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Abstract: Distributed control systems now-a-days are consisting of more and more heterogeneous proc-
essing nodes. Standards are making it easier to use processors, networks, operating systems etc. of varying 
nature. This freedom of choice is quite beneficial as long as the control applications perform according to 
the functional and non-functional specifications. Non-functional requirements especially that related to sat-
isfaction of certain temporal deadlines are quite important in control applications since they often consist 
of a number of real-time components. Therefore, when heterogeneous processing elements are used de-
ployment of the software components appears to be a problematic task. This article presents a methodol-
ogy to combat this problem using explanation based learning. 

 
 

1. INTRODUCTION 

Distributed Control Applications of Industrial Process Meas-
urement and Control Systems (IPCMSs) are now containing 
increasing degrees of heterogeneity – from the viewpoint of 
hardware as well as middleware and software components. 
This is mainly to achieve flexibility and reconfigurability 
which is essential to cope with dynamic market demands and 
rapid technological developments.  

Still control system should meet certain temporal require-
ments beside the essential functional requirements. This 
makes it difficult to decide on deployment of software com-
ponents of a Distributed Control System (DCS) on heteroge-
neous processing nodes. The objective of this paper is to pre-
sent a way to combat this difficulty. 

Software in the realm of IPMCS conforms either to proprie-
tary regulations or general standards. The latter is more effec-
tive for development of flexible and reconfigurable manufac-
turing systems since it enables vendor independence and thus 
opens up a wider range of choice for developers as well as 
users. One such standard for development of distributed con-
trol applications is IEC 61499 (IEC Standard, 2005). This 
standard allows one to model software elements in terms of 
reusable components which later can be deployed on hetero-
geneous processing nodes as long as those nodes conform to 
a compliance profile defined in the standard. Therefore, in the 
context of this paper the deployment problem is solely con-
cerned with applications developed using IEC 61499. 

The rest of this paper is structured as follows. Section  2 for-
mulates the problem of deployment firstly in general for DCS 
and then for IEC 61499 compliant ones. A solution to the 
problem of deploying IEC 61499 compliant control applica-
tion is proposed in section  3 and later compared with respect 
to related approaches in section  4. Section  5 briefly presents 
an example of application of the methodology and accompa-
nying results of the deployments. Finally section  6 contains 
concluding remarks and concerned outlooks. 

2. PROBLEM STATEMENT 

In general, deployment of components of a distributed control 
application on heterogeneous processing considers three 
types of constraints (Cambazard et al., 2004): 

1) Resource Constraints: 
a) Memory Capacity: the available physical memory 
space for running the control application is certainly lim-
ited as far as the usual embedded devices are concerned. 
b) Utilization Factor: during its cycle processors cannot 
be kept busy in executing control applications beyond a 
defined percentage of time. 
c) Network Usage: certain network infrastructures restrict 
the number of messages that can be exchanged during a 
periodic interval to a defined maximum. 

2) Allocation Constraints: 
a) Residence: software components can depend upon cer-
tain hardware or middleware features or might have run-
time dependencies upon certain software components 
which limit their allocation to certain processing nodes. 
b) Co-residence: system architecture might even force 
that certain components are to be placed on the same 
processing node (i.e., components that share common re-
sources). 
c) Exclusion: this is the opposite of the previous inhibit-
ing co-existence of software components. 

3) Time Constraints: this is the most important constraint 
that any distributed real-time system must satisfy. They 
are usually stated in terms of end-to-end response times. 
Often correlative relations among the response times of 
tasks are also considered (Gerber et al., 1995). 

In what follows a particular distributed control application is 
considered to show an example of the above mentioned con-
strains. A schematic of the workstation or process that is to 
be controlled is depicted in Fig. 1. During the normal work-
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ing process a cylindrical object will be delivered on the con-
veyor from the preceding workstation and the conveyor will 
bring it up to the 1st slot of the rotary table. The conveyor 
should then stop moving and the rotary table will start rotat-
ing counterclockwise to move the object to the 2nd position. 
As soon as the rotary completes a 90° rotation a sensor signal 
is turned on and the control application should stop the rota-
tion within a time span of 5ms to keep the object properly in 
place. An object at the 2nd position of rotary table can be 
drilled and when at the 3rd position the drilled hole of the 
object can be checked while a gantry crane can pick the ob-
ject up from 4th position to put it on any of the repositories 
depending on the material it is made of or on the slider if it is 
not properly drilled. As the gantry crane moves in horizontal 
or vertical direction its position is sensed through 4 sensors 
installed on the vertical bar and 5 sensors on the horizontal 
bar. The control application should respond to any of this 
sensor signals in no less than 5ms otherwise the crane will 
not be aligned properly to its destined place. 
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Fig. 1. Schematic of the workstation which is to be controlled 

The control application is to be compliant with IEC 61499. 
This standard primarily defines models to describe distributed 
control applications. The application and the components of it 
should show reactivity and therefore should have a defined 
semantics that will imply how the modeled elements should 
react to external signals. Moreover, since the domain of ap-
plication of the standard is principally the embedded real-
time controllers of IPMCS, execution semantics should also 
be compliant to the underlying infrastructure, for example, 
the middleware, hardware and programming environments 
etc. Till now a number of execution semantics evolved and 
came into discussion among the concerned researchers. Some 
of the execution semantics had also been implemented in 
different tools or applications showing their suitability for the 
desired applications. In current context Non-Pre-emptive 
Multi-Threaded Resource (NPMTR) semantic first presented 
in (Sünder et al., 2006) is considered. Salient features of this 
resource model are as following: 

• Only components responsible for communicating with 
process or network interfaces (called Service Interface 
Function Block (SIFB)) within a resource can have their 

own threads. The threads of an SIFB can be used for re-
ceiving messages, for queuing them etc. 

• In IEC 61499 a resource is a functional unit that might 
contain one or more SIFBs as well as other Function 
Blocks (FBs) that behave in response to events according 
to a specialized state chart called Execution Control Chart 
(ECC) or according to the behavior of its contained FBs 
for composite FBs. The FBs execute algorithmic actions 
and their interconnections within a resource determine in 
what sequence the actions will be executed. Any such 
event sequence is allotted its own thread for execution of 
constituent actions. 

• Threads of the same resource should have equal priority; 
those of different resources may have different priorities. 

This execution semantics accounts for simplicity in dealing 
with data to be exchanged between two FBs while a corre-
sponding event triggers an FB. But certain events that arrive 
at a resource while it is busy in synchronously executing ac-
tions will be lost. To combat this deficiency the Event Dis-
patcher Concept (EDC) evolved (Zoitl et al., 2006). It as-
sumes that events are stored in a FIFO queue and consumed 
when the corresponding thread is notified about its allotted 
execution time. In what follows NPMTR semantics with 
EDC enhancement is considered. Furthermore, the priorities 
of the threads are assigned such that all SIFB threads are al-
lotted the highest priority and threads for other FB chains are 
allotted depending on the ratio of the sum of execution re-
quirements of the constituents with respect to the period (or 
minimum inter-arrival time) of their triggering event. 

The available processing nodes are modern network-enabled 
microcontrollers (i.e., TINI, SNAP etc.) connected to a dedi-
cated Ethernet network. The microcontrollers are equipped 
with peripherals to access digital sensor signals and to trigger 
actuators. 

Considering a control application for the workstation of Fig. 
1 in general the constraints are as follows: 

1) Resource Constraints: 
a) Memory Capacity: The code and related resources as 
well as the runtime memory requirement are limited by the 
memory capacity of the processor nodes. For example, 
SNAP offers 2MB flash memory for storage of code and re-
lated resources. 
b) Utilization Factor: Firstly utilization factor should be be-
low 100%. Secondly, for multithreaded applications the 
number of threads should be less than the maximum num-
ber of allowed threads that can be created on a processor 
(assumed to be 6 on SNAP and TINI microcontrollers). 
c) Network Usage: As far as Ethernet is used this does not 
impose any restriction since the size of the messages to be 
exchanged can occupy only a scanty portion of the avail-
able bandwidth. 

2) Allocation Constraints: 
a) Residence: Current problem does not contain any such 
constraint. 
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b) Co-residence: Every FB that needs data or event triggers 
from FBs deployed on a different processing node should 
use a corresponding SIFB to accomplish the communica-
tion. This is an implicit co-residence constraint that applies 
to the problem. 
c) Exclusion: The application needs timers to actuate cyclic 
reading of inputs or timed operation of drilling which are to 
be realized through use of hardware timers. Since only two 
hardware timers are available per processing node, no more 
than two such timer components that might operate simul-
taneously can be placed on the same processing node. 

3) Time Constraints:  
a) End-to-end response time between arrival of sensor sig-
nal that the rotary table has rotated by 90° and the actuation 
to stop the table motor should be within 5ms. 
b) End-to-end response time between detection of arrival of 
the gantry crane at a stop position and actuation of corre-
sponding signal should be within 5ms. 
c) If more than one object is allowed to be placed on the 
conveyor then after arrival of the first one at rotary table’s 
1st slot the conveyor should have to be stopped within 4ms. 

Finally, in the deployment problem the feasible solutions 
allowing maximal amount of slacks for the time constrained 
tasks as well as usage of minimum number of processing 
nodes will be considered optimal. 

3. PROPOSED SOLUTION 

3.1. Logic-based Benders decomposition 

The problem of finding all feasible deployments satisfying a 
DCS specification has an attribute that, when taken into ac-
count, can simplify the problem. It can be observed that the 
resource and allocation constraints are rather static in nature 
and thus can easily be modeled in a tractable form (i.e., as an 
Integer Programming problem) while the time constraint is 
such that the dependencies among the variables cannot be 
expressed in a straightforward manner. But still solving the 
problem separately for these two types of constraints might 
often not be of good use. This is due to the fact that the first 
type of constraints usually account for a small reduction of 
the search space leaving the major part of the search space to 
be scrutinized through the more complex temporal relations. 

In such a situation a variation of Benders decomposition 
called logic-based Benders decomposition (Hooker and Otto-
son, 2003) appears to offer a better way of solving the prob-
lem. Classical Benders decomposition applies to problems of 
following form: 

 

min  ( )
s.t.   ( )
       0

       , ,

+
+ ≥

≥

∈ ∈n
y

cx f y
Ax g y a
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x R y D

 (1) 

where ( )g y  is a vector of functions ( )ig y . The solving 
strategy of the classical Benders decomposition is to fix y  to 
a trial value so that the problem reduces to the following lin-

ear subproblem. 
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The subproblem dual can be written as 

 
max  ( ( )) ( )
s.t.   
       0.

− +
≥

≥

u a g y f y
uA c
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 (3) 

If the dual has a finite solution u , it provides an inference 
procedure for obtaining a lower bound on the objective func-
tion of the original problem which valid for =y y . The key 
to obtaining a bound to any y  is to observe that this same u  
remains feasible in the dual for any y . So the same u  pro-
vides a bound for any y . This bound is called Benders cut. 
In case of infeasible or unbounded dual one can obtain a cut 

( ( )) 0− ≤v a g y  
where v  can be obtained through solving 

max  ( ( ))
s.t.   0
       0.

−
≤

≥

v a g y
vA
v

 

In contrast to generating cuts using the linear programming 
dual, logic-based Benders decomposition uses a generalized 
notion of dual called inference dual (Hooker, 2006) which 
can be inferred from the constraints. In this case the problem 
can be represented as, 

 
min   ( , )
s.t.   ( , )
      , ,

∈
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x D y D
 (4) 

Then fixing y  at some trial value ∈ yy D  the following sub-
problem is obtained. 

 
min   ( , )
s.t.   ( , )
      .

∈
∈ x

f x y
x y S

x D
 (5) 

Following the pattern of the classical case at this point the 
dual of this subproblem should have to be solved. Since the 
subproblem is not a linear one inference duality comes into 
play. The inference dual of the subproblem can be defined as: 

 
max   

s.t.    ( , ) ( , ) .∈ ⎯⎯→ ≥xDx y S f x y

β

β
 (6) 

In this abstract representation of Benders decomposition the 
main challenge is to define a complete inference method for 
the implication ⎯⎯→xD . 

In case of the deployment problem the resource and alloca-
tion constraints are thus used to initially find a valid alloca-
tion and a schedulability analysis is performed on this valid 
allocation to infer certain additional constraints. These con-
straints are then added to the resource and allocation con-
straints to cause faster reduction of the search space. For ex-
ample, when a particular allocation of tasks on a platform 
fails to meet one or more temporal constraints, then the infer-
ence process can find out the combination of tasks that can-
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not be allocated on the same processor as far as the temporal 
restrictions are concerned. This process goes on until a set of 
mappings of software components on processing nodes is 
found where none of the allocations violate the temporal con-
straints. 

In (Cambazard et al., 2004) it is shown that logic-based 
Benders decomposition works for allocation of tasks on dis-
tributed hardware components. The context of the current 
problem is rather complex in comparison as the temporal 
behavior of the software components cannot be analyzed us-
ing simple rate monotonic analysis. Analysis of temporal 
behavior of the software component in this context means to 
investigate that the deadlines or end-to-end response times of 
the applications are fulfilled. This is usually done in the worst 
case sense. In the following subsection a description of ana-
lyzing such worst case scenarios for IEC 61499 compliant 
distributed control application is presented. 

3.2. Worst Case Response Time (WCRT) calculation 

For WCRT calculation of applications conforming to the 
above mentioned semantics a method based on the one pre-
sented in (Saksena and Karvelas, 2000) is taken. First the 
WCRTs for actions deployed on a processor node is calcu-
lated and then the overall end-to-end delays are calculated by 
summing the individual response times and network delays.  

The method of WCRT calculation uses busy period analysis 
where external events instigate the beginning of a transaction 
(i.e., a chain of actions). An action can invoke a following 
one through synchronous or asynchronous message passing. 
This perfectly matches with the sequence of actions of IEC 
61499 applications. Synchronous messages are passed within 
actions of own thread and asynchronous messages are sent to 
actions of other threads. Synchronous sequence of actions can 
only be preempted by another thread of higher priority. 

Through an iterative calculation of worst case start time 
( )iS qτ  of q-th instance of i-th action in transaction τ  is 

found. Each algorithmic action can be blocked by another 
algorithmic action due to run-to-completion characteristic of 
the algorithmic actions. Within the priority scheme this effect 
can be realized through use of preemption threshold (Saksena 
and Karvelas, 2000). For IEC 61499 compliant applications 
the preemption threshold of an algorithmic action is assumed 
to be below the priorities of any of the SIFBs so that the algo-
rithmic actions cannot block the tasks to be accomplished by 
a SIFB. Actions can experience interference from any com-
municating actions that have to be performed by SIFBs as 
well as actions of any other transaction of higher priority. 
Moreover, previous instances of the same transaction also 
account for interferences for an action. Thus ( )iS qτ  comes 
out to be the smallest W  that satisfies: 
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where ( )i t+Ψ denotes the maximum number of arrivals of 
event triggering transaction i  in any right closed interval 
[ , ]x x t+ . Correspondingly, ( )i tΨ  denotes the maximum 
number of the same event arrival within the interval 
[ , )x x t+ . 

WCRT of an action iAτ  can therefore be expressed by the 
following equation 
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where ( )iAτγ  denotes the preemption threshold of action 

iAτ and ( )iAτϒ denotes the chain of synchronous actions be-

ginning at iAτ . 

3.3. Deployment resolution algorithm 

The deployment resolution algorithm is composed of three 
components mentioned bellow. 

• WCRT calculating component that follows the above 
mentioned calculation scheme. 

• An explanation generating component that generates ex-
planation for any infeasibility with respect to temporal 
constraints. Hereby QUICKXPLAIN algorithm (Junker 
2001) is used which is quite efficient in finding minimal 
set of variables involved in a conflict. This component it-
eratively uses WCRT calculating component to find out 
the conflicting set of software components allocated in a 
processing node. These explanations in form of nogoods 
(implying that none of the feasible solutions will contain 
such a set). Since in parallel optimal allocation is also 
sought, the lower bound on the objective value is also im-
proved after each iteration of successful explanation. In 
the following searches the allocations exceeding this limit 
are excluded. 

• The constraint solver which should solve the master prob-
lem (consisting of resource and allocation constraints) at 
each step to form the subproblem (containing only time 
constraints). Moreover, its task is to integrate the minimal 
set of software components involved in conflicts. This is 
performed through maintaining arc consistency and con-
flict directed backjumping (Jussien et al. 2000). Thus af-
ter integrating the constraints learned from explanation 
inefficiency of a standard backtrack is avoided through 
jumping to a node appearing in the explanation for raising 
a contradiction.  
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In synergy these three components solve the deployment 
problem. Furthermore, during each iteration partially feasible 
solutions are tried for overall feasibility. In case of infeasibil-
ity, explanations are used to enrich the next search. The solu-
tion process tries to achieve efficiency through use of expla-
nations to learn about some partial solutions which could not 
be successfully extended. 

4. RELATED WORKS 

Prayati et al. pioneered in presenting a methodology for de-
velopment of IEC 61499 compliant distributed control appli-
cations along with an algorithm for deployment of developed 
artifacts on heterogeneous processing nodes (Prayati et al., 
2004). The deployment uses Branch and Bound (B&B) 
where each vertex represents allocation of a closely coupled 
set of tasks to a physical resource and the compatibility fac-
tors other than the real-time constraints are used in pruning 
the branches at each level. The objective function for the op-
timal allocation is the feasibility ratio which refers to the 
probability of the set of tasks represented by a vertex to meet 
its deadline. It is shown that a preprocessing of the search 
space through priority slicing of the FB tasks and clustering 
of the most tightly coupled tasks shows positive effects 
through raising the feasibility ratio of the resulting schedules 
and success ratio of the B&B respectively. 

Another work that emphasized the deployment aspect of IEC 
61499 compliant distributed control application is that of 
Khalgui et al. In (Khalgui et al., 2006) they presented a heu-
ristics based approach for deployment of IEC 61499 applica-
tions where exclusion and localization constraints are consid-
ered along with the resource constraint which restrains a 
maximum number of schedulable tasks on a physical device. 
The deployment heuristic attributes static priority levels for 
each of the exclusion sets and then performs allocations in 
descending order of priority. After each deployment an inte-
grated feasibility test of the concerned device and the com-
munication network is performed. In case of infeasible de-
ployments the above mentioned deployment step is per-
formed repeatedly until feasibility is achieved. Unlike in 
(Prayati et al., 2004) where optimization of an objective func-
tion is considered during deployment, here only a feasible 
deployment is looked for. Moreover, the algorithm requires 
formal specifications of the FB constructs and it is implicit 
how this specification can be achieved during a usual devel-
opment lifecycle of a distributed control application. 

In contrast to these works the proposed work presents a 
methodology where finding a feasible deployment and an 
optimal one can be performed in parallel. As far as satisfac-
tion of temporal behavior is concerned only worst-case sce-
nario is taken into consideration which is quite pessimistic 
even though it guarantees that the end-to-end response times 
are satisfied under any circumstance. 

5. CASE STUDY 

5.1. Description of the example system 

A brief description of a workstation of a modular production 
system is given in section  2. Now the deployment of the con-

trol application of such a workstation is considered. The ap-
plication consists of a number of FBs – both for interfacing 
and for performing algorithmic actions. Though the depend-
encies among them are quite complex it can quite easily be 
captured through the representation of object oriented appli-
cations presented in (Saksena and Karvelas, 2000). Each 
chain of action is thus represented as a transaction which has 
a period (for sporadic tasks this is equal to minimal inter-
arrival time). Events that trigger an action contained in an FB 
can be either external events (i.e., interrupt, arrival of net-
work event and signal from timers) or internal events of 
asynchronous or synchronous type. Asynchronous internal 
events are caused by another thread, while the synchronous 
events are caused by preceding FB in the FB network.  

The overall application consists of 8 transactions – 2 of 
which are periodic and the others are either sporadically peri-
odic or sporadic. The periodic transactions cyclically read the 
sensor inputs through SIFBs. Only one of the other transac-
tions requires using a timer.  

Initially it is assumed that two processing nodes are available 
for the control application. Moreover, it is assumed that each 
transaction can be allowed to be allotted a thread and more 
than one transaction can be accommodated in a thread if they 
share one or more FBs. Otherwise, when such transactions 
are to be realized on different threads the common FB in-
stances are accessed through asynchronous event exchange. 

5.2. Deployment of control application 

The deployment problem has been solved using the presented 
algorithm. The control application for the single workstation 
can be deployed in two processors using 6 threads in total. 
The optimal solution is achieved with an average slack of 
31.3% for the time constrained end-to-end response times. 
This allocation is summarized in Table 1. 

Table 1. Deployment of functional components 

Functionality Thread index Proc. index 

Rotary control 1 1 
Conveyor control 1 1 

Drill module control 2 1 
Drill hole check control 3 1 
Vertical Crane control 4 2 

Horizontal Crane control 4 2 
Cyclic input reading 5 & 6 1 & 2 

5.3. Extension 

A more complex variation of the problem is formed through 
considering that an IEC 61499 control application is to be 
deployed which has to control four workstations of same type 
and the application is to be deployed on four processing 
nodes. For this problem it is seen that a minimum of 6 proc-
essing nodes is needed. It needs 28 threads and the average 
slack reduces to 1.5%. It is quite reasonable since now the 
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number of processing nodes in use is proportionally less, 
which accounted for proportionately more usage of threads 
and reduced average amount of slack. It is to be emphasized 
that the schedulability analysis is a very pessimistic one and 
therefore in most of the scenarios the slack time will appear 
to be quite large. 

5.4. Random Experiments 

Certain random scenarios were generated and fed to the de-
ployment algorithm to observe its convergence for problems 
of different complexity. 

In each of these experiments, the effect of resource and allo-
cation constraints is assumed to result in 20% reduction of 
the possible allocations which are also randomly chosen. Fur-
ther, in each application 4 transactions each having 10 tasks 
are considered. Three different structures of the transactions 
are considered: a) linear, b) Directed Acyclic Graph (DAG) 
with a linear subsequence followed by two branches and c) 
DAG with a linear subsequence followed by 4 branches. In 
each case, the difficulty of the problem is raised by increasing 
the ratio of the total duration of the longest algorithm subse-
quence in the DAG with respect to the deadline. Table 2 lists 
the number of feasible solutions obtained from 100 samples 
of each type of problem where the aforementioned ratio is 
denoted using U. Increased U causes more of the problems to 
be infeasible. Moreover, it can be seen that the branching 
variants are more vulnerable than the linear ones although a 
conclusive comment cannot be made, when the two branch-
ing variants are compared. The algorithm took on average 
193.8 sec to deliver a result of a problem whereby 980ms was 
the minimum and 1080 sec the maximum time taken (calcula-
tions on an AMD Athlon XP 2.08 GHz PC with 1GB RAM). 

Table 2. Results of random experiments 

Structure U=0.4 U=0.5 U=0.6 U=0.8

Linear 79 78 70 46 
2-branch 78 68 56 44 
4-branch 76 74 58 32 

 

6. CONCLUSION AND OUTLOOK 

This paper presents a methodology for finding a feasible as 
well as optimal deployment for IEC 61499 compliant distrib-
uted control application on heterogeneous platforms. The 
algorithm uses explanation based learning to effectively con-
verge into a solution which is quite a necessity for such re-
configurable applications. Later application of the algorithm 
on certain problems has been shown. Still there is room for 
certain improvements, especially regarding the response time 
analysis of the distributed applications. Moreover, for certain 
problems it could happen that it appears to be over-
constrained resulting in failure to deliver a feasible deploy-
ment at all, in that case explanation can be used to point out 
possible relaxations. 
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