

Solving the deployment problem of IEC 61499 applications

Tanvir Hussain and Georg Frey

University of Kaiserslautern, Dept. of Electrical and Computer Engineering, 67663 Kaiserslautern, Germany
e-mail: {hussain|frey}@eit.uni-kl.de

Abstract: Distributed control systems now-a-days are consisting of more and more heterogeneous proc-
essing nodes. Standards are making it easier to use processors, networks, operating systems etc. of varying
nature. This freedom of choice is quite beneficial as long as the control applications perform according to
the functional and non-functional specifications. Non-functional requirements especially that related to sat-
isfaction of certain temporal deadlines are quite important in control applications since they often consist
of a number of real-time components. Therefore, when heterogeneous processing elements are used de-
ployment of the software components appears to be a problematic task. This article presents a methodol-
ogy to combat this problem using explanation based learning.

1. INTRODUCTION

Distributed Control Applications of Industrial Process Meas-
urement and Control Systems (IPCMSs) are now containing
increasing degrees of heterogeneity – from the viewpoint of
hardware as well as middleware and software components.
This is mainly to achieve flexibility and reconfigurability
which is essential to cope with dynamic market demands and
rapid technological developments.

Still control system should meet certain temporal require-
ments beside the essential functional requirements. This
makes it difficult to decide on deployment of software com-
ponents of a Distributed Control System (DCS) on heteroge-
neous processing nodes. The objective of this paper is to pre-
sent a way to combat this difficulty.

Software in the realm of IPMCS conforms either to proprie-
tary regulations or general standards. The latter is more effec-
tive for development of flexible and reconfigurable manufac-
turing systems since it enables vendor independence and thus
opens up a wider range of choice for developers as well as
users. One such standard for development of distributed con-
trol applications is IEC 61499 (IEC Standard, 2005). This
standard allows one to model software elements in terms of
reusable components which later can be deployed on hetero-
geneous processing nodes as long as those nodes conform to
a compliance profile defined in the standard. Therefore, in the
context of this paper the deployment problem is solely con-
cerned with applications developed using IEC 61499.

The rest of this paper is structured as follows. Section 2 for-
mulates the problem of deployment firstly in general for DCS
and then for IEC 61499 compliant ones. A solution to the
problem of deploying IEC 61499 compliant control applica-
tion is proposed in section 3 and later compared with respect
to related approaches in section 4. Section 5 briefly presents
an example of application of the methodology and accompa-
nying results of the deployments. Finally section 6 contains
concluding remarks and concerned outlooks.

2. PROBLEM STATEMENT

In general, deployment of components of a distributed control
application on heterogeneous processing considers three
types of constraints (Cambazard et al., 2004):

1) Resource Constraints:
a) Memory Capacity: the available physical memory
space for running the control application is certainly lim-
ited as far as the usual embedded devices are concerned.
b) Utilization Factor: during its cycle processors cannot
be kept busy in executing control applications beyond a
defined percentage of time.
c) Network Usage: certain network infrastructures restrict
the number of messages that can be exchanged during a
periodic interval to a defined maximum.

2) Allocation Constraints:
a) Residence: software components can depend upon cer-
tain hardware or middleware features or might have run-
time dependencies upon certain software components
which limit their allocation to certain processing nodes.
b) Co-residence: system architecture might even force
that certain components are to be placed on the same
processing node (i.e., components that share common re-
sources).
c) Exclusion: this is the opposite of the previous inhibit-
ing co-existence of software components.

3) Time Constraints: this is the most important constraint
that any distributed real-time system must satisfy. They
are usually stated in terms of end-to-end response times.
Often correlative relations among the response times of
tasks are also considered (Gerber et al., 1995).

In what follows a particular distributed control application is
considered to show an example of the above mentioned con-
strains. A schematic of the workstation or process that is to
be controlled is depicted in Fig. 1. During the normal work-

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 8321 10.3182/20080706-5-KR-1001.1781

ing process a cylindrical object will be delivered on the con-
veyor from the preceding workstation and the conveyor will
bring it up to the 1st slot of the rotary table. The conveyor
should then stop moving and the rotary table will start rotat-
ing counterclockwise to move the object to the 2nd position.
As soon as the rotary completes a 90° rotation a sensor signal
is turned on and the control application should stop the rota-
tion within a time span of 5ms to keep the object properly in
place. An object at the 2nd position of rotary table can be
drilled and when at the 3rd position the drilled hole of the
object can be checked while a gantry crane can pick the ob-
ject up from 4th position to put it on any of the repositories
depending on the material it is made of or on the slider if it is
not properly drilled. As the gantry crane moves in horizontal
or vertical direction its position is sensed through 4 sensors
installed on the vertical bar and 5 sensors on the horizontal
bar. The control application should respond to any of this
sensor signals in no less than 5ms otherwise the crane will
not be aligned properly to its destined place.

2

13

4

-

I I I I I I

Conveyor

Drill

Slider

Repository

Drill hole
checker

Rotary
table

Gantry
Crane

Fig. 1. Schematic of the workstation which is to be controlled

The control application is to be compliant with IEC 61499.
This standard primarily defines models to describe distributed
control applications. The application and the components of it
should show reactivity and therefore should have a defined
semantics that will imply how the modeled elements should
react to external signals. Moreover, since the domain of ap-
plication of the standard is principally the embedded real-
time controllers of IPMCS, execution semantics should also
be compliant to the underlying infrastructure, for example,
the middleware, hardware and programming environments
etc. Till now a number of execution semantics evolved and
came into discussion among the concerned researchers. Some
of the execution semantics had also been implemented in
different tools or applications showing their suitability for the
desired applications. In current context Non-Pre-emptive
Multi-Threaded Resource (NPMTR) semantic first presented
in (Sünder et al., 2006) is considered. Salient features of this
resource model are as following:

• Only components responsible for communicating with
process or network interfaces (called Service Interface
Function Block (SIFB)) within a resource can have their

own threads. The threads of an SIFB can be used for re-
ceiving messages, for queuing them etc.

• In IEC 61499 a resource is a functional unit that might
contain one or more SIFBs as well as other Function
Blocks (FBs) that behave in response to events according
to a specialized state chart called Execution Control Chart
(ECC) or according to the behavior of its contained FBs
for composite FBs. The FBs execute algorithmic actions
and their interconnections within a resource determine in
what sequence the actions will be executed. Any such
event sequence is allotted its own thread for execution of
constituent actions.

• Threads of the same resource should have equal priority;
those of different resources may have different priorities.

This execution semantics accounts for simplicity in dealing
with data to be exchanged between two FBs while a corre-
sponding event triggers an FB. But certain events that arrive
at a resource while it is busy in synchronously executing ac-
tions will be lost. To combat this deficiency the Event Dis-
patcher Concept (EDC) evolved (Zoitl et al., 2006). It as-
sumes that events are stored in a FIFO queue and consumed
when the corresponding thread is notified about its allotted
execution time. In what follows NPMTR semantics with
EDC enhancement is considered. Furthermore, the priorities
of the threads are assigned such that all SIFB threads are al-
lotted the highest priority and threads for other FB chains are
allotted depending on the ratio of the sum of execution re-
quirements of the constituents with respect to the period (or
minimum inter-arrival time) of their triggering event.

The available processing nodes are modern network-enabled
microcontrollers (i.e., TINI, SNAP etc.) connected to a dedi-
cated Ethernet network. The microcontrollers are equipped
with peripherals to access digital sensor signals and to trigger
actuators.

Considering a control application for the workstation of Fig.
1 in general the constraints are as follows:

1) Resource Constraints:
a) Memory Capacity: The code and related resources as
well as the runtime memory requirement are limited by the
memory capacity of the processor nodes. For example,
SNAP offers 2MB flash memory for storage of code and re-
lated resources.
b) Utilization Factor: Firstly utilization factor should be be-
low 100%. Secondly, for multithreaded applications the
number of threads should be less than the maximum num-
ber of allowed threads that can be created on a processor
(assumed to be 6 on SNAP and TINI microcontrollers).
c) Network Usage: As far as Ethernet is used this does not
impose any restriction since the size of the messages to be
exchanged can occupy only a scanty portion of the avail-
able bandwidth.

2) Allocation Constraints:
a) Residence: Current problem does not contain any such
constraint.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8322

b) Co-residence: Every FB that needs data or event triggers
from FBs deployed on a different processing node should
use a corresponding SIFB to accomplish the communica-
tion. This is an implicit co-residence constraint that applies
to the problem.
c) Exclusion: The application needs timers to actuate cyclic
reading of inputs or timed operation of drilling which are to
be realized through use of hardware timers. Since only two
hardware timers are available per processing node, no more
than two such timer components that might operate simul-
taneously can be placed on the same processing node.

3) Time Constraints:
a) End-to-end response time between arrival of sensor sig-
nal that the rotary table has rotated by 90° and the actuation
to stop the table motor should be within 5ms.
b) End-to-end response time between detection of arrival of
the gantry crane at a stop position and actuation of corre-
sponding signal should be within 5ms.
c) If more than one object is allowed to be placed on the
conveyor then after arrival of the first one at rotary table’s
1st slot the conveyor should have to be stopped within 4ms.

Finally, in the deployment problem the feasible solutions
allowing maximal amount of slacks for the time constrained
tasks as well as usage of minimum number of processing
nodes will be considered optimal.

3. PROPOSED SOLUTION

3.1. Logic-based Benders decomposition

The problem of finding all feasible deployments satisfying a
DCS specification has an attribute that, when taken into ac-
count, can simplify the problem. It can be observed that the
resource and allocation constraints are rather static in nature
and thus can easily be modeled in a tractable form (i.e., as an
Integer Programming problem) while the time constraint is
such that the dependencies among the variables cannot be
expressed in a straightforward manner. But still solving the
problem separately for these two types of constraints might
often not be of good use. This is due to the fact that the first
type of constraints usually account for a small reduction of
the search space leaving the major part of the search space to
be scrutinized through the more complex temporal relations.

In such a situation a variation of Benders decomposition
called logic-based Benders decomposition (Hooker and Otto-
son, 2003) appears to offer a better way of solving the prob-
lem. Classical Benders decomposition applies to problems of
following form:

min ()
s.t. ()
 0

 , ,

+
+ ≥

≥

∈ ∈n
y

cx f y
Ax g y a
x

x R y D

 (1)

where ()g y is a vector of functions ()ig y . The solving
strategy of the classical Benders decomposition is to fix y to
a trial value so that the problem reduces to the following lin-

ear subproblem.

min ()
s.t. ()
 0.

cx f y
Ax a g y
x

+
≥ −

≥
 (2)

The subproblem dual can be written as

max (()) ()
s.t.
 0.

− +
≥

≥

u a g y f y
uA c
u

 (3)

If the dual has a finite solution u , it provides an inference
procedure for obtaining a lower bound on the objective func-
tion of the original problem which valid for =y y . The key
to obtaining a bound to any y is to observe that this same u
remains feasible in the dual for any y . So the same u pro-
vides a bound for any y . This bound is called Benders cut.
In case of infeasible or unbounded dual one can obtain a cut

(()) 0− ≤v a g y
where v can be obtained through solving

max (())
s.t. 0
 0.

−
≤

≥

v a g y
vA
v

In contrast to generating cuts using the linear programming
dual, logic-based Benders decomposition uses a generalized
notion of dual called inference dual (Hooker, 2006) which
can be inferred from the constraints. In this case the problem
can be represented as,

min (,)
s.t. (,)
 , ,

∈
∈ ∈x y

f x y
x y S

x D y D
 (4)

Then fixing y at some trial value ∈ yy D the following sub-
problem is obtained.

min (,)
s.t. (,)
 .

∈
∈ x

f x y
x y S

x D
 (5)

Following the pattern of the classical case at this point the
dual of this subproblem should have to be solved. Since the
subproblem is not a linear one inference duality comes into
play. The inference dual of the subproblem can be defined as:

max

s.t. (,) (,) .∈ ⎯⎯→ ≥xDx y S f x y

β

β
 (6)

In this abstract representation of Benders decomposition the
main challenge is to define a complete inference method for
the implication ⎯⎯→xD .

In case of the deployment problem the resource and alloca-
tion constraints are thus used to initially find a valid alloca-
tion and a schedulability analysis is performed on this valid
allocation to infer certain additional constraints. These con-
straints are then added to the resource and allocation con-
straints to cause faster reduction of the search space. For ex-
ample, when a particular allocation of tasks on a platform
fails to meet one or more temporal constraints, then the infer-
ence process can find out the combination of tasks that can-

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8323

not be allocated on the same processor as far as the temporal
restrictions are concerned. This process goes on until a set of
mappings of software components on processing nodes is
found where none of the allocations violate the temporal con-
straints.

In (Cambazard et al., 2004) it is shown that logic-based
Benders decomposition works for allocation of tasks on dis-
tributed hardware components. The context of the current
problem is rather complex in comparison as the temporal
behavior of the software components cannot be analyzed us-
ing simple rate monotonic analysis. Analysis of temporal
behavior of the software component in this context means to
investigate that the deadlines or end-to-end response times of
the applications are fulfilled. This is usually done in the worst
case sense. In the following subsection a description of ana-
lyzing such worst case scenarios for IEC 61499 compliant
distributed control application is presented.

3.2. Worst Case Response Time (WCRT) calculation

For WCRT calculation of applications conforming to the
above mentioned semantics a method based on the one pre-
sented in (Saksena and Karvelas, 2000) is taken. First the
WCRTs for actions deployed on a processor node is calcu-
lated and then the overall end-to-end delays are calculated by
summing the individual response times and network delays.

The method of WCRT calculation uses busy period analysis
where external events instigate the beginning of a transaction
(i.e., a chain of actions). An action can invoke a following
one through synchronous or asynchronous message passing.
This perfectly matches with the sequence of actions of IEC
61499 applications. Synchronous messages are passed within
actions of own thread and asynchronous messages are sent to
actions of other threads. Synchronous sequence of actions can
only be preempted by another thread of higher priority.

Through an iterative calculation of worst case start time
()iS qτ of q-th instance of i-th action in transaction τ is

found. Each algorithmic action can be blocked by another
algorithmic action due to run-to-completion characteristic of
the algorithmic actions. Within the priority scheme this effect
can be realized through use of preemption threshold (Saksena
and Karvelas, 2000). For IEC 61499 compliant applications
the preemption threshold of an algorithmic action is assumed
to be below the priorities of any of the SIFBs so that the algo-
rithmic actions cannot block the tasks to be accomplished by
a SIFB. Actions can experience interference from any com-
municating actions that have to be performed by SIFBs as
well as actions of any other transaction of higher priority.
Moreover, previous instances of the same transaction also
account for interferences for an action. Thus ()iS qτ comes
out to be the smallest W that satisfies:

()

 [() (() | () ())]

 (1) (() | () ())

i
k k

k il l
k l

il l
l

W B A

W C A A A

q C A A A

τ

τ
τ τ τ

π π

π π

+

≠

=

+ Ψ ⋅ ≥

+ − ⋅ ≥

∑ ∑

∑

 (7)

where ()i t+Ψ denotes the maximum number of arrivals of
event triggering transaction i in any right closed interval
[,]x x t+ . Correspondingly, ()i tΨ denotes the maximum
number of the same event arrival within the interval
[,)x x t+ .

WCRT of an action iAτ can therefore be expressed by the
following equation

|

() min

where ()+ (())

 (() (())) ()

and () (,)

0 if (() () () ())
(,)= (()) (,) otherwise

k k
j g

i

i i

k k i k i
k

k
k i k i k

k k
i j j i

k kk i j i k i g
g A A

F q W

W S q C A

W S q L A

L A L A A

A A A A
L A A C A L A A

τ

τ τ

τ τ

τ τ

τ τ

τ τ τ

π γ

+

→

=

= ϒ

+ Ψ − Ψ ⋅

=

⎧ Γ = Γ ∨ <

ϒ +

∑

∑ ⎪
⎨
⎪⎩

(8)

where ()iAτγ denotes the preemption threshold of action

iAτ and ()iAτϒ denotes the chain of synchronous actions be-

ginning at iAτ .

3.3. Deployment resolution algorithm

The deployment resolution algorithm is composed of three
components mentioned bellow.

• WCRT calculating component that follows the above
mentioned calculation scheme.

• An explanation generating component that generates ex-
planation for any infeasibility with respect to temporal
constraints. Hereby QUICKXPLAIN algorithm (Junker
2001) is used which is quite efficient in finding minimal
set of variables involved in a conflict. This component it-
eratively uses WCRT calculating component to find out
the conflicting set of software components allocated in a
processing node. These explanations in form of nogoods
(implying that none of the feasible solutions will contain
such a set). Since in parallel optimal allocation is also
sought, the lower bound on the objective value is also im-
proved after each iteration of successful explanation. In
the following searches the allocations exceeding this limit
are excluded.

• The constraint solver which should solve the master prob-
lem (consisting of resource and allocation constraints) at
each step to form the subproblem (containing only time
constraints). Moreover, its task is to integrate the minimal
set of software components involved in conflicts. This is
performed through maintaining arc consistency and con-
flict directed backjumping (Jussien et al. 2000). Thus af-
ter integrating the constraints learned from explanation
inefficiency of a standard backtrack is avoided through
jumping to a node appearing in the explanation for raising
a contradiction.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8324

In synergy these three components solve the deployment
problem. Furthermore, during each iteration partially feasible
solutions are tried for overall feasibility. In case of infeasibil-
ity, explanations are used to enrich the next search. The solu-
tion process tries to achieve efficiency through use of expla-
nations to learn about some partial solutions which could not
be successfully extended.

4. RELATED WORKS

Prayati et al. pioneered in presenting a methodology for de-
velopment of IEC 61499 compliant distributed control appli-
cations along with an algorithm for deployment of developed
artifacts on heterogeneous processing nodes (Prayati et al.,
2004). The deployment uses Branch and Bound (B&B)
where each vertex represents allocation of a closely coupled
set of tasks to a physical resource and the compatibility fac-
tors other than the real-time constraints are used in pruning
the branches at each level. The objective function for the op-
timal allocation is the feasibility ratio which refers to the
probability of the set of tasks represented by a vertex to meet
its deadline. It is shown that a preprocessing of the search
space through priority slicing of the FB tasks and clustering
of the most tightly coupled tasks shows positive effects
through raising the feasibility ratio of the resulting schedules
and success ratio of the B&B respectively.

Another work that emphasized the deployment aspect of IEC
61499 compliant distributed control application is that of
Khalgui et al. In (Khalgui et al., 2006) they presented a heu-
ristics based approach for deployment of IEC 61499 applica-
tions where exclusion and localization constraints are consid-
ered along with the resource constraint which restrains a
maximum number of schedulable tasks on a physical device.
The deployment heuristic attributes static priority levels for
each of the exclusion sets and then performs allocations in
descending order of priority. After each deployment an inte-
grated feasibility test of the concerned device and the com-
munication network is performed. In case of infeasible de-
ployments the above mentioned deployment step is per-
formed repeatedly until feasibility is achieved. Unlike in
(Prayati et al., 2004) where optimization of an objective func-
tion is considered during deployment, here only a feasible
deployment is looked for. Moreover, the algorithm requires
formal specifications of the FB constructs and it is implicit
how this specification can be achieved during a usual devel-
opment lifecycle of a distributed control application.

In contrast to these works the proposed work presents a
methodology where finding a feasible deployment and an
optimal one can be performed in parallel. As far as satisfac-
tion of temporal behavior is concerned only worst-case sce-
nario is taken into consideration which is quite pessimistic
even though it guarantees that the end-to-end response times
are satisfied under any circumstance.

5. CASE STUDY

5.1. Description of the example system

A brief description of a workstation of a modular production
system is given in section 2. Now the deployment of the con-

trol application of such a workstation is considered. The ap-
plication consists of a number of FBs – both for interfacing
and for performing algorithmic actions. Though the depend-
encies among them are quite complex it can quite easily be
captured through the representation of object oriented appli-
cations presented in (Saksena and Karvelas, 2000). Each
chain of action is thus represented as a transaction which has
a period (for sporadic tasks this is equal to minimal inter-
arrival time). Events that trigger an action contained in an FB
can be either external events (i.e., interrupt, arrival of net-
work event and signal from timers) or internal events of
asynchronous or synchronous type. Asynchronous internal
events are caused by another thread, while the synchronous
events are caused by preceding FB in the FB network.

The overall application consists of 8 transactions – 2 of
which are periodic and the others are either sporadically peri-
odic or sporadic. The periodic transactions cyclically read the
sensor inputs through SIFBs. Only one of the other transac-
tions requires using a timer.

Initially it is assumed that two processing nodes are available
for the control application. Moreover, it is assumed that each
transaction can be allowed to be allotted a thread and more
than one transaction can be accommodated in a thread if they
share one or more FBs. Otherwise, when such transactions
are to be realized on different threads the common FB in-
stances are accessed through asynchronous event exchange.

5.2. Deployment of control application

The deployment problem has been solved using the presented
algorithm. The control application for the single workstation
can be deployed in two processors using 6 threads in total.
The optimal solution is achieved with an average slack of
31.3% for the time constrained end-to-end response times.
This allocation is summarized in Table 1.

Table 1. Deployment of functional components

Functionality Thread index Proc. index

Rotary control 1 1
Conveyor control 1 1

Drill module control 2 1
Drill hole check control 3 1
Vertical Crane control 4 2

Horizontal Crane control 4 2
Cyclic input reading 5 & 6 1 & 2

5.3. Extension

A more complex variation of the problem is formed through
considering that an IEC 61499 control application is to be
deployed which has to control four workstations of same type
and the application is to be deployed on four processing
nodes. For this problem it is seen that a minimum of 6 proc-
essing nodes is needed. It needs 28 threads and the average
slack reduces to 1.5%. It is quite reasonable since now the

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8325

number of processing nodes in use is proportionally less,
which accounted for proportionately more usage of threads
and reduced average amount of slack. It is to be emphasized
that the schedulability analysis is a very pessimistic one and
therefore in most of the scenarios the slack time will appear
to be quite large.

5.4. Random Experiments

Certain random scenarios were generated and fed to the de-
ployment algorithm to observe its convergence for problems
of different complexity.

In each of these experiments, the effect of resource and allo-
cation constraints is assumed to result in 20% reduction of
the possible allocations which are also randomly chosen. Fur-
ther, in each application 4 transactions each having 10 tasks
are considered. Three different structures of the transactions
are considered: a) linear, b) Directed Acyclic Graph (DAG)
with a linear subsequence followed by two branches and c)
DAG with a linear subsequence followed by 4 branches. In
each case, the difficulty of the problem is raised by increasing
the ratio of the total duration of the longest algorithm subse-
quence in the DAG with respect to the deadline. Table 2 lists
the number of feasible solutions obtained from 100 samples
of each type of problem where the aforementioned ratio is
denoted using U. Increased U causes more of the problems to
be infeasible. Moreover, it can be seen that the branching
variants are more vulnerable than the linear ones although a
conclusive comment cannot be made, when the two branch-
ing variants are compared. The algorithm took on average
193.8 sec to deliver a result of a problem whereby 980ms was
the minimum and 1080 sec the maximum time taken (calcula-
tions on an AMD Athlon XP 2.08 GHz PC with 1GB RAM).

Table 2. Results of random experiments

Structure U=0.4 U=0.5 U=0.6 U=0.8

Linear 79 78 70 46
2-branch 78 68 56 44
4-branch 76 74 58 32

6. CONCLUSION AND OUTLOOK

This paper presents a methodology for finding a feasible as
well as optimal deployment for IEC 61499 compliant distrib-
uted control application on heterogeneous platforms. The
algorithm uses explanation based learning to effectively con-
verge into a solution which is quite a necessity for such re-
configurable applications. Later application of the algorithm
on certain problems has been shown. Still there is room for
certain improvements, especially regarding the response time
analysis of the distributed applications. Moreover, for certain
problems it could happen that it appears to be over-
constrained resulting in failure to deliver a feasible deploy-
ment at all, in that case explanation can be used to point out
possible relaxations.

REFERENCES

Benders, J. F., (1962). Partitioning procedures for solving
mixed-variables programming problems, In: Numerische
Mathematik, 4, pp. 238-252.

Cambazard, H., P.-E. Hladik, A.-M. Déplanche, N. Jussien,
and Y. Trinquet (2004). Decomposition and learning for
a hard real time task allocation Problem, In: Principles
and Practice of Constraint Programming (CP 2004),
3258, pp. 153-167.

Gerber,R., M. Saksena and H. Hong (1995). Guaranteeing
end-to-end timing constraints by calibrating intermediate
processes, In: IEEE Transaction on Software Engineer-
ing, 21(7), pp. 579-592.

Hooker, J.N. and G. Ottoson (2003). Logic-based Benders
decomposition, In: Mathematical Programming, 96, pp.
33-60.

Hooker, J.N., (2006) Duality in optimization and constraint
satisfaction, In: Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimiza-
tion Problems, 3990, pp. 3-15.

IEC Standard (2005). IEC 61499-1: Function Blocks – Part 1:
Architecture, 2005.

Jussien, N., R. Debruyne and P. Boizumault (2000). Main-
taining arc-consistency within dynamic backtracking, In:
Constraint Programming 2000 (CP 2000), 1894, pp.
249-261, Springer-Verlag.

Junker, U. (2001). QUICKXPLAIN: conflict detection for
arbitrary constraint propagation algorithms. In: Proc. of
International Joint Conference on Artificial Intelligence.

Khalgui, M., X. Rebeuf and F. Simonot-Lion (2006). A heu-
ristic based method for automatic deployment of distrib-
uted component based applications, In: Proc. Of Interna-
tional Symposium on Industrial Embedded Systems
(IES’06).

Prayati, A., C. Κoulamas, S. Koubias and G. Papadopoulos
(2004). A methodology for the development of real-time
control applications with focus on task allocation in het-
erogeneous systems, In: IEEE Transactions on Industrial
Electronics, 51(6), pp.1194-1207.

Prayati, A., S. Koubias and G. Papadopoulos, (2002). Real-
time aspects in the development of function block ori-
ented engineering support systems, In: Proc .of 4th IEEE
Intl. Workshop on Factory Communication Systems
(WFCS’02), pp. 157-164.

Saksena, M. and P. Karvelas (2000). Designing for schedula-
bility: Integrating schedulability analysis with object-
oriented design, In: Proc. of 12th EuroMicro Conference
on Real-Time Systems (EMRTS’00), pp. 101-108.

Sünder, C., A. Zoitl, J. Christensen, V. Vyatkin, R. Brennan,
A. Valentini, L. Ferrarini, T. Strasser, J. L. Martinez-
Lastra, and F. Auinger (2006). Usability and interopera-
bility of IEC 61499 based distributed automation sys-
tems, In: Proc. of 4th IEEE Conference on Industrial In-
formatics (INDIN’06), pp. 31-37.

Zoitl. A., R. Smodic, C. Sünder and G. Grabmair (2006).
Enhanced real-time execution of modular control soft-
ware based on IEC 61499, In: Proc. of IEEE Intl. Con-
ference on Robotics and Automation (ICRA’06), pp. 327-
332.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8326

