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Abstract: This paper addresses first experiments in the usage of model engineering to
generate control/command code from a high-level description of the system featuring the
notions of architecture and configuration. This principle has been applied generate IEC-61131-
3 control/command code for an industrial PLC to control the circuit and the engines of an
electric train. It has been implemented using the AMMA platform, more precisely the ATL
transformation language.
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1. INTRODUCTION

Reconfigurable systems have gained much attention in the
two last decade because of their ability to evolve to follow
quality of service requirements. This article deals with
the control/command code generation for reconfigurable
manufacturing systems (RMS) [Merhabi et al., 2000] using
model engineering. In fact, the control/command code for
a reconfigurable system must take into account its re-
configuration capabilities and should offer reconfiguration
primitives to the supervision level. This article focusses on
the code generation for the machine level (sensors/actua-
tors) and the cell level (coordination between machines).

Model engineering is a promising development from soft-
ware engineering. In model engineering, everything is a
model [Bézivin, 2005], which means that the code itself
is a model until it is serialized into a textual form for
implementation purposes. Models are described using a
meta-model which in turn is a model. Transformations can
be applied on models by defining mapping on their meta-
models. We previously used this technology to perform
the analysis of the architecture [Lamotte et al., 2007]
or the configuration [Lamotte et al., 2006] of a reconfig-
urable system and it proved to be very efficient. These
analyses needed to be performed for a real system. The
DeSyRe [Lamotte et al., 2007] language designed for the
description of such system and which have been used in
previous work seemed to be suited as en entry point for
the generation of the control/command code to run one
such a system.

Model Engineering has already been used to perform
code generation for control/command application such as
in [Vogel-Heuser et al., 2005] or [Thramboulidis et al.,
2004] where UML is used to describe the application.
In most of these cases the program is itself written in
UML. Here, the starting point of the code generation is
a modelling of the process itself, in term of resources.

To experiment with this code generation, a demonstrator
has been set-up. It consists in an electric train circuit
described in section 2. The DeSyRe language, which is the
input of the code generation is then described in section 3.
Finally, section 5 describes the code generation process.

2. DESCRIPTION OF THE APPLICATION

The target application is an electric train circuit. Electric
trains give the opportunity to work on large systems built
upon small component that can be easily found. These
systems are easy to set-up and to modify, so lots of case
studies can be realized. Moreover reconfiguration is easily
featured on such system, it consists in changing the path
followed by the trains.

The circuit, studied in this article is presented on figure 1,
it contains five turnouts and ten sections that make up
three loops. The inner loop is constituted by the T10, T21

and T11 elements. Inner loop communicates with the small
loop through the A5 turnout, this second loop is composed
of the T4, T5 and T1 sections. A third loop, which we call
outer loop share T1 with the small loop. The two other
sections of the outer loop : T19 and T3 have been separated
as they formed a unique but very long section. A Fx label
has been placed on some sections, it denotes the capacity
of this section to implement an operation realizing the Fx

function.

The studied circuit features good flexibilities that can
advantageously be used for reconfiguration. A criticality
analysis performed according to [Lamotte et al., 2007]
shows that 16% of the resources (sections and turnouts)
are critical to the functioning of the system. In fact, by
removing T4, it is still possible from section to perform
any function.

Engines are from Marklin and use the digital system which
enables the control by transmission currents. As described
on figure 2, a Schneider-Electric/Telemecanique PLC is
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Fig. 1. Sample train circuit

connected, either through a CANOpen link or directly, to
the turnouts as well as to photo-electric sensors placed at
both ends of each section to detect when a train enters
or leaves it. Orders to engines are sent to the Marklin
Interface from a program on the PC via a RS232 link, this
program acts as a bridge between the PLC and the engines
and reads the speed and the direction of each engine in the
memory of the PLC using the Modbus/TCP protocol. The
PC also runs an application that performs reconfiguration
of the circuit as well as starting the train using the ethernet
link.

Fig. 2. Control/Command architecture

3. THE DESYRE LANGUAGE

DeSyRe [Lamotte et al., 2007] (french for Description of
Reconfigurable Systems) is built upon model engineering
concepts. This language is separated into two parts, ac-
cording to figure 3. The architecture part is a model that
holds the elements which constitute the system. Configu-
ration models define how the architecture is used. A UML
profile and a textual syntax have been defined to enable
manipulation of DeSyRe models. Model transformations
are used to go back and forth from the DeSyRe and the
human readable form.

Architecture of the system is in turn divided into logi-
cal and physical parts. Logical part describes machining
functions performed on the products and their association
to form function sequences to obtain a finished product.
Physical architecture describes the resources in the system
and the links between them. Two kind of resources are
considered: stationary resources and transport resources.
Connections represent the potential transfer links between

Logical

Configuration

Physical

Configuration

Logical

Architecture

Physical

Architecture

Operations

Fig. 3. Basic decomposition of the DeSyRe language

stationary resources, these connections are associated with
the transport resources that can realize them. Potential
operations complete the description of the architecture and
links physical and logical parts by bridging functions and
resources.

The configuration describes how the resources of the ar-
chitecture are used to achieve a goal. Logical and physical
aspect of the configuration can also be distinguished. The
logical configuration is constituted of function instances
and uses function sequences from the logical architecture.
A function instance is the realization of a function on a
product. It is performed on a resource through a stationary
operation. Physical configuration is constituted of the re-
sources taken from the logical architecture and transfer se-
quences. Transfer sequences are used to describe the trans-
fer from one resource to another. They are composed of
nodes which may either be transporter nodes or controller
nodes. Transporter nodes are the realization of a connec-
tion using a given transport resource while controller nodes
describe the routing from one port to another performed
by a stationary resource. Operations defined in the con-
figuration links both logical and physical configuration
as well as architecture and configuration. There are two
kinds of operations : stationary operations are instances of
a potential operations, whereas Transfer operations link
transfer sequences with a function instances. Operations
are ordered into operation sequences that realize a function
sequence from the architecture.

A simple architecture, in the manufacturing domain may
be a two machines (M1, M2) system with a robot (R).
This system performs, for instance, the F1 and F2 func-
tions. The physical architecture for this system would
consist in the two machines, the robot and the descrip-
tion of the transfer capabilities of the robot. The logical
architecture would define the two functions and their or-
ganization into function sequences such as S1 : F1, F2.
Some operations should also be defined for that system,
if M1 is the support for F1 then an operation should be
added to the architecture to link the two elements.

A configuration for this architecture would tell how its
elements are used. In a configuration performing S1,
the functions F1 and F2 should be instantiated. As for
the physical configuration, a transfer sequence would be
created to go from M1 to M2 using the robot. The logical
and physical configurations are linked together by the
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operation sequences ordering the operations that are used
for the realization of S1.

4. MODELLING THE CIRCUIT WITH DESYRE

DeSyRe is a set of meta-models along with their represen-
tation used for the description of reconfigurable systems.
Using this language, a train circuit can be described in
many ways, depending mainly on the chosen granularity
level. As the focus has been set on the machine and
coordination levels of the system, it seemed judicious to
give the priority on the cooperation between elements of
the circuit.

A circuit is itself physically composed of sections and
turnouts. To travel from a section to another, the train
must go through turnouts and sections. The minimal
transfer from a section to another uses one turnout. We
decided to describe sections as stationary resources and
turnout as transport resources that enable the transfer
from a section to another, this transport resource is
associated with one connection for each transfer it can
perform between sections. This physical description of the
system allows to describe all possible transfer between
sections. Figure 4 is a representation of the studied train
circuit, it features the description of section as stationary
resources and turnouts as transport resources. One will
note the special case for C1, which separates the T19

and T3 section, and which we decided to model in the
same way as turnouts . Oddly, engines do not appear in
the physical part of description. In fact we decided that
physical description of the circuit would only represent
its structure. Engines belong to the dynamic part of the
system and are described in the logical architecture.

Logical part describes the functions and function se-
quences that can be carried on the physical part. These
functions are performed on products that are mobile and
can go from a stationary resource to another, which is
what the engine does on sections as it travels from one to
another. Once on a section, a real train undergoes changes,
a passenger train at a station takes and leaves passengers
for instance. So a train is modeled as a product that un-
dergoes functions on the sections, the objective of the train
is to complete function sequences by traveling through
section on which described functions can be performed.
Four functions will be used in the example, named F1, F2,
F3 and F4. These functions are used in two sequences : S1

: F1, F2 and S2 : F2, F3, F4.

Potential operations have been designed to assign func-
tions to the sections described in the physical architecture.
Seven potential operations are described in the architec-
ture, namely F1T1, F2T4, F2T11, F3T5, F3T21, F4T10 and F4T19.
The stationary ressource and the function implemented by
the operation can easily be determined from their name,
F1T1 for instance is the implementation of F1 on T1.

The architecture itself cannot tell how the function se-
quences are realized. This is the role of a configuration,
based upon operation definition. 15 configurations have
been written for the train circuit to date. In the context of
this paper, we designed a simple configuration described
on listing 1. This configuration realizes the S2 sequence on
the inner loop of the circuit, which is constituted by the

T10, T11 and T21 sections. For this configuration, and to keep
it simple, we consider that engine may either be on the T10

or T11 section at the begining. Function instances havec
been provided for the needed functions. Three transfer
sequences are defined to provide operations for moving the
train between sections. The operation sequences defined
in this configuration are quite simple. The first makes the
train realize the S2 function sequence. The second one is
used to reset the train and prepare it for starting the
sequence again (moving it from T10 to T11.

Listing 1. A configuration for the train circuit
-- F2F3F4 on the inner loop

configuration l5c3 {
logical configuration {

instance IF2 of F2;
instance IF3 of F3;
instance IF4 of F4;
instance IFT of FT;

}

physical configuration {
tr seq TS_T11T21 {

trans T11T21 using A15;
}
tr seq TS_T21T10 {

trans T21T10 using A7;
}
tr seq TS_T10T11 {

trans T10T11 using A5;
}

}

tr op TO_T11T21 : IFT using TS_T11T21;
tr op TO_T21T10 : IFT using TS_T21T10;
tr op TO_T10T11 : IFT using TS_T10T11;

st op SO_F4T10 : IF4 using F4T10;
st op SO_F2T11 : IF2 using F2T11;
st op SO_F3T21 : IF3 using F3T21;

op seq OS_S2 realize S2 : SO_F2T11 , TO_T11T21 ,
SO_F3T21 , TO_T21T10 , SO_F4T10 ;

op seq Rst : TO_T10T11;
}

5. CONTROL/COMMAND CODE GENERATION

This section defines basic control/command code gener-
ation principles. First the generation framework is in-
troduced. The model engineering tools used to perform
the transformation are then described. Once this is done,
each step of the transformation is detailed as well as the
reconfiguration of the system.

5.1 The code generation framework

Code generation is performed from the description model
of the system. It follows the framework introduced on
figure 5. Once the system has been modeled using DeSyRe
and has been analyzed using the analysis framework pre-
sented in [Lamotte et al., 2007], the elements are grouped
into components as described in section 5.3. In our ex-
ample, the components corresponds to the elements of
the circuit as described in section 4. A control command
code written in IEC61131-3 [IEC, 2003] can be associ-
ated to each component depending on his type (section
or turnout), communication between these codes is set-
up according to the relation between the components.
As in our case, we want to make the code work on our
target PLC which is a Schneider TSX, the IEC61131-3
code needs translation to be understood by PL7-Pro, the
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Fig. 4. Physical architecture for the train circuit described using the DeSyRe UML profile

programming tool for the TSX Premium family of PLCs,
this translation consists in writing the code in the proper
format and is described in section 5.5. It also consists in
transforming the SFC code as defined into the IEC61131-3
into the equivalent grafcet code, used in PL7-Pro.

Fig. 5. Code generation framework

To achieve reconfigurability, it is necessary to provide
reconfiguration mechanism. This can be done by applying
the generation framework at runtime, to obtain a new
code from a chosen configuration. A choice has to be made

between generating the whole code off-line, preventing the
system from being reconfigurated and generating it all
on-line. In fact, it is possible, to generate only the code
corresponding to the configuration. On the train circuit,
one solution is to generate routing tables data from the
configuration, which are uploaded to the PLC at runtime
and used by the control/command code in the PLC to
decide what to do. Both SFC code and routing tables
are generated using the framework described on figure 5,
but while the first is applied off-line, once and for all, the
second is applied on-line.

5.2 Introduction to model engineering

Model engineering is used to implement the generation
framework. It acts as a glue between the models. Models
are defined by a meta-model and mapping between them
are expressed into a model transformation language. In-
jectors and extractors are also used to import and export
models to technical space (Petri nets, text files or XML
for example), tools relevant to these technical spaces may
then be used to get results from the models.

The model transformation tool used for these experiments
is the atlas transformation language (ATL) [Bézivin et al.,
2003], which is part of the AMMA platform and the
Eclipse M2M project. ATL is a prototype developed at
the University of Nantes by the ATLAS Team. AMMA
provides ways to seize meta-models, to express mappings
between them, to perform the transformations and use
injectors and extractors.

An ATL transformation is composed of rules that define
how source models elements are matched and navigated to
create and initialize the elements of the target models. In
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ATL, the navigation rules syntax is based on the object
constraints language (OCL) [OMG, 2003].

Model engineering approaches enforces consistency be-
tween the different models used in the design and in
the implementation of the system. Model manipulation is
eased since model management is done by ATL. Another
advantage of model engineering is that once a model has
been defined by its meta-model, it can be used in other
contexts.

The next subsections describe how model engineering is
used for implementing the proposed framework.

5.3 Partitioning the model into components

The first step in the framework consists in slicing the
model into components. This partitioning may be done ac-
cording to several rules. A logical partitioning would lead
into components to drive the realization of a given product.
This step is performed using a model transformation.

For the train circuit example, we have applied a physical
partitioning. This partitioning leads to the creation of
one component for each physical element in the system
(turnout or section). These elements are easily matched in
the physical architecture model represented on figure 4
as each section is represented by a Stationary Resource

and each turnout by a Transport Resource. For the code
generation, the C1 resource is considered as a turnout which
only has two entries.

5.4 Taking I/O into account in code generation

In order to properly perform the transformation to PLC
program, the link between elements defined in DeSyRe and
the actuators and sensors must be made. These links are
defined through another model called IOA (Input Output
Association), which is mapped onto the DeSyRe model
using the names of its elements. In our application, target
for code generation is well defined and is a PLC. An
IOA model is constituted of several IO, which associates
one or several element to a IEC61131 variable. To enable
more complex constructs, one can associate a PRL action
written in the ST language, this action will be added to
the PRL section of the SFC (which is executed just before
the SFC in the PLC cycle), it can be used to call a function
block for instance.

Listing 2 is an excerpt of the IOA definition used for the
train circuit featuring the description of the link between
a Port and a sensor, which can be accomplished either by
directly using the IO name (the case for T1 a) or by using
an action (for T19 b). In the latter, we had to access one
bit of a word, it can also be noted that T19 b and T3 b share
the same sensor. As for turnout command, an output from
the PLC is associated to the connection it enables. Here,
using %Q3.1 the A2 turnout will be set so that a train on
the T1 section will travel to section T3. The actual IOA
definition for the circuits defines the 27 inputs or outputs
controlled by the PLC.

Listing 2. Example IOA model description
io ’%I2.2’ { Port ’T1.T1_a’ ; }

io ’%M3’ [’%M3 := %MW20:X3;’] {

Port ’T19.T19_b’;
Port ’T3.T3_b’;

}

io ’%Q3.1’ {
Connection ’T1T4’;
Connection ’T4T1’;

}

5.5 Generating the code for each component

Partitioning rules have been devised and that elements in
the model are associated with their corresponding physical
elements. Now a model transformation has to be written
to generate the code for each component. Communication
primitives enabling communication between these compo-
nents must also be generated. The IOA model is used
during the code generation to write the ST phrases that
reads inputs and write outputs.

For the train circuit, the control/command code of the
elements is described into the SFC language. Communi-
cation between the SFCs is the basis of the reservation
mechanism that permits the train moves along the circuit.
These moves are encoded into routing tables, which are
generated from the configuration and are uploaded into
the PLC on each reconfiguration of the circuit. To read
the routing tables, components need to know which op-
eration sequence an engine is currently performing, this
information is stored in the memory of the PLC and is set
by a program on PC.

Figure 6 describes the cooperation mechanism used for
moving an engine from a section (s1) to another section
(s2) through a turnout (t). First, s1 looks up its routing
table and reads that the train should go through the t

turnout. It asks t for a transfer. t, in turn looks up its
table and reads that the train should move to s2. It sets
itself up and waits for s2 to be ready. When both sections
are ready, a informs s1 that the transfer can begin. The
s1 component starts the engine. As soon as it leaves s1 is
ready to accept a new engine. Once the train arrives on
s2, as the transfer is finished, t is ready to perform new
transfers. s2 stops the engine a consults the routing table
to decide what to do.

Fig. 6. Cooperation between elements in the circuit to
drive the engines

5.6 Configuration of the circuit

IEC61131 code generated for the train circuit needs rout-
ing tables in order to work. These routing tables are ob-
tained from elements in the configuration model. Routing
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tables generation follows the framework defined in this
section, they are also obtained from a physical decompo-
sition of the system, as one table is generated out of each
resource.

A routing table is composed of several line. Each line
associates three element : the transfer sequence, the input
port and the output port. When a train is on a resource
(section or turnout), this resource can obtain the port by
which the train should leave from the transfer sequence it
is currently performing and the port from which it entered.

Table 1 gives a sample routing table, generated out of the
l5c3 configuration described on listing 1. This table only
consists in one line, as A5 is only used in on transfer se-
quence : TS T10T11, input and output port are obtained from
the T10T11 connexion, defined in the physical architecture
represented on figure 4.

Transfer sequence Input port Output port

TS T11T10 T10.T10 a T11.T11 a

Table 1. Routing table for the A5 section in the
considered configuration

Routing tables are sent to the PLC memory from the PC
by directly writing data into the PLC memory.

Configuration not only defines transfer sequences that
permits the generation of the routing tables, but also
operation sequences. These operation sequences are lists
of operations which can either be a transfer operations
(associated with a transfer sequence) or a stationary
operation. The operation sequences are also transfered to
the PLC memory and are used by the SFC associated to
turnouts to advance in operation sequences.

6. RESULTS

The PL7-pro program generated for the train circuits is
4298 lines long. It consists in 317 steps and 362 transitions.

This code successfully drives engines on the circuit. We
have been able to set-up reconfiguration scenarios. One of
these scenarios starts with a configuration performing the
S2 function sequence (F2, F3, F4) on the inner loop and
the outer loop without changing direction. After a failure
on the T21 section, a new configuration is chosen and sent,
which uses the small and outer loops. When another failure
occurs on the T3 section, the same loops are used but the
engine must changing direction on the T19 and T1 sections
to avoid T3.

7. CONCLUSION

This article has shown how model engineering techniques
could be used to generate control/command code from
a higher-level description of the system. This generation
provides non negligible benefits.

Design is performed on a high-level model of the system.
Using this model ensures the consistency between analysis
performed on the model and its implementation, since the
same input is provided to both activities. Then, it enables
to easily apply modifications either on the physical system,
or on the functional principle of the components.

Future work concerning code generation will focus on
defining a component model. Modeling the control/com-
mand architecture is also necessary to be able to deploy the
components on it. This description can be done using the
DeSyRe language. When a model of the control/command
architecture exists, it should be possible to expand the IOA
definition so that it is less linked to a technology.

As for reconfiguration, for now the configuration is chosen
from a predefined pool. Future work will focus on the
automatic generation of the configuration.
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