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Abstract: In this paper, we propose a new approach to model irreversibility in robotic drive chains. 

Actually, some types of gears such as worm gears have an efficiency which varies according to the power 

flow direction. The irreversibility appears when the efficiency tends to zero in one direction only, usually, 

from the load to the motor. The proposed methodology consists of using a state machine to describe the 

functional state of drive chain. For each state, an efficiency coefficient that characterizes the power loss is 

defined. This technique gives conclusive results during experimental validation and allows reproducing a 

reliable robot simulator. This simulator is set up for the purpose of position control of a medical 

positioning robot. 

 

1. INTRODUCTION 

Modern control theories in robotics are more and more turned 

towards model-based controllers such as computed torque 

controllers, adaptive controllers or feedforward dynamic 

compensators. Therefore, dynamic modeling has become an 

inevitable step during controller design. Besides, accurate 

dynamic modeling is a key point for simulations during the 

mechanism design process. 

In the literature, the problem of robot dynamic modeling is 

treated in two steps. The first one concerns the mechanical 

behavior of the robot external structure considered often as a 

rigid structure. Many researchers have treated this problem 

and different techniques have been introduced in order to 

solve this issue. The two best-known methods in this matter 

are the Newton-Euler formulation and the Lagrange 

formulation (Khalil, 2002). 

The second step concerns the drive chain modeling, which 

includes motors, gears and power loss modeling. Despite the 

advances made in the field of mechanical modeling, some 

issues are still without a convenient solution. We can 

mention, for instance, the phenomenon of irreversibility that 

characterizes certain types of mechanical transmissions such 

as worm gears (Henriot, 1991). This characteristic is often 

required for security reasons like locking the joint in case of 

motor failure or unexpected current cut-off.  The purpose of 

this paper is to present a new modeling approach based on a 

state machine in order to simulate irreversible transmissions. 

This paper is organized as follows. In section 2, we give a 

brief overview of the LCA vascular robot, which is used as 

an application for this study. Section 3 presents details about 

the modeling approach used for the robot structure and drive 

chain. Section 4 presents the irreversibility modeling issue 

and the proposed solution. Section 5 illustrates the 

experimental validation results. Section 6 points out a first 

control approach for the LCA robot. Finally, section 7 

presents some concluding remarks. 

2. LCA robot presentation  

 

Fig. 1: LCA vascular robot 

The LCA vascular robot (figure 1) is used for medical X-ray 

imaging. It is a four-degrees-of-freedom open-chain robot 

composed of the following links: L-arm: rotational joint, 

Pivot: rotational joint, C-arc: rotational joint and Lift: 
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prismatic joint. We note that the X-rays tube it fixed the C-

arc. To sum up, robot has three rotational joints and one 

prismatic joint.  

3. Modeling approach 

The modeling of the LCA robot requires a clear distinction 

between the dynamic model of the mechanical structure and 

the drive chain models (figure 3). In fact, the dynamic model 

describes merely the relation between the applied torques and 

the ideal mechanical reaction of the gantry given by the joints 

acceleration. 
 

L-arm drive chain  

Pivot drive chain  

C-arc drive chain  

Lift drive chain  
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iV  are the motors command voltage. iΓ are the axes driving torques.  
Fig. 2: The robot model structure 

The drive chain model takes into account the hard 

nonlinearities of the system such as joints friction, gear’s 

irreversibility. 

Gantry dynamic modeling 

Two main methods can be used to calculate the dynamic 

model of the robot mechanical structure. We can mention the 

Newton-Euler formulation and the Lagrange formulation 

(Khalil, 2002). 

Most authors use the Lagrange formulation that gives the 

mathematical expression of the model as: 
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The latter can be reformulated into:  

 )(),()( qQqqqCqqAm ++=Γ ����  (2) 

Where qqq ���,, are respectively the vectors of joints 

position, velocity, and acceleration. 

)(qA : the 4x4 robot inertia matrix. 

qqqC �� ⋅),( : the 4x1 Coriolis and centrifugal torque/ forces 

vector. 

)(qQ : the 4x1 gravitational torques/ forces vector. 

mΓ : the 4x1 input torques/ forces vector. 

2.2 Drive chain modeling 

The next step consists of modeling the drive chain, which 

includes the electrical motor (DC motor for this application), 

the mechanical transmission (gears) and the elements of 

power dissipation (friction) (figure 3): 
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Fig. 3: Drive chain model 

Electrical motors modeling is a well-known issue, hence it 

will not be described in this paper. We lay stress on gears and 

friction modeling, which are the cause of the irreversibility. 

Actually, this phenomenon can be modeled using several 

approaches. From a microscopic point of view, it can be 

modeled by describing the forces of contacts among the 

driving and the driven elements inside the gearbox. 

Unfortunately, this rigorous approach leads to very complex 

analytical model, with serious difficulties in the 

implementation and simulations, particularly in the case of 

closed loop structures including controllers (Henriot, 1991). 

Besides, the identification of this type of models is very 

complicated due to the significant number of its parameters. 

We can consider a macroscopic modeling approach where 

the power loss in the friction bloc (figure 3) is modeled using 

an efficiency coefficient taking account of the power transfer 

direction (load driving/driven) (Abba, 1999), (Abba, 2003). 

In our approach, we propose to use a state machine to define 

the current functional state of the transmission in order to 

reproduce the irreversibility. In the case of this robot, this 

method has been tested and the obtained model was validated 

experimentally. 

4. The irreversibility modeling 

This section is the most essential in drive chains modeling. 

In fact, good power dissipation modeling helps to reproduce 

complex gear behaviors such as irreversibility. The power 

dissipation will be illustrated through the friction 

phenomenon.  

In robotics, friction is often modeled as a function of joint 

velocity. It is based on static (eq.3), dry and viscous friction 

(eq.4) (Khalil, 2002), (Armstong, 1988).  

0 if

0,0 if        

0,0 if        

0

),max(

),min(

),(

≠
=<Γ

=>Γ

�
�

�
	




ΓΓ

ΓΓ

=ΓΓ

mi

mimi

mimi

srimi

sdimi

mimifsi

q

q

q

q

�

�

�

�  (3) 

where miq� , sdiΓ  and sriΓ are respectively the velocity, the 

static friction torque for the direct and the reverse motion of 

the joint “i” . 
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where cdif  and crif are the Coulomb friction coefficients 

for the direct and the reverse motion of the joint “i”, vdif  and 

vrif  are the viscous friction coefficients for the direct and the 

reverse motion of the joint “i”. 

These models produce accurate simulation results with 

simple drive chain structures. However, in the presence of 

complex mechanisms such as worm gears these models lack 
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of reliability. To illustrate this phenomenon, we can compare 

the theoretical motor torque required to drive the LCA pivot 

axis in the case of a reversible transmission and the real 

measured motor torque which is obtained via the motor 

current measurement. Figure 4 and 5 show the applied 

torques on the pivot axis during a 7°/sec and -7°/sec constant 

velocity movement. During this movement, the robot 

dynamic is represented by the following dynamic equation: 

 flm Γ+Γ=Γ  (5) 

where )(qQl =Γ is the load torque and fΓ is the friction 

torque. 

Consequently, we expect that the motor torque will have 

the same behavior as the load torque since the friction torque 

does not vary at constant speeds (eq.5). However, these 

results reveal an important difference between the measured 

motor torque and the expected motor torque with a drive 

chain using only velocity friction model. We notice that at the 

position 60 degrees, the load becomes driving, which means 

that the direction of the power flow changes. Actually, the 

irreversibility compensates the gravity torque in this case. 

Therefore, it is essential to expand the friction model to take 

into consideration more variables such as motor torque and 

load torque in order to reproduce the irreversibility in a 

simulation environment.  
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Fig. 4: Motor and load torque variation during constant velocity rotation 

(7 °/s) 
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Fig. 5: Motor and load torque variation during constant velocity rotation      

(-7 °/s) 

Consequently, the new friction model fΓ applied on motor 

shaft will have the following structure: 

 ),,()(),( mlmfTmfvmmfsf qqq ��� ΓΓΓ+Γ+ΓΓ=Γ  (6)  

where :  

),( mmfs q�ΓΓ : 4x1 vector of the static friction model  

)( mfv q�Γ : 4x1 vector of the velocity friction model 

),,( mlmfT q�ΓΓΓ : 4x1 vector of the torque friction model  

fsΓ and 
fvΓ are the classical friction terms usually used in 

drive chain modeling (Armstong, 1988),(Dupont, 1990). 

Whereas,
fTΓ  presents the term that takes account of the 

irreversibility behavior.  

The proposed torque friction model is:  
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where ),,( milimimi q�ΓΓµ  and ),,( milimili q�ΓΓµ  are the motor 

and load friction dynamic coefficients. 

Let’s consider now the complete robot dynamic model: 

 flmmm qqANqJ Γ+Γ++⋅=Γ −
���� )(1  (8) 

where ))(),((1
qQqqqCNl +=Γ −

��  and mJ  is the 4x4 motors 

inertia matrix. By replacing (7) in (8) we obtain: 
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where mµ  and lµ  are respectively 4x4 diagonal matrixes: 
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By regrouping the terms of equation 9, we obtain: 
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where )( 44 mm I µη −= ×  and )( 44 ll I µη += × . 

The new terms mη  and lη  which depend on mΓ ,  lΓ  and 

mq�  introduce the efficiency concept in the robot dynamic 

model. The next section will focus on the proposed approach 

used to calculate the drive chain efficiency coefficients. 

4.1 Efficiency coefficients estimation 

One of the complex issues in drive chain modeling is the 

estimation of the efficiency coefficient. One technique 

consists in theoretically calculating the efficiency of each 

element of the drive chain using the efficiency definition 

(Henriot, 1991): 

 
in

out

P

P
==

Power Emitted

Power Received
η  (11) 

The calculation of this coefficient requires the determination 

of the driving element whether it is the motor or the load. We 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2296



 

 

  

 

talk then about the motor torque efficiency ( mη ) or the load 

torque efficiency ( lη ). Therefore, the received power “ inP ” 

could be either from the motor or the load.  

Actually, this method can be applied with simple gear 

mechanisms such as spur gears, whereas for complex gears, 

such as worm gears, the calculation of the efficiency 

coefficient using analytical formulas tends to be hard and 

inaccurate due to the lack of information concerning the 

friction modeling as well as the complexity of the contact 

surface between gears’ components. Besides, to our 

knowledge, this problem was treated theoretically only in the 

steady state and it has rarely been treated in the transient 

state. 

The alternative that we propose is to experimentally 

identify the efficiency coefficient according to a functional 

state of the drive chain, for instance, when the load is driving 

the movement or when the motor is driving the movement. 

This leads us to create a state machine with the following 

inputs and outputs: 

Inputs Outputs 

mΓ : motor torque (Tm) mη : motor efficiency 

lΓ : load torque (Tl) lη : load efficiency 

mq� : motor velocity  

Now, we will present the states and the criteria of states 

transitions that we have used for LCA robot drive chain 

modeling. The state machine includes two levels: 

• The upper level that describes the motion (figure 6) 

• The lower level describes the switch between motor 

driving and load driving states (figures 7, 8), and 

associates an efficiency coefficient for each state. 

 
Fig. 6: Motion state machine 

In the upper level, the transition condition is the sign of the 

velocity. In fact, for simulation convergence issue the drive 

chain is considered stopped when epsm Vq <� , where epsV  is 

the stop velocity threshold. 

For each motion state, we build the movement driving sub-

states. 

1) The stop state (figure 7): 

During the stop phase, the drive chain is irreversible (the 

load torque cannot drive the movement). Motion is observed 

when the motor torque becomes superior to the load torque. 

In the lower level, the state transition is based on the motor 

and load torque values. As for epsV  (figure 7), epsTm  

represents the motor torque threshold, it is used for 

simulation convergence issues ( Nm 10
5−=epsTm ). 

 

 
Fig. 7: Stop state machine 

 

2) The direct motion state: 

For direct motion state (if V>0), we have four main states 

(figure 8), the states transitions are given by the following 

conditions: 

• 0>Γm and 0<Γl : the motor is driving 

• 0>Γm and 0>Γl : we distinguish 2 states whether 

ml Γ>Γ  or not. 

• 0<Γm : the motor is braking (load driving) 

 

 
Fig. 8: direct motion state machine 

3) The reverse motion state: 

The reverse motion (V<0) state machine has the same 

structure as the direct motion one. We need to replace mΓ  and 

lΓ  by mΓ−  and lΓ− . The table 1 summaries the drive chain 

efficiency coefficients for each state: 

1. Motor driving 

2. Motor and load driving 

3. Load driving 
 

States 
Direct motion 

lη  
Reverse 

motion lη  

1- 0<Γ⋅Γ lm  0.9 0.9 

2- 0>Γ⋅Γ lm  & 
lm Γ<Γ  0.55 0.16 

3- 0>Γ⋅Γ lm  & 
lm Γ>Γ  0.45 0.06 

Table 1: Drive chain efficiency coefficients 
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5. Experimental validation 

The validation of the drive chain model has been done on 

the pivot axis. Indeed, it allows the system to have different 

states transition (load driving/driven) during the same 

movement. The efficiency coefficients have been identified 

using experimental measures. 

We compare the open loop response of the pivot joint and 

the simulation results to a voltage input for both direct and 

reverse motion. Figure 9 shows the applied voltage on the 

pivot motor for a direct motion test. Figure 10 shows the 

experimental results (dashed curve) of the current, the 

velocity and the position and those obtained in simulation 

(solid curve). We notice in that the simulation response 

represents the same behavior as the real mechanism. In this 

figure we distinguish four main phases: 

• The starting phase 24s to 25s 

• The motor driving phase 25s to 37.8s 

• The load driving phase 37.8s to 4.2s 

• The braking phase 40.2s to 40.3s 
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Fig.9: Open loop motor command voltage 
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Fig. 10: Direct motion outputs 

6. Control approach 

In this section, we will present a first control law based on 

two cascaded loops. An internal current loop associated to an 

external speed loop. Each one comprises a proportional 

integral “PI” regulator (figure 11) (Poignet, 2002)0. This 

approach will be implemented and tested using the pivot axis 

simulator presented in the previous sections. 

The transfer function of the PI controller is (Ogata, 1997) 

])(11[ sTKG ip ⋅+⋅=  where pK  represents the proportional 

gain and iT  represents the integral action time. 
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Velocity 

Current 

Pivot Axis 

Velocity loop 

PI velocity  

controller 

PI current  
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Velocity 
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Curent loop 
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Figure 11: Cascaded loops controller 

6.1 Current loop regulator 

The first step consists of calculating the current loop 

parameters. We extract the linear models of the pivot around 

different operating points. Figure 12 shows the open loop 

Bode diagrams of the current loop around the different 

operating points. These diagrams illustrate that at high 

frequency, the frequency responses are independent from the 

operating point. Consequently, we can calculate the controller 

parameter regardless of the pivot position. Since the response 

time to torque disturbances is directly related to the 

integration time constant iT , the approximation 3r it T≈  can 

then be used, where mstr 3= . Then, ipK _  is estimated so as 

to ensure the cut-off frequency at 
1

_ srad10001 −⋅== iic Tω , 

Graphically, we obtain 62.3130_ == dBK ip  
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Fig. 12: Current open loop bode responses for linearized 

pivot model 

 

Figure 17, shows the simulated current response to a step 

reference of 5 A. We notice a response time ms 3≈rt  and an 

over shoot %24=D  
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Fig. 13: Current step response 

6.2 Velocity loop regulator 

The same approach is used to calculate the PI velocity 

controller parameters. As for the current controller, we notice 

(figure 14) that the velocity controller can be calculated 

regardless of the operating points for frequencies higher than 

20 rad/sec. Hence, we choose: 
1

_ srad1001 −⋅== vic Tω  and 

graphically (figure 14), we deduce 23.316dB50_ ==ipK .  
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Fig. 14: Velocity open loop bode responses for linearized 

pivot model 

 

Figure 15 illustrates the simulated current, velocity and 

position responses to a ramp velocity input. The total 

displacement is about 25 degrees, the range was chosen so as 

to observe the state switching “motor driving to load 

driving”. The transition occurs at 55 degrees corresponding to 

the vertical position (90 degrees) of the center of gravity. 

7. Conclusions 

In this paper, we presented a methodology in order to 

model the irreversibility property in mechanical drive chains. 

The proposed approach uses a macroscopic modeling of the 

gears, which are usually the origin of irreversibility in a drive 

chain. It consists in creating a state machine representing 

different functional states of the gears and attributing an 

efficiency coefficient to each specific state. 

The validation of the proposed modeling was carried out 

on the Pivot axis of the LCA robot. The methodology has 

been tested when the position trajectory leads to some 

transitions “motor driving to load driving” and the obtained 

results prove the accuracy of the model. 
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Fig. 15: Velocity ramp response 

Besides, a first control approach based on PI controllers 

was presented. The controller parameters were calculated 

using a classical frequency response method using a set of 

models around different operating points. 

The perspectives of this work concern two research 

orientations. The first one is the definition and the study of an 

automatic procedure to identify the efficiency coefficient for 

each state. The second one is the investigation of the 

trajectory planning and the control of robots with irreversible 

transmissions when considering state machines for gear’s 

modeling. 
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