j = 1, ..., 3 (17)

Time differentiation of (17) gives:

L̇j = ϕL̇j
(x1, ..., x

(3)
1 , x2, ..., x

(3)
2 , x3, ..., x

(3)
3 ) j = 1, ..., 3.

(18)

Equations (12)-(18) establish that the states can be ex-
pressed as functions of the flat outputs and their deriva-
tives.
Now, it remains to express the inputs as functions of the
outputs and their derivatives and, for this purpose, (15),
(16) and (18) need to be differentiated with respect to
time:

ẍ01 = ϕẍ01
(x1, ẋ1, ..., x

(4)
1 ) (19)

ẍ02 = ϕẍ02
(x2, ẋ2, ..., x

(4)
2 ) (20)
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L̈j = ϕL̈j
(x1, ..., x

(4)
1 , x2, ..., x

(4)
2 , x3, ..., x

(4)
3 )

j = 1, ..., 3 (21)

Solving (6)-(8) for λ2, λ3, λ4 and λ5, and using (12), (13),
(14), (17), (19) and (20), gives:

λi = ϕλi
(x1, ..., x

(4)
1 , x2, ..., x

(4)
2 , x3, ..., x

(4)
3 ) i = 2, ..., 4

(22)

Finally, solving (9)-(11) for T1, T2, T3 and T4, and using
(14), (17), (18), (21) and (22), results in:

Tj = ϕTj
(x1, ..., x

(4)
1 , x2, ..., x

(4)
2 , x3, ..., x

(4)
3 ) j = 1, ..., 3

(23)

Formally, the following expressions hold:

Lj = ϕLj
(x1, x2, x3, ẋ1, ẋ2, ẋ3, ẍ1, ẍ2, ẍ3) j = 1, ..., 3

L̇j = ϕL̇j
(x1, x2, x3, ẋ1, ẋ2, ẋ3, ẍ1, ẍ2, ẍ3, x

(3)
1 , x

(3)
2 , x

(3)
3 )

j = 1, ..., 3

Tj = ϕTj
(x1, x2, x3, ẋ1, ẋ2, ẋ3, ẍ1, ẍ2, ẍ3, ..., x

(4)
1 , x

(4)
2 , x

(4)
3 )

j = 1, ..., 3

These relationships show that there exists a correspon-
dence between the load position (and their time deriva-
tives) and the original inputs and states of SpiderCrane,
which means that the system is indeed flat.

2. JET-SCHEDULING CONTROL

Successful implementation of feedforward control needs
to consider the discrepancies between the mathematical
model and the experimental setup. For SpiderCrane, the
main discrepancy relates to the characteristics of the
winching mechanism. Indeed, the motors are mounted on
gears that introduce a large amount of dry friction that
cannot easily be compensated for through feedforward
control. Furthermore, flatness-based control is inappro-
priate to reject disturbances, e.g. sudden unpredictable
forces acting either on the load or on the motors. Hence,
some feedback is necessary. One is naturally led to con-
sider dynamic feedback linearization, i.e. using endoge-
neous dynamic feedback (Fliess et al. (1999)). However,
this technique has a few drawbacks. The first one is the
need to find the dynamic extension, which complicates the
controller and especially its implementation. The second,
and most important one, lies in the difficulty of separating
the closed-loop dynamics in two parts, one governing the
motors and the other responsible for the sway and load
positionning. Such a separation would allow increasing the
gains for the motors without necessarily imposing a violent
load reaction.

Jet-scheduling control can answer the aforementioned
drawbacks (Buccieri (2007)). The basic idea is to measure
the load position and its derivatives and generate appro-
priate references for the three cable lengths. Jet-scheduling
control has three parts:

(1) The first part calculates appropriate load accelera-
tions (the jets χ1, χ2 and χ3) to reach the load

reference (x1ref , x2ref , x3ref ). These jets are updated
regularly based on the measurements of the load po-
sition (x1, x2, x3) and its derivatives (ẋ1, ẋ2, ẋ3). The
regeneration of the scheduled jets upon measurements
introduces the element of feedback that is needed to
reject disturbances. The jets are computed using the
following dynamic filter:

χ̈1 =−k4
1(x1 − x1ref ) − 4k3

1(ẋ1 − ẋ1ref )

−6k2
1(χ1 − ẍ1ref ) − 4k1(χ̇1 − x

(3)
1ref ) + x

(4)
1ref

χ̈2 =−k4
2(x2 − x2ref ) − 4k3

2(ẋ2 − ẋ2ref )

−6k2
2(χ2 − ẍ2ref ) − 4k2(χ̇2 − x

(3)
2ref ) + x

(4)
2ref

χ̈3 =−k4
3(x3 − x3ref ) − 4k3

3(ẋ3 − ẋ3ref )

−6k2
3(χ3 − ẍ3ref ) − 4k3(χ̇3 − x

(3)
3ref ) + x

(4)
3ref

These expressions are independent of SpiderCrane
dynamics. They are stabilized chain of integrators
whose inputs are the load positions and velocities.
The coefficients of the characteristic polynomial are
chosen such that the corresponding eigenvalues are
the same and equal to λ = −ki, so as to have few
design parameters.

The above expressions should not be confused with
linearizing dynamic extensions.

(2) The second part uses the flatness property to compute
references for the cable lengths. The acceleration and
the higher derivatives in the flatness correspondences
are replaced by the ideally scheduled variables χ1, χ2

and χ3 and their time derivatives:

L̂j = ϕLj
(x1, x2, x3, ẋ1, ẋ2, ẋ3, χ1, χ2, χ3) j = 1, ..., 3

ˆ̇
Lj = ϕL̇j

(x1, x2, x3, ẋ1, ẋ2, ẋ3, χ1, χ2, χ3, χ̇1, χ̇2, χ̇3)

j = 1, ..., 3

Also, direct feedforward control on the inputs can
be computed in a similar manner:

T̂j = ϕTj
(x1, x2, x3, ẋ1, ẋ2, ẋ3, χ1, χ2, χ3, ..., χ̈1, χ̈2, χ̈3)

j = 1, ..., 3

(3) The third part consists of feedback controllers that
track the computed cable lengths. High-gains PD
controllers can be used to compensate the effect of
dry friction and achieve a desired convergence:

T1 =−kp1(L1 − L̂1) − kd1(L̇1 −
ˆ̇
L1) + T̂1

T2 =−kp2(L2 − L̂2) − kd2(L̇2 −
ˆ̇
L2) + T̂2

T3 =−kp3(L3 − L̂3) − kd3(L̇3 −
ˆ̇
L3) + T̂3

Note that in jet-scheduling control, linearity is only en-
forced asymptotically (Buccieri et al. (2006)).

3. SPIDER CRANE IMPLEMENTATION

3.1 Force-controlled setup

The jet-scheduling control law uses as inputs the forces T1,
T2 and T3 that are applied to the three cables. However the
physical inputs of the SpiderCrane setup are the voltages
u1, u2 and u3 to the three DC motors. For this reason, a
low-level control is designed to impose the desired forces.
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The torque ci provided by each DC motor is given by

ci = Kmi

ui − Kniωi

Ri

, i = 1, ..., 3 (24)

where ui is voltage input in [V], Ri is the coil resistance
in [Ω], Kmi is the torque constant, Kni is the velocity
constant and ωi is the motor velocity. The motor charac-
teristics are given in Table 2.

Param. Value Param. Value

Power 90[W] τ 6 · 10−3[s]
Km 19.4 · 10−3[Nm/A] Kn 29460[deg/Vs]

Table 2. Motor characteristics

The velocity of the cable L̇i is directly proportional to the
motor velocity ω trough the pulley radius ri,

L̇i = riωi. (25)

In the same way, the force Ti is directly proportional to
the torque ci trough the pulley radius ri,

Ti = ciri. (26)

Now, inverting (24) and using (25) and (26) leads to the
control law:

ui =
TiciRi

riKmi

+ Kni

L̇i

ri

(27)

The voltage ui allows pulling on the cable Li with the force
Ti. In the sequel, we will consider the forces Ti, i = 1, ..., 3,
as the inputs to SpiderCrane.

3.2 Experimental results

In this section, experimental results for both load stabiliza-
tion and trajectory tracking are presented. The numerical
values of the controller parameters used for these experi-
ments are given in Table 3.

Param. Values Param. Values Param. Values

kpi[V/m] 80 kdi[Vs/m] 15 ki 8[1/s]

Table 3. Controller parameters (i = 1, ..., 3).

The results described next are also available in movie
form 2 .

Stabilization. Figure 2 illustrates the way in which the
jet-scheduling controller stabilizes the load at the reference
point (x1ref , x2ref , x3ref ). The experiment has two phases:
(i) without control, the load oscillates strongly, and (ii) at
time 3.5[s], the controller is switched on. The controller
stabilizes nicely the load at its reference point. Moreover,
the performance is excellent since the time needed for
stabilization is of the order of 1.5 [s].

Figure 3 illustrates the controller behavior following a
disturbance that imposes a load position different from
the reference value. This corresponds to the situation
where the load is being blocked by some obstacle, or a

2 http://lawww.epfl.ch/page4506.html
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L3[m]

x2[m]
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x3[m]

Controller OFF Controller ON

t[s]

Fig. 2. Load oscillation without control and load stabiliza-
tion with jet-scheduling control. Reference values are
represented by dashed lines.
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x2[m]

x1[m]
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Load being blocked

t[s]

Fig. 3. Performance when the load is being blocked,
and subsequent load stabilization. The dashed-lines
represent the reference values.

human operator pulls and holds the load away from the
reference value. As can be seen by the small values of
the inputs u1, u2, and u3, the controller does not over-
react. The controller knows that, under normal conditions,
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small forces are sufficient to go back to the reference
position. The fact that small forces are not able to move
the load indicates the presence of an ”unusual” situation.
The controller, which works with higher derivatives of the
position error, does not compute the large control effort
that a proportional-like controller would. The figure also
shows that, once the load is released, it goes back swiftly
to its equilibrium position without any oscillation.

Trajectory tracking. A circular reference trajectory is
provided. Figures 4 and 5 show that the load position
tracks the reference even after a sudden disturbance takes
place at time t = 2.7s. Again, the load rapidly catches up
with the reference in a highly dynamic fashion. This can
also be seen in the 3D Figure 5 where, once the disturbance
takes place, the load rapidly cuts across the circle, along
the diameter, to catch back with the reference.

Careful examination shows that there remains a slight
tracking error along the x3-axis, which is not the same for
each rotation. However, the x1 and x2-axes are in perfect
agreement with the references. This can be explained by
the following geometrical consideration. Table 1 shows
that the chosen ring position x3ref = −0.49[m] is close
to that of the fixed pylons. Hence, this requires a large
force along the horizontal cables, and leads to a loss of
sensitivity.
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Fig. 4. Tracking of a circular reference (height x3ref =
−0.49 [m], center at x1ref = 0 [m], x2ref = 0.41
[m], radius 0.1 [m], frequency 0.9 [Hz]). A sudden and
short perturbation is applied at time t = 2.7 [s]. The
dashed-lines represent the reference values.

As a general remark, whenever a persistent disturbance
occurs on the load (even a large one), the upper pulley
quickly re-positions itself so as to bring the load back to its
reference value without over-pulling the main cable. This
general compliance makes the controller “user friendly”
and increases the security level without performance loss.

4. APPLICATION TO REAL CRANES

Although the paper has addressed SpiderCrane control, a
few remarks on how to apply the method to other types of
cranes and especially real cranes. Because cranes are flat
systems, as it has been shown in Kiss et al. (1999), they
can be controlled using the jet-scheduling methodology.
The difference lies in how the payload position is measured
and how the operator specifies the flat reference trajectory.
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Fig. 5. Three-dimensional view of the tracking of a circular
reference. The reference is in solid red.

Concerning the payload-position measurement, some real
cranes are equipped with a device that mechanically mea-
sures the angle of the main cable. Together with the full
measurement of the cable lengths (at the winch level), this
allows restoring the payload position. Of course, a camera-
like measurement device is not advisable due to possible
harsh-weather conditions.

Although finding the flat output of a general nonlinear
dynamical system is not an easy task, specifying a flat
output trajectory — once it is known — is very simple,
because the time evolution of the flat output does not
have to obey any kind of differential equation. The paper
presented a circular type trajectory, but a polynomial
one is also possible. Additionally, one can consider the
following trajectory generator, which is better adapted to
human operators: Consider again SpiderCrane and only
the x1 flat output (the other outputs are treated in a

similar fashion). Now, x1ref ẋ1ref , ẍ1ref , x
(3)
1ref and x

(4)
1ref

are provided by the following dynamical filter:

x
(4)
1ref =−4k3x

(4)
1ref − 6k2x

(4)
1ref

−4kx
(4)
1ref + k4(x1des − x1ref ) (28)

where d x1des is the desired position specified by the
operator (i.e. the input to the filter). Clearly, x1ref is
differentiable four times and the filter provides all the
derivatives. The parameter k > 0 is chosen so as to
generate either a slow convergence (when small) or a fast
convergence (when large) to the desired position that the
operator specifies.

5. CONCLUSIONS

The paper has presented the application of a novel control
scheme — called jet-scheduling control — to SpiderCrane.
Jet-scheduling control shows highly dynamic responses in
point stabilization, disturbance rejection, and trajectory
tracking. Moreover, the control scheme does not over-react
when the load gets blocked.

The following characteristics of jet-scheduling control can
be mentioned:
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• There is no need to measure high derivatives of the
flat outputs. Only the first derivatives are necessary.
All higher-order derivative information is provided by
the jet scheduler (the χ variables and their deriva-
tives).

• Linearization is achieved only upon convergence.

The main enhancements of the jet-scheduling methodol-
ogy over, say, classical dynamic feedback linearization, are
essentially twofold. On the one hand, it allows dealing with
unmodeled motor characteristics (for instance dry friction)
through a natural dynamic separation between motor ref-
erence tracking (high gain) and trajectory stabilization
(scheduled jets). On the other hand, the control method-
ology does not require the computation of the specific dy-
namic extension needed to fully linearize the system. The
design of the controller is therefore, to a certain extent,
more intuitive. A full theoretical comparison between jet-
scheduling control and dynamic feedback linearization for
a flat mobile robot is given in Buccieri et al. (2006).
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