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Abstract: A new High Order Sliding Mode (HOSM) controller and an adaptive observer
for sensorless induction motors (IM) drive are designed. The adaptive interconnected observer
estimates the fluxes, the angular velocity, the load torque, and the stator resistance. The speed-
flux control law is an original HOSM one: a sliding manifold is designed in order to ensure
finite-time convergence of sliding variable and its high order time derivatives. The Lyapunov
theory is used to prove the stability of the observer then the stability of the "observer-controller".
To test the feasbility of the proposed solutions, a significant low frequency benchmark is used
by considering the sensorless control problem of IM. Robustness with respect to parameters
variations is proved and experimentally verified.

1. INTRODUCTION

Due to cost, fragility of mechanical speed sensors and the
difficulty to install sensors in many applications, sensorless
induction motor (IM) drives are becoming wide spread
solutions for the next generation of commercial drives.
However, the IM presents a challenging control problem: it
is a complex highly coupled nonlinear system. Two of the
states variables (rotor fluxes/mechanical speed) are not
usually measurable. Due to heating, the rotor and stator
resistances considerably vary with a significant impact on
system dynamics. Moreover the load torque is generally
unknown.
More often than not, for complex controls like Field Ori-
ented Control (FOC) or Variable Structure Control (VSC),
a shaft encoder is necessary. But in the high power range,
the mounting of the sensor and its maintenance are diffi-
cult: vibrations produced by the high power motor damage
the encoder coupling and the speed measure quality. An
alternative is then to obtain an estimated speed value
(sensorless). A major difficulty of the sensorless algorithm
is the estimation of the state variable at low frequencies
(Canudas et al. [2000]). Another difficulty is to ensure the
robustness against parameter variations. For example the
most critical parameter affecting performance at low speed
is stator resistance (Holtz [2002]). In Canudas et al. [2000]
and Ibarra et al. [2004], the authors demonstrate that the
main conditions to lose the observability of IM are: the
excitation voltage frequency is zero and the rotor speed is
constant. Yet, in the literature, the sensorless algorithms
are usually tested and evaluated at high and low speed
nevertheless see Ghanes et al. [2006] and Montanari et al.
[2006]. But, few studies have highlighted this problem of
unobservability (Ghanes et al. [2006]). In this paper the
"observer+controller" is tested on a "Sensorless control
benchmark". The trajectories of this benchmark are cho-

sen to evaluate the IM sensorless algorithm in observable
and unobservable conditions. Unfortunately when the load
torque is greater than 20% of the nominal load torque the
"observer+controller" becomes unstable.
The concepts and principles of sliding mode (SM) control
applied to electrical motors is introduced in Utkin [1993].
The success of this type of control for electric drives, is
mainly due to its disturbance rejection, strong robustness
and simple implementation. In literature, there is a large
number of papers that use this approach for sensorless IM
drives (Aurora et al. [2004], Barambones et al. [2004]). All
of these papers used the standard approach of SM control.
The specific problem of this standard approach is the chat-
tering effect, i.e dangerous high-frequency vibrations of
the controlled system. For example in Aurora et al. [2004],
a time derivative of the currents have been regarded as
auxiliary control signal to avoid the problem of chattering.
In order to overcome this drawback, and to improve the
controller performances, an approach called "High Order
Sliding Mode" has been proposed in Bartolini et al. [1998]
and Levant [1993]. These HOSM keep the main advantages
of the standard sliding mode control, the chattering effect
is attenuated and high order precision provided (Levant
[1993]).
rth order SM control solutions with finite-time convergence
have been proposed in Plestan et al. [2008] and Laghrouche
et al. [2004b]. At authors’ best knowledge, these methods
for sensorless IM drives have never been proposed. In the
sequel, the HOSM speed-flux control is based on Plestan
et al. [2008].
The contributions of the current paper are

• A HOSM speed-flux controller (Plestan et al. [2008])
in case of "sensorless benchmark",
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• An estimation of the speed, the load torque and the
stator resistance critical parameter at very low speed
(Traoré et al. [2007]),

• A stability proof of the closed-loop system,
• Experimental tests on a significant "Sensorless Con-

trol Benchmark" described in Ghanes et al. [2006].

2. INDUCTION MOTOR MODEL

The IM model is based on the motor equation in a rotating
d and q frame (Chiasson [1995])and reads as

ẋ = f(x) + g(x)u
y = h(x)

(1)

where x = [isd isq φrd φrq Ω Tl Rs]T , u = [usd usq]T , y =
[h1 h2]T = [isd isq]T

f(x) =











baφrd + bpΩφrq − γisd + ωsisq

baφrq − bpΩφrd − γisq − ωsisd

−aφrd + (ωs − pΩ)φrq + aMsrisd

−aφrq − (ωs − pΩ)φrd + aMsrisq

m(φrdisq − φrq isd ) − cΩ −
1

J
Tl

0
0











, g(x) =










m1 0
0 m1

0 0
0 0
0 0
0 0
0 0










Let isd, isq , φrd, φrq, usd, usq, Ω, Tl, ωs denote respectively the
stator currents, the rotor fluxes, the stator voltage inputs,
the angular speed, the load torque and stator pulsation.
The subscripts s and r respectively refer to stator and
rotor. The parameters a, b, c, γ, σ, m and m1 are defined by
a = Rr/Lr , b = Msr/σLsLr , c = fv/J, m1 = 1/σLs

γ = (L2
rRs + M2

srRr)/σLsL2
r , σ = 1 − (M2

sr/LsLr), m = pMsr/JLr .

Rs and Rr are the resistances. Ls and Lr are the self-
inductances, Msr is the mutual inductance between the
stator and rotor windings. p is the number of pole-pair.
J is the inertia of the system (motor and load) and fv is
the viscous damping coefficient.The load torque and stator
resistance are supposed constant and unknown.
As only currents are measured (y = (isd, isq)

T , an adaptive
interconnected observers (Besançon et al. [2006]) for the
sensorless IM is used. The IM model (1) may be seen as the
interconnection between subsystems (2) and (3). Then, we
suppose that each subsystem satisfies some required prop-
erties to build an observer. It is also considered that for
each observer, the state of the other is available. Equation
(1) reads as

[
i̇sd

Ω̇

Ṙs

]

=

[
0 bpφrq −m1isd

−mφrq −c 0
0 0 0

][
isd

Ω
Rs

]

+





0

−
1

J
0



Tl

+

[
−γ1isd + abφrd + m1usd + ωsisq

mφrdisq

0

]

(2)

[
i̇sq

φ̇rd

φ̇rq

]

=

[
−γ1 −bpΩ ab
0 −a −pΩ
0 pΩ −a

][
isq

φrd

φrq

]

+

[
−m1Rsisq − ωsisd + m1usq

ωsφrq + aMsrisd

−ωsφrd + aMsrisq

]

. (3)

Then, subsystems (2) and (3) can be viewed as intercon-
nected form

Ẋ1 = A1(X2, y)X1 + g1(u, y, X2, X1) + ΦTl

y1 = C1X1

Ẋ2 = A2(X1)X2 + g2(u, y, X1, X2)
y2 = C2X2

(4)

where

A1(·) =

[
0 bpφrq −m1isd

−mφrq −c 0
0 0 0

]

, A2(·) =

[
−γ1 −bpΩ ab
0 −a −pΩ
0 pΩ −a

]

,

g1(·) =

[
−γ1isd + abφrd + m1usd + ωsisq

mφrdisq

0

]

, Φ =





0

−
1

J
0





g2(·) =

[
−m1Rsisq − ωsisd + m1usq

ωsφrq + aMsrisd

−ωsφrd + aMsrisq

]

, and γ1 =
M2

srRr

σLsL2
r

.

X1 = [isd Ω Rs ]
T , X2 = [isq φrd φrq]T are the states, u =

[usd usq]T is the input, and y = [isd isq ]T is the output of
the IM model. C1 = C2 = [ 1 0 0 ].

Remark 1. For system (4), ωs is assumed to be known.
This assumption is necessary to build the interconnected
observer, but is not restrictive because ωs is provided by
the control laws design (for more details, see Section 3).

The following observer is based on the interconnection
between several observers satisfying some required prop-
erties, in particular the property of input persistency.

Remark 2. A regularly persistence input is an input that
sufficiently excites the system in order to guarantee its
observability (Besançon et al. [1998]).

In order to design an observer for system (4), one pro-
ceeds from the separate synthesis of the observer for each
subsystem. By considering the two systems

Σ1

{

Ẋ1 = A1(X2, y)X1 + g1(u, y, X2, X1) + ΦTl

y1 = C1X1
(5)

Σ2

{

Ẋ2 = A2(X1)X2 + g2(u, y, X1, X2)
y2 = C2X2

(6)

where X1 (resp. X2) represents the states of Σ1 (resp. Σ2).
For observers synthesis, X1 and X2 are assumed available.
Before designing adaptive interconnected observers for
subsystem (5)-(6), state the following assumptions
Assumption 1. Consider subsystems (5) and (6) for
which (u, X2) and (u, X1) are regularly persistent inputs
for Σ1 and Σ2 respectively.

Remark 3. It is clear that A1(·) is globally Lipschitz
w.r.t. X2, A2(·) is globally Lipschitz w.r.t. X1, and g2(·)
is globally Lipschitz w.r.t. X2, X1 and uniformly w.r.t.
(u, y).
Assumption 2. g1(·) is globally Lipschitz w.r.t. X2, X1

and uniformly w.r.t. (u, y).
Then, assuming that Assumptions 1 and 2 are fulfiiled, a
nominal adaptive observer for interconnected systems (4)
reads as

Ż1 = A1(Z2, y)Z1 + g1(u, y, Z2, Z1) + KCT
2 (y2 − ŷ2)

+(̟ΛS−1
3 ΛT CT

1 + ΓS−1
1 CT

1 )(y1 − ŷ1) + ΦT̂l
˙̂
Tl = ̟S−1

3 ΛT CT
1 (y1 − ŷ1) + B1(Z2)(y2 − ŷ2) + B2(Z2)(y1 − ŷ1)

Ṡ1 = −θ1S1 − AT
1 (Z2, y)S1 − S1A1(Z2, y) + CT

1 C1

Ṡ3 = −θ3S3 + ΛT CT
1 C1Λ

Λ̇ = (A1(Z2, y) − ΓS−1
1 CT

1 C1)Λ + Φ
ŷ1 = C1Z1

Ż2 = A2(Z1)Z2 + g2(u, y, Z1, Z2) + S−1
2 CT

2 (y2 − ŷ2)

Ṡ2 = −θ2S2 − AT
2 (Z1)S2 − S2A2(Z1) + CT

2 C2

ŷ2 = C2Z2

(7)

where Z1 =
[
îsd Ω̂ R̂s

]T
, Z2 =

[
îsq φ̂rd φ̂rq

]T
are the esti-

mated states. θ1, θ2, θ3 are positive constants, S1, S2 sym-
metric positive definite matrices (Besançon et al. [1998]),
S3(0) > 0, B1(Z2) = kmφ̂rd, B2(Z2) = −kmφ̂rq ,
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K =

[
−kc1 0 0
−kc2 0 0

0 0 0

]

, Γ =

[
1 0 0
0 1 0
0 0 α

]

where k, kc1, kc2, α and ̟ are positive constants.

Remark 4. Note that

B1(Z2)(y2 − ŷ2) + B2(Z2)(y1 − ŷ1)

≡ k[m(φ̂rdisq − φ̂rqisd) − m(φ̂rd îsq − φ̂rq îsd)]

≡ k(Te − T̃e)

with Te and T̃e respectively the “measured” and “esti-
mated” electromagnetic torques.

In order to prove observers convergence, define
ǫ = X1 − Z1, ǫ2 = X2 − Z2, ǫ3 = Tl − T̂l

Following the same idea as Zhang [2002], and applying the
transformation ǫ1 = ǫ − Λǫ3, it yields: ǫ̇1 = ǫ̇ − Λǫ̇3 − Λ̇ǫ3.
As Traoré et al. [2007], the estimation error dynamics
under uncertainties parameters read as

ǫ̇1 = [A1(Z2, y) − ΓS−1
1 CT

1 C1 + B21]ǫ1 + g1(u, y, X2, X1)
+∆g1(u, y, X2, X1) − g1(u, y, Z2, Z1) + (B12 − K ′)ǫ2
+B22ǫ3 + [A1(X2, y) + ∆A1(X2, y) − A1(Z2, y)]X1

ǫ̇2 = [A2(Z1) − S−1
2 CT

2 C2]ǫ2 + [A2(X1) + ∆A2(X1) − A2(Z1)]X2

+g2(u, y, X1, X2) − g2(u, y, Z1, Z2) + ∆g2(u, y, X1, X2)

ǫ̇3 = −[̟S−1
3 ΛT CT

1 C1Λ + B′

2]ǫ3 − [̟S−1
3 ΛT CT

1 C1 + B′′

2 ]ǫ1 − B′

1ǫ2
(8)

where the terms ∆A1(·), ∆A2(·), ∆g1(·) and ∆g2(·) contain
the uncertainties A1(·), A2(·), g1(·), g2(·) respectively, and
B21 = ΛB2(Z2)C1, B12 = ΛB1(Z2)C2, B22 = ΛB2(Z2)C1Λ, B′

2 =
B2(Z2)C1Λ, B′′

2 = B2(Z2)C1, B′

1 = B1(Z2)C2, K ′ = KCT
2 C2.

Let Vo = V1 + V2 + V3 define a candidate Lyapunov function
with V1 = ǫT

1 S1ǫ1, V2 = ǫT
2 S2ǫ2 and V3 = ǫT

3 S3ǫ3. Next, by
taking the time derivative of Vo and replacing the suitable
expressions (Traoré et al. [2007]) one gets

V̇o ≤ −(1 − ς)δV, ∀ ‖ǫ‖ ≥
µ

ςδ
. (9)

Then, the observer asymptotically converges to zero as
‖ǫ‖ ≥ µ

ςδ
.

Remark 5. The difference between the observer in Traoré
et al. [2007] and the proposed observer is the estimation
of the stator resistance value which is a critical parameter
at low speed. This increases the robustness of the adaptive
interconnected observer with respect to parameter varia-
tions of the IM.

3. HIGH ORDER SLIDING MODE CONTROL

After applied flux oriented control strategy (Blaschke
[1972]), let us denote by Ω∗ and φ∗ the smooth bounded
reference signals for the output variables to respectively
control the speed Ω and the rotor flux modulus

√
φ2

rd
+ φ2

rq.
Following the strategy of field oriented control (φrd =
√

φ2
rd

+ φ2
rq, φrq = 0), then the electromagnetic torque

Te =
pMsr

Lr
φrdisq (10)

is proportional to the product of two state variables φrd

and isq . From (10), it is observed that by holding constant
the magnitude of the rotor flux, there is a linear relation-
ship between the variable isq and the speed dynamic.
Before carrying on the design of the controllers, let us first
examine how to estimate the stator frequency (ωs). For
the flux oriented field φrq ≡ 0, so that ωs = pΩ + aMsr

φrd
isq.

To avoid the uncertainties of IM parameters in the ob-
server and achieve our goal (φrq ≡ 0), we define

ω̃s = pΩ̂ + a
Msr

φ̂rd

isq −
(isq − îsq)

β1φ̂rd

kωs (11)

where ω̃s is an estimate stator frequency, β1 = Msr/σLsLr

and kωs > 0. The main objective is to control the speed and
flux of induction motor by using high order SM controller.

3.1 High order sliding mode controller

Problem formulation. Consider a nonlinear system (1).
For a sake of clarity, only single output-single output case
is considered in the sequel. Let σc(x, t) (x ∈ IRn) the state
variable) the sliding variable with a relative degree equal
to r.
H1. The relative degree r of (1) with respect to σc is
assumed to be constant and known, and the associated
zero dynamics are stable.
The control objective is to fulfill the constraint σc(x, t) = 0
in finite time and to keep it exactly by some feedback.
The rth order sliding mode control approach allows the
finite time stabilization to zero of the sliding variable
σc and its r − 1 first time derivatives by defining a
suitable discontinuous control function. Then, the output
σc satisfies equation (Levant [2005])

σ
(r)
c = ϕ1(x, t) + ϕ2(x)u (12)

with ϕ2(x) = LgLr−1
f

σc, ϕ1(x) = Lr
f σc. Assume that

H2. The solutions are understood in the Filippov sense
(Filippov [1988]), and system trajectories are supposed to
be infinitely extendible in time for any bounded Lebesgue
measurable input.
H3. Functions ϕ1(x, t) and ϕ2(x) are bounded uncertain
functions, and, without loss of generality, let also the sign
of ϕ2(x) be strictly positive. Thus, there exist positive
constants Km > 0, KM > 0 and C0 ≥ 0 such that 0 < Km <
ϕ2(x) < KM and |ϕ1(x, t)| ≤ C0 for x ∈ X ⊂ IRn, X being a
bounded open subset of IRn within which the boundedness
of the system dynamics is ensured, and t > 0.
Then, the rth order sliding mode control of (1) with respect
to the sliding variable σ is equivalent to the finite time
stabilization of

Żc1 = A11Zc1 + A12Zc2 (13)

Żc2 = ϕ1 + ϕ2u (14)

with Zc1 := [σc σ̇c · · · σ
(r−2)
c ]T , Zc2 = σ

(r−1)
c . A11(r−1)×(r−1)

and A12(r−1)×1 are such that Zc1 dynamics read as linear
Brunovsky form.
Controller synthesis. The synthesis of a high order
sliding mode controller for (1) consists in two steps

• A linear continuous finite-time convergent control law
is used in order to induce linear reference trajectories
for system (13), which defines the sliding manifold on
which the system evolves as early as t = 0.

• A discontinuous control law u is designed in order
to maintain the system trajectories on the sliding
manifold which ensures the establishment of a rth

order sliding mode.

Switching variable. Let S denote the switching variable
defined as

S = σ
(r−1)
c −F(r−1)(t) + λr−2[σ

(r−2)
c − F(r−2)(t)]

+ · · · + λ0[σc(x, t) −F(t)], (15)

with λr−2, · · · , λ0 defined such that P (z) = z(r−1) +
λr−2z(r−2) + · · ·+λ0 is a Hurwitz polynomial in the complex
variable z. The function F(t) is a Cr one defined such that
S(t = 0) = 0 and σ

(k)
c (x(tf ), tf ) − F(k)(tf ) = 0(0 ≤ k ≤ r − 1).
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Then, from initial and final conditions the problem consists
in finding the function F(t) such that

σc(x(0), 0) = F(0), σc(x(tf ), tf ) = F(tf ) = 0,

σ̇c(x(0), 0) = Ḟ(0), σ̇c(x(tf ), tf ) = Ḟ(tf ) = 0,
...

σ
(r−1)
c (x(0), 0) = F(r−1)(0), σ

(r−1)
c (x(tf ), tf ) = F(r−1)(tf ) = 0

(16)

A solution for F(t) reads as (1 ≤ j ≤ r) (Plestan et al.
[2008])

F(t) = KcTeF tσ
(r−j)
c (0) (17)

with F being a 2r×2r-dimensional stable matrix (strictly
negative eigenvalues), T being a 2r×1- dimensional vector.
H4. There exists an integer j such that σ

(r−1)
c (0) 6= 0 and

bounded.

Lemma 1. Given Hypothesis H4 and tF > 0 bounded,
there exists a Hurwitz matrix F2r×2r and a matrix T2r×1

such that matrix K defined as

K = [F r−1Tσ
(r−j)
c (0) F r−1eF tf T F r−2Tσ

(r−j)
c (0)

F r−2eF tf T · · · Tσ
(r−j)
c (0) eF tf T ]

(18)

is invertible.

Kc is a 1 × 2r-dimensional gain matrix such system (16)
is fulfilled. Then, one gets

Kc =

[

σ
(r−1)
c (0) 0 σ

(r−2)
c (0) 0 · · · σc(0) 0

]

· K−1 (19)

Then, S, the switching variable, reads as

S = σ
(r−1)
c − KcTF (r−1)eF tσ

(r−j)
c (0) + λr−2[σ

(r−2)
c

−KcTF (r−2)eF tσ
(r−j)
c (0)] + · · · + λ0[σc(x, t) − KcTeF tσ

(r−j)
c (0)],

H5. There exists a finite positive constant Θ > 0 such
that

|KcTF reF tσ
(r−j)
c (0) − λr−2[σ

(r−1)
c − KcTF r−1eF t

σ
(r−j)
c (0)] − · · · − λ0[σ̇c(x, t) − KcTFeF tσ

(r−j)
c (0)]| < Θ

(20)

Equation S = 0 describes the desired dynamics which
satisfy the finite time stabilization of [σ

(r−1)
c σ

(r−2)
c · · · σc]T

to zero. Then, the switching manifold on which system (13)
is forced to slide on via a discontinuous control v, is defined
as:

S = {x|S = 0} (21)

Given equation (19), one gets S(t = 0) = 0: at the initial
time, the system still evolves on the switching manifold.
There is no reaching phase in opposition to previous
approaches as in Laghrouche et al. [2004b].
Controller design. The attention is now focused on the
design of the discontinuous control law u which forces the
system trajectories of (13) to slide on S in order to reach
the origin in finite time and then to maintain the system
at the origin.

Theorem 1. (Plestan et al. [2008]). Consider system (1)
with a relative degree r with respect to σc(x, t). Suppose
that it is minimum phase with respect to σc(x, t) and
that hypotheses H1, H2, H3 and H4 are fulfilled. Let r
be the sliding mode order and tf (0 < tf < ∞) the desired
convergence time. Let S ∈ IRn define by (20) with Kc

being the single solution (19) and suppose that assumption
H5 is fulfilled. Then, the control input u defined by u =
−αc sign(S) with

αc ≥
C0 + Θ + η

Km
, (22)

C0, Km defined in assumption H3, Θ defined by (20),
leads to the establishment of a rth order sliding mode with
respect to σc. The convergence time is tf .

3.2 Application to induction motor

The objective consists in designing a robust (with respect
to uncertainties/disturbances) flux and speed controller.
Define σφ and σΩ, the sliding variable, as σφ = φrd −φ∗ and
σΩ = Ω−Ω∗. From (1), the relative degree of σφ and σΩ with
respect to u equals 2 (r = 2), which implies that at least a
2nd order SM controller is designed for the flux and speed.
In order to avoid the "chattering" effect and to improve
the robustness of the controller, according to previous
design, 3rd order HOSM controllers are designed for the
two outputs, which means that the discontinuous term is
applied to σ

(3)
φ

and σ
(3)
Ω trough u̇. Then, the chattering

effect is decreasing in the control input. From (1), it yields
[

φ
(2)
rd

Ω(2)

]

=

[
ϕα1

ϕα2

]

+ ϕβ

[
usd

usq

]

(23)

where
ϕα1

= −aφ̇rd + (ωs − pΩ)φ̇rq + aMsr(baφrd + bpΩφrq − γisd

+ωsisq) +
aMsr [(baφrq − bpΩφrd − γisq − ωsisd)φrd − isqφ̇rd]

φ2
rd

φrq

ϕα2
= m[φ̇rdisq + φrd(baφrq − bpΩφrd − γisq − ωsisd)

−φ̇rqisd − φrq(baφrd + bpΩφrq − γisd + ωsisq)] − cΩ̇ −
Ṫl

J

ϕβ =

[

aMsrm1 aMsrm1
φrq

φrd
−mm1φrq mm1φrd

]

. (24)

As there are uncertainties on several parameters, one
supposes that the previous terms read as

ϕα1 = ϕNom
α1 + ∆ϕα1

ϕα2 = ϕNom
α2 + ∆ϕα2

ϕβ = ϕNom
β + ∆ϕβ

(25)

such that ϕNom
α1 , ϕNom

α2 and ϕNom
β

are the well-known
nominal terms whereas ∆ϕα1, ∆ϕα2 and ∆ϕβ contain all
the uncertainties due to parameters variations and dis-
turbance. The control input u reads as (note that matrix
ϕNom

β is invertible on the work domain (φrd 6= 0)) 1

[
usd

usq

]

= ϕNom
β

−1

[

−

[

ϕNom
α1

ϕNom
α2

]

+

[
νsd

νsq

]]

(26)

From (23-26), switching variables dynamics read as

[

φ
(2)
rd

Ω(2)

]

= Ψα + Ψβ

[
νsd

νsq

]

with Ψα and Ψβ supposed to be uncertain bounded C1-
functions. Then, one gets

[
σ

(3)
φ

σ
(3)
Ω

]

= Ψ̇α + Ψ̇β

[
νsd

νsq

]

−

[

φ∗(3)

Ω∗(3)

]

︸ ︷︷ ︸

ϕ1

+ Ψβ
︸︷︷︸

ϕ2

[
ν̇sd

ν̇sq

]

Note that previous system has the same form than system
(12). As mentionned in previous subsection, the control
law synthesis is made in 2 steps: the design of the switching

1 The interest of a such feedback has been detailed in Castro et al.
[2004]: it allows to minimize gain values of the control discontinuous
function.
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variable and the discontinuous input.
Switching vector. From (20) and Theorem 1, the switch-
ing vector reads as

• For t ≤ tF .

Sφ = σ
(2)
φ

− χφ, SΩ = σ
(2)
Ω

− χΩ

where






χφ = KφF 2eF tTσφ(0) − 2ζφωnφ(σ̇φ

−KφFeF tTσφ(0)) − ω2
nφ(σφ − KφeF tTσφ(0))

χΩ = KΩF 2eF tTσΩ(0) − 2ζΩωnΩ(σ̇Ω

−KΩFeF tTσΩ(0)) − ω2
nΩ(σΩ − KΩeF tTσΩ(0))

• For t > tF .

Sφ = σ
(2)
φ

+ 2ζφωnφσ̇φ + ω2
nφσφ

SΩ = σ
(2)
Ω

+ 2ζΩωnΩσ̇Ω + ω2
nΩσΩ

with Kφ =
[
σ

(2)
φ

(0) 0 σ̇φ(0) 0 σφ(0) 0
]

.K−1
φ

,

KΩ =
[

σ
(2)
Ω

(0) 0 σ̇Ω(0) 0 σΩ(0) 0
]

.K−1
Ω

and

Kφ =
[
F 2Tσφ(0) F 2eF tf T FTσφ(0) FeF tf T Tσφ(0) eF tf T

]

KΩ =
[
F 2TσΩ(0) F 2eF tf T FTσΩ(0) FeF tf T TσΩ(0) eF tf T

]

with F and T tuned from Lemma 1 (for details, see
Plestan et al. [2008]).
Discontinuous input. The control discontinuous input
reads as

[
ν̇sd

ν̇sq

]

=

[
−αφ.sign(Sφ)
−αΩ.sign(SΩ)

]

(27)

From (27), it yields
[

Ṡφ

ṠΩ

]

= ϕ1 + ϕ2 · ν̇ −

[
χφ

χΩ

]

(28)

4. STABILITY ANALYSIS OF THE
OBSERVER-CONTROLLER SCHEME

Recalling that the main goal of this paper is to synthetize
a robust sensorless control of induction motor, the speed
and the flux are not measurable, and the load torque is
considered as an unknown perturbation. It yields that it is
necessary to replace speed and flux measurements, and the
stator resistance in (26) by their estimated values. Then,
one gets [

usd

usq

]

= ϕ̂Nom−1

β

[

−

[

ϕ̂Nom
α1

ϕ̂Nom
α2

]

+

[
νsd

νsq

] ]

(29)

where ϕ̂β , ϕ̂Nom
α1

and ϕ̂Nom
α2

are respectively the estimated
(i.e. using the estimated values given by observer(7))
values of ϕβ , ϕNom

α1
and ϕNom

α2
.

Remark 6. In order to avoid a singularity problem in
(29), the observer is initialized with a flux initial condition
different to zero, such that (29) is well-defined. This
condition is a physical condition for IM (no flux implies no
torque!).Moreover, the SM controller allows to guarantee
that φrd reaches its reference φ∗ in a finite time. Thus,
before the motor is fluxed (i.e φrd = φ∗), the speed
reference is kept to zero.

The sliding variables become σ
φ̂

= φ̂rd − φ∗, σ
Ω̂

= Ω̂ − Ω∗

Taking ǫφrd
= φrd − φ̂rd and ǫΩ = Ω − Ω̂ the flux and speed

estimation error, it yields
σ

φ̂
= φrd − φ∗ − ǫφrd

= σφ − ǫφrd
, σ

Ω̂
= Ω − Ω∗ − ǫΩ = σΩ − ǫΩ

Let S
φ̂

and S
Ω̂

define the new switching vector; then their
dynamics reads as are:

Ṡ
φ̂

= Ṡφ − [ǫ
(3)
φrd

+ 2ζφωnφǫ
(2)
φrd

+ ω2
nφǫ̇φrd

]

Ṡ
Ω̂

= ṠΩ − [ǫ
(3)
Ω + 2ζφωnΩǫ

(2)
Ω + ω2

nΩ ǫ̇Ω]
(30)

From (28) and (30), one gets:

[
Ṡ

φ̂

Ṡ
Ω̂

]

= ϕ̄1 + ϕ̄2 · ν̇ −

[
χφ

χΩ

]

(31)

where

ϕ̄1 = ϕ1 −

[
ǫ
(3)
φrd

+ 2ζφωnφǫ
(2)
φrd

+ ω2
nφǫ̇φrd

ǫ
(3)
Ω + 2ζφωnΩǫ

(2)
Ω + ω2

nΩ ǫ̇Ω

]

, ϕ̄2 = ϕ2

By using the same method as Theorem 1, it yields that
there exist gains αφ and αΩ such that
Ṡ

φ̂
S

φ̂
≤ −η

φ̂
|S

φ̂
| and Ṡ

Ω̂
S

Ω̂
≤ −η

Ω̂
|S

Ω̂
|.

5. EXPERIMENTAL RESULTS
In this section, in order to show the feasability of the pro-
posed approach, experimental results of previous control
and observer are displayed. The motor parameters and
identified parameters values of the set-up are

Nominal rate power 1.5kW
Nominal angular speed 1430 rpm
Number of pole pairs 2

Nominal voltage 220 V
Nominal current 6.1 A

Rs 1.47Ω Msr 0.094H
Rr 0.79Ω J 0.0077Kg.m2

Ls 0.105H fv 0.0029Nm/rad/s
Lr 0.094H φ∗ 0.595Wb

The observer parameters are chosen as α = 50, ̟ = 10,
k = 0.16, kc1 = 250, kc2 = 0.5, kωs = 60, θ1 = 5000, θ2 = 7000,
θ3 = 10e − 12 to satisfy convergence conditions.
In order to optimize the behaviour and the performances
of the motor, and due to technical reasons, two parameters
tuning have been chosen: the first one has been chosen to
induce the reaching of the motor flux, the second one to
reject perturbation (such as load torque) and to ensure
high level accuracy for the trajectory tracking. Then, the
SM controller parameters are chosen such that tf = 0.3sec
and

• t ≤ 5 sec. ζφ = 0.35, ωnφ = 316 rad/s, αφ = 6.104, ζΩ =
1.56, ωnΩ = 32 rad/s, αΩ = 8.104,

• t > 5 sec. ζφ = 0.35, ωnφ = 447 rad/s, αφ = 15.104, ζΩ =
0.7, ωnΩ = 200 rad/s, αΩ = 8.106

For the experiment, only stator currents are measured. Ro-
tor speed and flux amplitude are provided by the observer
(7) whereas flux angle is provided by the estimator (11).
Stator resistance observer is initialized as Rs0 = 1.9 ohm.
The experimental sampling time T equals 200µs.
The experimental results of the nominal case with iden-
tified parameters (except stator resistance) are shown in
Fig. 1. These figures show the good performance of the
complete " Observer+Controller" system in trajectory
tracking and perturbation rejection (load torque). In terms
of trajectory tracking, we note that the estimated motor
speed (Fig. 1.b) converges to the measured speed (Fig. 1.a)
near and under unobservable conditions. It is the same
conclusion for the estimated flux (Fig. 1.f) with respect to
the reference flux (Fig. 1.e). The estimated load torque
(Fig. 1.d) converges to the measured load torque (Fig.
1.c), in observable and unobservable conditions (between
7 and 9 sec). Nevertheless, it appears a small static error
when the motor speed increases (between 4 and 6 sec). In
terms of perturbation rejection, we have noted that the
load torque is well rejected excepted at the time when it
is applied (see (Fig. 1.h&j) at time 1.5s and 5s) and when
it is removed (see (Fig. 1.h&j), at time 2.5s).
The robustness of the "Observer+Controller" is confirmed
by the result obtained with rotor resistance variation
(+50%) and (-50%) applied to the observer and controller
parameters (Fig. 2 and Fig. 3). These figures display sim-
ilar experimental results that for rotor resistance nominal
case under observable conditions. To conclude, we can
say that the increase of the rotor resistance value doesn’t
affect the performance of the speed trajectories tracking
in observable conditions. It appears a static error when
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the motor is under unobservable condition (between 7 and
9 sec), see (Fig. 2.a&b and 3.a&b). Moreover, the static
error increases transitory when the load torque is applied
at time 1.5s and 5s see (Fig. 2.h&j and 3.h&j).
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Fig. 1. Experimental result in nominal case∗∗.
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Fig. 2. Experimental result with rotor resistance variation

(+50%)∗∗.
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Fig. 3. Experimental result with rotor resistance variation (-50%)∗∗.

∗∗ : a, c: measured speed and load torque, e: reference flux,

b, d, f, g: estimated speed, load torque, flux and stator

resistance, h, i, j: speed, load torque and flux estimation

error.
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