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Abstract: This paper investigates and contrasts the use of different Bayesian networks and 
a fuzzy integral for real-time sensor fusion using sonar and rangefinder laser values on an 
ActivMedia robot.  Bayesian networks have become increasingly popular because of their 
ability to capitalize on the conditional probabilities present in an influence chain. The 
Choquet fuzzy integral, which has primarily been used for statistical analysis, has a great 
power of description.  Comparison of the two methods indicates that noise within the 
sensor network can drastically affect the accuracy of the results, especially those obtained 
using the Bayesian network.  Copyright © 2008 IFAC 
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1. INTRODUCTION 
 
Optimizing data from multiple sensors is a problem 
that can be approached in many ways.  This is 
especially true in a dynamic environment, where it is 
necessary to have good and reliable results while 
providing redundancy.  There is no universal data-
fusion technique that works for all sensor networks 
because diverse sensors and sensor networks have 
unique specifications and operating limitations that 
may yield different types of data. Thus, in general, 
sensor fusion algorithms must be specially designed 
for applications.   
 
Difficulties from corrupt or seemingly unreliable 
data can often make formulation and design difficult 
and possibly require a computationally expensive 
algorithm.  Therefore, it is important to design the 
algorithm around the given system constraints and 
with sufficient levels of fault detection.  There are 
many unique methods for sensor fusion because 
different methods are needed to handle the different 
constraints and issues that commensurate and non-
commensurate sensor networks pose (Klein, 1999).  

Bayesian networks provide an increasingly popular 
method for information fusion.  These networks not 
only use probability inference to combine different 
types of sensor data but also give the designer a 
better grasp of the relations between the different 
sensors and features.  Fuzzy integrals provide a non-
traditional optimization method that is based on a 
generalization of one of the most important concepts 
in analysis, measure.  The integrals are based on non-
additive measures, which capture not only positive 
but also negative relationships among the multiple 
inputs to a system.  (Garbisch, et al., 2000).    
 
 

2. SENSOR FUSION 
 
Several problems may arise with physical sensor 
measurements: sensor deprivation, limited spatial 
coverage, limited temporal coverage, imprecision, 
and uncertainty.  Sensor, information or data fusion 
allows compensation for the limitations of individual 
sensors.  There are many approaches to information 
fusion (Elmenreich, 2004), and there are certain 
advantages that can be expected from the fusion of 
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sensor information (Klein, 1999): robustness and 
reliability, extended spatial and temporal coverage, 
increased confidence, reduced ambiguity and 
uncertainty, robustness against interference, as well 
as improved resolution.  Sensor fusion also has its 
limitations and constraints, such as processing time 
and data corruption, which have to be accounted for 
when designing any sensor fusion algorithm. 
 
Several types of general sensor configurations are 
available for complementary and competitive sensor 
networks (Klein, 1999).  In a complementary 
configuration, data from heterogeneous sensors is 
combined for a more complete set of data, while a 
competitive/redundant sensor configuration tries to 
combine only the “best” information from multiple 
homogeneous sensors to support an optimal decision 
(Borenstein et al., 1996).   
 
 
2.1 Bayesian Network 
 
Bayesian networks exploit the conditional 
independence present in an influence chain.  This 
method of sensor fusion allows the designer to form 
a network in an intuitive manner instead of using 
strict constraints and formats.  Its flexibility allows 
the designer to determine what structures to explore 
to produce a network that is both efficient and 
accurate (Neapolitan, 2004).  A Bayesian network is 
represented as a DAG (Directed Acyclic Graph).  
Each node Xi has a conditional probability 
distribution, written schematically as P(Xi|Y1,…,Yn), 
where Yj, 1 ≤ j ≤ n, are the parents of Xi.  Every 
entry in the joint probability distribution can be 
calculated as the product of the appropriate elements 
in the conditional probability tables in the Bayesian 
network.  Conditional independence allows each 
node to have only a bounded number of parents and 
children.  A parent can generally be seen as a cause 
of each of its children.  Diagnostic reasoning is 
pursued in a child-to-parent direction with Bayes’ 
rule.  Unconditional probabilities are represented by 
the source nodes (nodes with no parents). 
 
Bayesian networks support searching DAGs.  This is 
done by establishing a basic structural model for the 
proposed network and defining a set of criteria to 
determine which DAG produces a highest score.  
This score indicates how close the probabilities the 
DAG gives are to the actual measured probabilities.  
Any DAG with the highest score is considered to be 
among the most suitable Bayesian network models 
for supporting decisions.  
 
There are many algorithms that can be used to find a 
DAG that gives accurate results efficiently.  The type 
of algorithm needed is determined by the basic 
structure and the number of relationships that need to 
be explored. Two of the most common techniques 
for finding a high-scoring DAG are the K2 search 
and DAG search algorithms (Neapolitan, 2004).  

Both allow the designer to identify influences that 
must or must not be present, and both use an 
established schema for learning the structure of a 
Bayesian network with n variables.  K2 search 
imposes an upper bound on the number of parents 
any node may have, while DAG search does not 
explore combinations with different numbers of 
parents (Neapolitan, 2004).  Our future use of 
Bayesian networks for sensor fusion will include the 
use of the K2 search algorithm because it considers a 
more diverse set of configurations. (Demircioglu and 
Osadciw, 2006) (Hall and Llinas, 2001).   
 
 
2.2 Fuzzy Integral 
 
A fuzzy integral is similar to a LeBegues integral but 
uses fuzzy measures.  For a given measure, or set 
function (function whose domain is a set of sets), ξ 
and topological space X, if (1) holds for ξ and any 
subsets A, B of X, then ξ is said to be monotonic. 
 

BABA ⊂≤ ),()( ξξ                                          (1) 
 
An additive measure ξ has the property expressed in 
equation (2) for disjoint subsets A and B over 
universe X. 
 

)()()( BABA ∪=+ ξξξ                                         (2) 
 
A signed measure can assume either positive or 
negative values while an unsigned measure can 
assume only positive values.  A measure is additive if 
and only if it is monotonic and unsigned.  Traditional 
measures are additive.  Fuzzy measures are in 
general monotonic but need not be strictly additive. 
Weaker conditions make these measures more 
complex but also give the fuzzy integral a greater 
power of description.  This is because fuzzy 
measures allow an integral to capture positive and 
negative interactions between different inputs, while 
the unsigned quality of a classical measure only 
captures positive interactions. 
 
There are many kinds of fuzzy measures; some of the 
more popular are λ–fuzzy measures (the most 
general), possibility and necessity measures, and      
t-conorm and decomposable measures (Garbisch, et 
al., 2000).  The λ–fuzzy measure was developed by 
Sugeno to reduce complexity and is defined, for 
topological space X, as a normalized set function gλ 
defined on 2X (the set of all subsets of X) where, for 
every pair of disjoint subsets A and B of X, equation 
(3) is satisfied (Garbisch, et al.,  2000). 
 

∞≤≤−++=∪ λλ λλλλλ 1   ,)()()()()( BgAgBgAgBAg    (3) 
 
There are four basic types of fuzzy integrals, the 
Choquet integral, the Šipoš integral, the Sugeno 
integral, and the t-conorm integral (Garbisch, et al.,  , 
2000).  Of these four, the Choquet integral is applied 
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to complex problems because it is the fuzzy integral 
that most resembles the LeBegues integral.  On the 
other hand, the Sugeno integral is the simplest of the 
four.  
 
The familiar Riemann sum is defined by expression 
(4). The equation shows the Riemann sum of 
function f on an open convex subset (xo, xn) of the 
real line partitioned into finitely many segments at 
the partition points x1, … ,xn-1, and with a finite 
sequence of numbers to, … ,tn-1, where ti is a value 
between xi and xi+1.   
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The LeBegues sum is defined by expression (5).  
This sum is the sum of values of f on an open convex 
subset (xo, xn) of the real line partitioned into finitely 
many segments at x1, … ,xn-1. Each term in the sum 
is the difference between the function values at 
adjacent partition points, xi-1 and xi, multiplied by the 
value of the measure m of the set of all x for which 
f(x) is at least as great as f( xi). 
 
In the LeBegues sum, the measure m must be 
additive, and, in the Riemann sum, the measure is 
simply the distance between adjacent partition 
points, which in fact defines an additive measure.  
The Riemann integral and the LeBegues integral are 
the limits of their respective sums as the distances 
between the partition points approach zero.  
 
The Choquet integral is generally used only when 
there are finitely many function values, in which case 
it is equal to a finite sum as shown in equation (6).  
This sum is reminiscent of the LeBegues sum, but 
there are additional stipulations on the values of the 
function f, as shown in (7). 
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For this integral, the function f, defined on the real 
numbers, must be monotonic and such that f(x0) = 0. 
 
Figure 1 portrays the evaluation of the Choquet 
integral that is expanded in equation (8). Here the 
space X is partitioned in the same manner as for the 
Lebegues integral, but the λ–fuzzy measure is no 
longer additive.    
 

 
Figure 1: The Choquet integral of a function f 
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There are two major ways to find λ–fuzzy measures, 
with optimization methods and with constraint 
satisfaction methods.  The most commonly used 
optimization method is sequential quadratic 
programming (SQP).  To present this method, we let 
g be the value of the Choquet integral (equation (6)) 
of f on interval (xo, xn) with fuzzy measures m = [m1, 
m2, …, mn] and function values f(xi), 1 ≤ i ≤ n.  (In 
our application, the function values are the sensor 
values.)  SQP is a minimization technique formulated 
as in (9) to find the value of m that minimizes the 
error function q(m) = (g-y)2, where y is the measured 
value, subject to the set of constraints (10).  For re 
training inputs, the Ai and Aj, 1 ≤ i ≤ re , re +1 ≤ j ≤ 2 
re, are the training inputs (in our case, the vectors of 
sensor values) and the bi and bj are the expected 
training outputs of the system for inputs Ai and Aj, 
respectively.  The values bj define the system’s upper 
limits, and values bi define the desired results for the 
system.  In our case, the bi and bj are the true distance 
values.  bk and bk+re, 1 ≤ k ≤ re, are not necessary the 
same values but (as in our case) may be.  Likewise 
for the Ak and A k+re, 1 ≤ k ≤ re. 
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Equation (9) shows the minimization of the function 
q(m) with respect to the vector of fuzzy measures m 
and the Hessian matrix H (second order partial 
derivative of q with respect to m).  The minimization 
is usually accomplished by calculating the positive 
definite quasi-Newton approximation of the Hessian 
H using the Broyden-Fletcher-Goldfarb-Shanno 
(BFGS) method.   
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BFGS is a quadratic modeling method derived from 
gradient decent algorithms (Walter, 1976) 
(Lunenberg, 2001) (Garbisch et al., 2000) (Fletcher, 
1987).   
 
 

3. TEST-BED SET-UP 
 
The Bayesian network and fuzzy Integral algorithms 
outlined above are tested on the ActivMedia robot 
shown in figure 2.   
 

 
Figure 2: ActivMedia robot with 16 sonars and a   
                rangefinder laser 
 
This system is programmed with C++ on a Linux 
operating system.  The robot is equipped with 16 
sonar sensors (8 on the front and 8 on the rear) and a 
laser with a 180° measurement range.  The outputs of 
the six sonar sensors on the front of the system are 
combined using the two methods described in the 
above sections.  The laser located directly above the 
two center sonars provides true distance values, 
against which the sonar values may be validated.  
The robot is programmed to do a wall following task 
using either one of the Bayesian networks shown in 
figure 3 or our fuzzy integral algorithm with 
measures defined using the SQP method.   
 
The Bayesian network structures shown in figure 3 
use the probability of the distance for each of the six 
sonar sensors.  It also exploits the conditional 
independence between the probabilities of the 
differences between the six sensors.  There are 15 
different combinations of differences, but only the 
seven that demonstrate the strongest relationships are 
used.  The third level looks at the probability that the 
object that the robot is approaching is either flat, 
slanted to the left, slanted to the right, or a 
combination. In addition, the top level is a 
continuous probability of the distance based on all 
the other probabilities.  Figures 3a and 3b have 
different numbers of casual edges; 3a has the most, 
causal edges and shows a stronger relationship 
between the ‘difference’ level and the third level.  

 
Since all computation is in real time, the sample set 
is kept minimal (ten).  Since neither the Bayesian 
network nor the fuzzy integral requires separate 
training and testing sets, any of the ten original 
sensor samples can also be used to test the accuracy 
of the algorithm.  The fuzzy integral evaluated here 
uses the basic Choquet integral with the SQP 
algorithm to determine the fuzzy measures.   Within 
the minimization function, the samples are entered as 
the criteria shown in (10) above.   The sample sets 
are evaluated within the fuzzy integral equation then 
entered as the upper bounds and the target equalities 
for the inequalities and equations in (10).  
 

 
(a) 
 

 
(b) 
 
Figure 3: Bayesian network structures (a) and (b) 
 
The Hessian here is a 6 x 6 matrix of second order 
partial derivatives of the error squared.  The fuzzy 
measures are determined for the Choquet integral 
using the function values and the same ten samples 
used to determine the probabilities in the Bayesian 
network.  After the fuzzy measures are calculated, 
the fuzzy integral is tested for accuracy using any of 
the members of the sonar sample set.  
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4. SIMULATION RESULTS 
 
Figures 4, 5, and 6 show the results of running each 
of the algorithms while the system is performing a 
wall-following routine.  These results are based on 
forty runs of the two algorithms using the same 
sensor sample sets.  Figure 4 shows how the fuzzy 
integral results compare to the measured values, 
found using the rangefinder laser.  Note that most of 
the values are quite accurate.   
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Figure 4: Algorithm results of preliminary runs 
                using a fuzzy integral 
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Figure 5: Algorithm results of preliminary runs       
                using Bayesian network structure (3a) 
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Figure 6: Algorithm results of preliminary runs       
                using Bayesian network structure (3b) 
 

 
 
Figure 7: Sensor results of noisy simulations 
 
Figures 5 and 6 show how the Bayesian network 
results compare to the measured values and how 
different structures deliver different results.  All of 
the Bayesian network methods tend to over- or 
under-estimate the measured values for most cases, 
but the structure shown in figure 3a, which contains 
the most causal edges, gives the best results of the 
two Bayesian networks.  Overall, the fuzzy integral is 
more accurate than the current Bayesian network 
structures.   
 
The amount of noise in the sensor measurements is 
evident in figure 7, which plots raw sensor values 
over time.  There is not only a drift in the sensor 
values but also some randomness.  These 400 sensor 
measurements (100 for each sensor 1, 3, 4, 6) were 
taken while the robot was stationary.  Only four of 
the six sensors are sampled, to provide an un-
crowded image that demonstrates the sensor noise.   
 

 
Figure 8: The confidence intervals for the error  
                between the accepted values and the results  
                found using the different techniques. 
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The error confidence intervals for each technique are 
shown in figure 8.  The reliability of a technique is 
indicated by the size of the areas that have 75 (light 
grey), 90 (dark grey), and 99 (black) percent of the 
error values in reference to the mean error for each 
technique (table 1). 
 
The Bayesian networks have similar error confidence 
intervals, although the Bayesian network with more 
causal links has slightly better results. The technique 
that calculates the most accurate distance values is 
the Choquet fuzzy integral.  
 

Technique STD Mean 
Error 

75%  90%  
 

99% 
 

Choquet 
Fuzzy 
Integral  

65.1 5.1 10.6 15.1 23.7 

Bayes 
Network I 271.3 370.9 44.1 63.1 98.8 

Bayes 
Network 
II  

298.0 370.9 48.5 69.3 108.6 

Table 1: Summary of results for the techniques and 
their confidence intervals 
 
Clearly, some of the sensors are more stable than 
others.  In this case, the far-left sensor is the most 
unreliable, but this is not always so. Depending on 
the trajectory of the robot relative to the walls, other 
sensors can provide values that are inaccurate as 
well.  Figure 7 also indicates that, as time passes, the 
sonars tend to converge to a more stable set of 
values.  If time were not an issue in a dynamic 
system, more accuracy could be achieved by waiting 
longer before acquiring the data used with the 
Bayesian networks and with the fuzzy integral.   
 

5. CONCLUSION 
 
The Bayesian networks gave some good and some 
bad results, yet the results seem to shadow the 
measured distance values. Bayesian networks 
worked to some degree for this lower-level sensor 
fusion problem.  Bayesian network structure 3a has 
slightly better results than structure 3b (which has 
fewer causal links). Generally, Bayesian networks 
are better at higher-level decisions and require more 
lower-level information than fuzzy integrals.  This is 
why we plan to look at incorporating Bayesian 
networks as a higher-level sensor fusion technique.   
 
The fuzzy integral estimation using SQP to 
determine the non-additive fuzzy measures provides  
an even more accurate estimation of the actual 
distance the robot is from the wall.  The SQP  
 
 
 
 
 
 
 

algorithm yields an accurate result even in an 
environment with noisy sensors, as in these 
experiments.  Using the SQP method to determine a 
set of fuzzy measures is an adequate method to assist 
the robot at wall following. 
 
Fuzzy integrals can be powerful with an accurate set 
of fuzzy measures because they can handle 
interactions between inputs in a non-additive manner.  
The fuzzy measure’s ability to show constructive and 
destructive interaction between the sensor values 
allows the fuzzy integral to give a good 
approximation of the actual measured values when 
suitable measures are found.  A fuzzy integral, 
however, is only as accurate as its measures.  Since 
the set of fuzzy measures found by the SQP 
algorithm, though adequate for this problem, was not 
optimal, other methods will be investigated.  We 
intend to investigate a hybrid algorithm that uses a 
neural network to find the fuzzy measures and 
Bayesian networks to assist in higher-level decision-
making processes.  Better fuzzy measures and 
combining these methods should improve the 
reliability of the system’s decisions.  
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