
A fault tolerant architecture for supervisory

control of discrete event systems 1

Andrea Paoli ∗,2 Matteo Sartini ∗ Stéphane Lafortune ∗∗

∗ Center for Research on Complex Automated Systems (CASY), DEIS,
University of Bologna, Viale Pepoli, 3/2 - 40136 Bologna, ITALY,

{andrea.paoli ; matteo.sartini}@unibo.it
∗∗ Department of Electrical Engineering and Computer Science, The

University of Michigan, 1301 Beal Avenue, Ann Arbor, MI
48109-2122, USA, stephane@eecs.umich.edu

Abstract: In this paper the problem of Fault Tolerant Control (FTC) in the framework of
Discrete Event Systems (DES) modeled as automata is considered. The approach we follow
is the so-called active approach in which the supervisor actively reacts to the detection of a
malfunctioning component in order to eventually meet degraded control specifications. Starting
from an appropriate model of the system, we recall the notion of safe diagnosability as a
necessary step in order to achieve fault tolerant supervision of DES. We then introduce two
new notions: (i) “safe controllability”, which represents the capability, after the occurrence of a
fault, of steering the system away from forbidden zones and (ii) “active fault tolerant system”,
which is the property of safely continuing operation after faults. We show how it is possible to
define a general control architecture to deal with the FTC problem by introducing a special
kind of automaton, called a “diagnosing-controller”. Copyright c©2008 IFAC.

Keywords: Fault tolerant control; Fault diagnosis; Discrete event systems; Automata;
Supervisory control theory; Safety.

1. INTRODUCTION

Complex technological systems are vulnerable to unpre-
dictable events that can cause undesired reactions and as
a consequence damage to technical parts of the plant, to
personnel or to the environment. The main objective of
the Fault Detection and Isolation (FDI) research area is
to study methodologies for identifying and exactly charac-
terizing possible incipient faults arising in predetermined
parts of the plant. This is usually achieved by designing
a dynamical system which, by processing input/output
data, is able to detect the presence of an incipient fault
and eventually to precisely isolate it. Automated systems
are typically governed by operational rules that can be
modeled by Discrete Event Systems (DES), i.e., dynam-
ical systems with discrete state spaces and event-driven
transitions. Several methodologies have been developed
to solve the FDI problem for systems modeled as DES;
see Sampath et al. [1995], Boel and van Schuppen [2002],
Hadjicostis [2005], Jiang and Kumar [2006] for a sample
of this work.

Once a fault has been detected and isolated, the next natu-
ral step is to reconfigure the control law in order to tolerate
the fault, namely to guarantee pre-specified (eventually
degraded) performance objectives for the faulty system.
In this framework, the FDI phase is usually followed by

1 The research of the first and second author is supported by MIUR.

The research of the third author is supported in part by NSF grants

CCR-03255571 and ECS-0624821.
2 Corresponding author.

the design of a Fault Tolerant Control (FTC) system,
namely, by the design of a reconfiguring unit that, on the
basis of the information provided by the FDI filter, adjusts
the controller in order to achieve the prescribed perfor-
mance for the faulty system (see Blanke et al. [2003]).
The passive approach to the FTC problem deals with
the problem of finding a general controller able to satisfy
control specifications both in nominal operation and after
the occurrence of a fault. In contrast, active fault tolerance
aims to achieve the control objectives by adapting the
control law to the faulty system behavior. The problem
of FTC in DES has been recently studied for example in
Iordache and Antsaklis [2004] and Dumitrescu et al. [2007].
In Wen et al. [2007b] and Wen et al. [2007a], the authors
propose a definition of fault tolerance based on the notions
of state equivalence and stability of DES and they provide
a necessary and sufficient condition for the existence of a
supervisor able to enforce a specification for the nonfaulty
plant and another specification for the overall plant.

In this paper we consider the FTC problem in the frame-
work of DES modeled as automata. The approach we fol-
low is the active approach in which the supervisor actively
reacts to the detection of a malfunctioning component in
order to meet eventually degraded control specifications.
To this aim we describe a modeling procedure that results
in a structured model of the controlled system containing
a nominal part and a set of faulty parts. Starting from this
suitable model, we recall the notion of safe diagnosability
(see Paoli and Lafortune [2005]) as a necessary step in
order to achieve fault tolerant supervision of DES. We

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 6542 10.3182/20080706-5-KR-1001.1774

then introduce the new notion of safe controllability, which
represents the capability, after the occurrence of a fault,
of steering the system away from forbidden zones. We
also define the new notion of active fault tolerant system
with respect to post-fault specifications as the property of
safely continuing operation after faults. We then present a
general control architecture to deal with the FTC problem.
This architecture is based on the use of a special kind
of diagnoser, called “diagnosing-controller,” which is used
to safely detect faults and to switch between a nominal
control policy and a bank of reconfigured control policies.
In this sense, the exploited paradigm is that of switching
control in which a high-level logic is used to switch between
a bank of different controllers (see Blanke et al. [2003]).

2. SUPERVISORY CONTROL OF DES WITH FAULTS

Following the theory of supervisory control of DES (see,
e.g., Chapter 3 of Cassandras and Lafortune [2007]), we
consider a model of the uncontrolled system, denoted by
Gnom and given in the form of an automaton, and a set of
specifications on the controlled behavior. In general Gnom

is expressed as the interconnection, via parallel compo-
sition, of a set of interacting components whose models
are denoted by (Gnom

1 , . . . , Gnom
n). The behavior of Gnom,

captured by the language L(Gnom), must be restricted by
control in order to satisfy the set of specifications. For
this purpose, we design a supervisor, whose realization as
an automaton is denoted by Snom, and connect it with
Gnom thereby obtaining the controlled system Gnom

sup :=
Gnom ‖ Snom with its associated language L(Gnom

sup) satis-
fying the set of language specifications K nom.

Potential faults of the system components are usually
considered at this point. In this regard, the Gnom

i com-
ponent models are enhanced to include most likely faults
and subsequent faulty behavior (see, e.g., Sampath et al.
[1995]). Therefore, instead of the nominal model Gnom, we
now have model Gn+f that embeds the (potential) faulty
behavior of the respective components. In the following,
for the sake of simplicity, we consider a single fault event
f . It follows that L(Gn+f) ⊃ L(Gnom) with corresponding
event sets En+f = E ∪ {f}, where f ∈ En+f

uo ∩ En+f
uc , i.e.,

f is unobservable and uncontollable. This means that the
actual controlled behavior of the system is described by
Gn+f

sup = Gn+f ‖ Snom. Since we are considering persistent
faults, after any occurrence of fault f , the supervised
system continues evolving according to well-defined post-
fault models that are completely disjoint from the nominal
supervised model.

By construction of Snom, there are no undesired actions in
the nominal part. However, undesired sequences of actions
can arise in post-fault models due to the effective control
actions of the nominal supervisor on faulty components,
as captured in Gn+f

sup . Consequently, we must avoid that
after fault f occurs, the system executes a forbidden
substring from a given finite set Φ, where Φ ⊆ E⋆. In
essence, the elements of the set Φ capture sequences of
events that become illegal after the occurrence of fault f .
This situation can be formalized by defining the “illegal
language” Kf as in Paoli and Lafortune [2005].

Under the supervision of Snom, the resulting system behav-
ior L(Gn+f

sup) will contain the nominal controlled behavior

L(Gnom
sup), which satisfies the nominal specifications K nom,

and in addition post-fault behavior that may include
strings that are in the illegal language.

The design objectives of a fault tolerant supervision system
can therefore be enumerated as follows:

A) Diagnose the occurrence of event f before the system
executes some illegal sequence in the set Φ;

B) Force the system to stop its evolution before the
execution of forbidden sequences;

C) Steer the faulty system behavior in order to meet new
(eventually degraded) post-fault specifications that
are assumed to be expressed in the form of language
K deg.

Note that objective A is achieved if the property of safe
diagnosability described in Paoli and Lafortune [2005] is
satisfied by the system. In the following, objective B
will be studied in terms of a new property called safe-
controllability, while objective C will be linked with the
new property of active fault tolerance. It is important to
emphasize that the post-fault specifications K deg are in
general incomparable with L(Gn+f

sup); therefore, in order to
satisfy them, it is necessary to switch from the nominal
supervisor Snom to a new supervisor denoted by Sdeg,
thereby following an active approach to fault tolerance in
the sense of Blanke et al. [2003].

3. SAFE CONTROLLABILITY OF DES

This section is concerned with the definition and testing
of the property of safe controllability for the purpose of
the fault tolerance objectives described in the preceding
section. The reader is referred to Sampath et al. [1995]
and Paoli and Lafortune [2005] for any undefined notation
or terminology. First, we recall the definition of diagnos-
ability, introduced in Sampath et al. [1995], which states
that a language L is diagnosable if it is possible to detect
within a finite delay occurrences of faults using the record
of observed events.

Definition 1. [Diagnosable DES] A prefix-closed lan-
guage L that is live and does not contain loops of unob-
servable events is said to be diagnosable with bound n with
respect to projection Po and fault event f if the following
holds: (∃n ∈ N) (∀s ∈ Ψ(f)) (∀t ∈ L/s) (‖t‖ ≥ n ⇒ D)
where the diagnosability condition D is: ω ∈ P−1

o [Po(st)]∩
L ⇒ f ∈ ω.

Objective A of the preceding section requires that after a
fault f occurs, the system should not execute a forbidden
substring from a given finite set Φ. This objective is
captured by the property of safe diagnosability introduced
in Paoli and Lafortune [2005] and now recalled.

Definition 2. [Safe Diagnosable DES] A prefix-closed
language L that is live and does not contain loops of
unobservable events is said to be safe diagnosable with
respect to projection Po, fault event f and forbidden
language Kf if (i) L is diagnosable with bound n, with
respect to Po and f and (ii) (∀s ∈ Ψ(f))(∀t ∈ L/s) such
that ‖t‖ = n, let tc, ‖tc‖ = ntc

, be the shortest prefix of t
such that D holds, then stc ∩ Kf = ∅.

We make use of the Diagnoser Approach of Sampath
et al. [1995] to test diagnosability and safe diagnosability.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6543

The diagnoser, denoted by Gdiag, is an automaton built
from the system model Gn+f

sup . This automaton is used to
perform diagnosis when it observes on-line the behavior
of Gn+f

sup . The construction procedure of the diagnoser
can be found in Sampath et al. [1995]. We recall here a
theorem from Sampath et al. [1995] for testing (off-line)
the diagnosability of a system using its diagnoser.

Theorem 1. [Sampath et al. [1995]] A language L is
diagnosable with respect to the projection Po and fault
event f if and only if the diagnoser Gdiag built starting
from any generator of L has no F -indeterminate cycles.

By slightly modifying the diagnoser as explained in
Paoli and Lafortune [2005], we obtain the so-called safe-
diagnoser, denoted by Gdiag,s, in which some states are
labeled as bad states since they are reachable by executing
strings in Kf . As explained in Paoli and Lafortune [2005],
the safe-diagnoser can be used to test (off-line) the prop-
erty of safe diagnosability; we recall the following theorem.

Theorem 2. [Paoli and Lafortune [2005]] Consider a
diagnosable language L. L is safe diagnosable with respect
to projection Po, fault event f , and forbidden language
Kf if and only if in the safe-diagnoser Gdiag,s built from
any generator of L, (i) there does not exist a state q that
is F -uncertain with a component of the form (x, ℓ) such
that f ∈ ℓ and x is a bad state and (ii) there does not
exist a pair of states q, q′ such that: (i) q is F -certain with
a component of the form (x, ℓ) such that f ∈ ℓ and x is
a bad state; (ii) q′ is F -uncertain; and (iii) q is reachable
from q′ through an event e ∈ Eo.

We have argued previously that safe diagnosability is a
first necessary step in order to achieve fault tolerant su-
pervision of DES. If the system is safe diagnosable, recon-
figuration actions should be forced upon the detection of
faults prior to the execution of unsafe behavior, thereby
achieving the objective of fault tolerant supervision. The
first step to reconfigure the system is to disable the nom-
inal supervisor and prevent the system from executing
a forbidden substring. For this purpose, it is useful to
introduce the following property.

Definition 3. [Safe Controllable DES] A prefix-closed
language L that is live and does not contain loops of
unobservable events is said to be safe controllable with
respect to the projection Po, fault event f , and forbidden
language Kf if (i) L is safe diagnosable with respect to
Po, f , and Kf and (ii) consider any string s ∈ L such that
f ∈ s and s = vσ with σ ∈ Eo. Suppose that D does not
hold for v while it holds for s. Then (∀t ∈ L/s) such that
t = uξ with ξ ∈ Φ, ∃z ∈ Ec such that z ∈ u.

In words, a language is safe controllable if for any string
that contains a fault and a forbidden substring, there exists
(i) an observable event that assures the detection of the
fault before the system executes the forbidden substring
and (ii) a controllable event after the observable event
but before the forbidden substring. In this way, after the
detection of the fault, it is always possible to disable the
controllable event and avoid unsafe behavior.

Consider an automaton G generating language L and
assume that L is safe diagnosable with respect to the
projection Po, fault event f , and forbidden language Kf .
Denote with FC the set of first-entered certain states in the

Uncertain

Fig. 1. Post-fault uncontrolled model.

safe-diagnoser Gdiag,s built from G; namely, FC is the set
of all safe-diagnoser states q such that q is F -certain and
there exists a safe-diagnoser state q′ which is F -uncertain
and such that q is reachable from q′ through an event
σo ∈ Eo. The set FC contains a finite number of elements:

FC = {qi} , (i = 1 . . . m) . (1)

For any qi = {(xj, F); (xk, F) . . . , (xl, F)} ∈ FC (i =
1 . . . m) we build a new post-fault uncontrolled model,

Gdeg
i , by taking the accessible part of Gn+f from all the

distinct states xj, xk . . . xl of Gn+f that appear in the i-
th safe-diagnoser state; see Fig. 1. To make the model
deterministic, we add a new initial state x0,i and connect
it with new events called “initj, initk, initl” to the distinct
states of Gn+f that appear in the safe-diagnoser state qi.
The index of init is used to make these events distinct.
Note that init is uncontrollable and unobservable. In
practice, this accessible part will be within the faulty part
of Gn+f , since the occurrence of the fault has forced the
system outside its original nominal behavior Gnom.

Using the above terminology, we can now present a proce-
dure to test the property of safe controllability.

Proposition 3. Consider automaton G generating lan-
guage L and assume that L is safe diagnosable with respect
to the projection Po, fault event f , and forbidden language
Kf . Consider the set FC of first-entered certain states in
the safe-diagnoser Gdiag,s built from G. Language L is safe

controllable if and only if ∀qi ∈ FC, language {ε}↓C
, com-

puted with respect to the post-fault uncontrolled model

Gdeg
i , does not contain any element of Φ as a substring.

Remark. Standard techniques to remove illegal substrings
from a language can be used to test Proposition 3; see,
e.g., Section 3.3 in Cassandras and Lafortune [2007].

4. ACTIVE FAULT TOLERANCE OF DES

If language L(Gn+f
sup) is safe controllable then it is always

possible to detect any occurrence of event f in a bounded
number of observable events and without executing any
forbidden action; moreover, in any continuation after the
detection of fault f that contains a forbidden action in
Φ, there always exists at least one controllable event z
that can be disabled to prevent the system from executing
unsafe actions. Entering certain state qi ∈ FC should
therefore trigger an interrupt signal INTi that disables the
controllable event z. Moreover, the same interrupt signal
can be used to disable the nominal supervisor Snom and

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6544

Diagnosing-controller

Fig. 2. Fault tolerant supevision architecture for DES.

enable a new supervisor Sdeg
i to be designed in order to

meet post-fault specifications K
deg

i .

Starting from post-fault uncontrolled model Gdeg
i , a set of

requirements on the controlled behavior can be designed

resulting in post-fault degraded specifications K
deg

i , which
in general are sublanguages of the language marked by

Gdeg
i . Note that K

deg
i need not be prefix-closed if the

requirements include the ability to reach one of the so-
called recovery states that are included and marked in

Gn+f . In simpler cases, K
deg

i will be a prefix-closed

sublanguage of the language generated by Gdeg
i . In practice

K
deg

i can be designed as the language generated or

marked by an automaton Hdeg
i built by removing from

Gdeg
i illegal states in Gn+f and all strings that contain

some undesired substring that may be specific to each
i = 1 . . . m. In some cases, it might be desirable to specify

a minimal required behavior K
deg,min

i to be satisfied after
the detection of the fault event f . Considering this set of

degraded post-fault specifications K
deg

i (i = 1 . . . m), we
present the following definition.

Definition 4. [Active Fault Tolerant DES] Language
L(Gn+f) is said to be active fault tolerant if for all

i = 1 . . . m, there exists a sublanguage of K
deg

i that is

controllable and observable with respect to L(Gdeg
i).

Remark. In order to test Definition 4 for prefix-closed

specifications K
deg

i , we can compute {ε}↓C
with respect to

L(Gdeg
i) and test if the result is contained within K

deg
i . Of

course, this solution is likely to be impractical because too
restrictive. Another possibility is to compute the supremal

controllable and normal sublanguage of K
deg

i with respect

to L(Gdeg
i) (see Cho and Marcus [1989], Inan [1994]).

This solution may also be too restrictive since the normal-
ity condition is stronger than the required observability
condition. In this case, one could use existing algorithms
for calculating maximal controllable and observable sub-

languages of K
deg

i ; for instance, the VLP-PO algorithm
presented in Hadj-Alouane et al. [1996] can be used for this

purpose. For cases where K
deg

i is not prefix-closed, the
test for active fault tolerance is more complicated, since
the ↓ C operation deals with prefix-closed languages. One
could still compute the supremal controllable and normal

sublanguage of (marked language) K
deg

i ; however, if this

approach returns the empty set, we will not know if active

fault tolerance is violated, as K
deg

i could still possess a
controllable and observable sublanguage. In this case, the
recent results in Yoo and Lafortune [2006] could be used
to test the existence or not of such a language. However,
a positive test may still yield a solution that is deemed
too restrictive. More research is required regarding the
development of algorithms for computing controllable and
observable sublanguages of non-prefix-closed languages.

In Fig. 2 a possible architecture for active fault tolerant
control of DES is presented. During nominal functioning,
the partial observation loop is closed on the nominal
supervisor Snom which, recording the observation Po(ℓ),
issues the control action Snom [Po(ℓ)] that encodes the
enabled events after the system Gn+f executes the string
ℓ. In parallel to the control loop, the diagnoser 3 Gdiag

uses the same observations to detect occurrences of the
fault event f . If the system is safe diagnosable, after any
occurrence of event f , the diagnoser detects the fault
in a bounded number of events and before the system
executes any forbidden string in Φ. When the diagnoser
becomes F -certain entering state qi ∈ FC (mapped from
the safe-diagnoser), the interrupt signal INTi is issued. If
the system is safe controllable, we know that it is possible
to stop the evolution of Gn+f before it executes forbidden
substrings in Φ. The same interrupt signal is used to
switch from the nominal supervisor Snom to the post-fault

supervisor Sdeg
i . The existence of this supervisor is assured

if the active fault tolerance property holds; in this case, the
behavior of Gn+f can be controlled in order to satisfy the

specification K
deg

i . As depicted in Fig. 2, it is possible to
embed both the diagnoser Gdiag and the bank of post-fault

supervisors Sdeg
i in a unique unit called the diagnosing-

controller, whose structure is shown in Fig. 3.

The diagnosing-controller is an automaton built from
the diagnoser Gdiag and considering the model Gn+f .
If Gn+f

sup is safe diagnosable, then after any occurrence
of fault event f the diagnoser enters, in a bounded
number of events, a first-entered certain state qi =
{(xj, F); (xk, F) . . . , (xl, F)} ∈ FC (again, mapped from
the safe-diagnoser) and, after that moment, all the other
reachable states in Gdiag are certain states. When Gdiag

enters qi, the signal INTi is generated and used to dis-
able the controllable event z to avoid any occurrence of
forbidden substrings; moreover the same event is used to
disable the nominal supervisor Snom. Considering these
facts, when Gdiag enters qi, we are sure that event f has
occurred and the actual state in Gn+f is one of the states
in the list of qi, i.e., xj;xk . . . xl. Note that if the system
is safe diagnosable, none of the states xj;xk . . . xl will be
reached by the execution of forbidden substrings (see Paoli
and Lafortune [2005]). As previously stated, xj;xk . . . xl

can be considered as initial states for the uncontrolled i-th
post-fault model of the system. Moreover, the post-fault
evolution can be reconstructed considering the connectiv-
ity in Gn+f starting from states xj;xk . . . xl. At this point,
if L(Gn+f) is active fault tolerant with respect to post-

fault specification K
deg

i , it is possible to design a post-

3 The standard diagnoser is used here as it is suffices for the present

purpose. Relevant mapping of states is done from the safe-diagnoser

to the diagnoser regarding the set FC.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6545

Enabled observable
events

Enabled unobservable
events

Uncertain

Fig. 3. The diagnosing-controller for the example in Fig. 1.

G
nom

1

M

PP/NP

rec

op1,cl1

op,cl

start,stop

G
nom

2

f

V1

V2

Vr

P
T

Fig. 4. The hydraulic system.

fault supervisor Sdeg
i . As depicted in Fig. 3, the realization

of the post-fault supervisor Sdeg
i can be considered as

directly connected to first-entered F -certain state qi in the
diagnoser. In the following an algorithmic procedure to
build the diagnosing-controller is presented.

Procedure to build the diagnosing-controller.
Step 1: Build the diagnoser Gdiag from Gn+f

sup ;
Step 2: For any qi = {(xj, F); (xk, F) . . . , (xl, F)} ∈ FC;

Step 2.1: Stop the evolution of Gdiag after qi and
enable signal INTi when entering qi;

Step 2.2: Build the post-fault model Gdeg
i ;

Step 2.3: Compose Gdeg
i with a realization Hdeg

i of

specification K
deg

i . Define Rdeg = Hdeg
i × Gdeg

i ;
Step 2.4: Starting from Rdeg, build the post-fault su-

pervisor realization Sdeg
i using techniques from super-

visory control theory;

Step 2.7: Overlap the initial state of Sdeg
i with state qi

of Gdiag;
Step 3: Call the resulting automaton Gdiag,sup.

5. EXAMPLE

Consider the hydraulic system of Fig. 4; the system is
composed of a tank T, a pump P, a set of valves (V1,
V2, and Vr), and associated pipes. The pump P is used to
move fluid from the tank through the pipe and must be
coordinated with the set of redundant valves. The system
is equipped with a pressure sensor. Events op and cl are
used to open and close valve V1, events op1 and cl1 are
used to open and close valve V2, event rec is used to
open safety valve Vr. All these events are observable and
controllable. Moreover events start and stop, observable
and controllable, are used to switch on and off the pump,
respectively. In Fig. 5 (a) the nominal model of the

op

cl

op

cl

start

G
nom

0,A 1,A

0,B 1,B

(a)

startstop stop

op1

cl1

op1

cl1

start

2,A 3,A

2,B 3,B

startstop stop

rec rec

rec
rec

H
nom

α

(b)

β

γδ

op

cl start

stop

Fig. 5. The hydraulic system example: (a) global nominal
model Gnom; (b) nominal specification Hnom.

op

cl

op

cl

start

G
n+f

0,A 1,A

0,B 1,B

(a)

startstop stop

op1

cl1

op1

cl1

start

2,A 3,A

2,B 3,B

startstop stop

rec

rec

rec
rec

start

F,A

F,B

stop

f

f

rec

rec

op,cl

op,cl

(b)

<op,NP>

<cl,PP> <start,NP>

<stop,NP>

0,A,α 1,A,β

1,B,γ1,A,δ

G
n+f

sup

<op,PP>

<cl,PP> <start,PP>

<stop,PP>

F,A,α F,A,β

F,B,γF,A,δ

x1 x2

x4x3

x5 x6

x8x7

f

Bad

Fig. 6. The hydraulic system example: (a) complete model
Gn+f ; (d) complete supervised model Gn+f

sup .

<op,NP>

<cl,PP>

<start,NP> <stop,NP>

G
diag,s

<op,PP>

<cl,PP><start,PP> <stop,PP>

(x1,N) (x2,N) (x4,N) (x3,N)

(x6,F) (x8,F) (x7,F) (x5,F)

<op,PP>

Bad

(a)

(b)

op1

cl1

op1

cl1

start

2,A 3,A

2,B 3,B

startstop stop

rec
F,A

op,cl

(c)

op1

cl1 start

stop

rec
h1 h2 h3

h4h5

start

F,B

stop

rec

G
deg

1 H
deg

1

Fig. 7. The hydraulic system example: (a) safe diagnoser

Gdiag,s; (b) post-fault model Gdeg
1 ; (c) post-fault spec-

ification Hdeg
1 .

system Gnom is depicted; this model must be controlled
according to the specification defined by automaton Hnom

shown in Fig. 5 (b). It is easy to see that L(Hnom) is
controllable and observable with respect to L(Gnom). Due
to malfunctioning, valve V1 may get stuck closed; this fact

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6546

<op,NP>

<cl,PP>

<start,NP> <stop,NP>

G
diag,sup

<op,PP>

(x1,N) (x2,N) (x4,N) (x3,N)

(x6,F) INT

op1

cl1 start

stop

rec

h2 h3

h4h5

Fig. 8. The hydraulic system example: the diagnosing-
controller Gdiag,sup.

is modeled using unobservable and uncontrollable event
f . According to this refined model, the automaton Gn+f

modeling the uncontrolled system is depicted in Fig. 6 (a);
in Fig. 6 (b) the effect of the nominal supervision policy
on Gn+f is denoted by Gn+f

sup . Pressure sensor readings are
attached to events; note that if valves are closed, the sensor
reads an over pressure in the pipe (PP), while, if valves are
open, the sensor reads no over-pressure in the pipe (NP).
The situation in which the pump is working with closed
valves has to be avoided because it is unsafe: Φ = {start}.
Note that this situation is feasible in Gn+f

sup where state x8 is
labeled as bad (see Paoli and Lafortune [2005]). In Fig. 7
(a), the safe-diagnoser of Gn+f

sup is shown. Since the bad
state x8 is not present in any of the uncertain states or in
a first-entered certain state, the system is safe diagnosable;
in this case the set of first-entered certain states is FC =
{(x6, F)}. Figure 7 (b) shows the feasible evolution Gdeg

1

after detection; here, no new initial state and initj event

is needed (see Fig. 1) since Gdeg
1 is deterministic. It

is easy to prove that {ε}↓C computed with respect to

L(Gdeg
1) is equal to {ε}, therefore Gn+f

sup turns out to

be safe controllable. Starting from Gdeg
1 , the post-fault

specification generated by automaton Hdeg
1 in Fig. 7 (c)

can be designed. Since this specification turns out to

be controllable and observable with respect to Gdeg
1 , the

system is active fault tolerant. Finally, the diagnosing-
controller Gdiag,sup for this example is shown in Fig. 8.

6. CONCLUSIONS

The main contribution of this paper is to present a new
supervisory control architecture that deals with the FTC
problem in the framework of automata. We follow the
“active approach,” in which the supervisor actively reacts
to the detection of a malfunctioning component in order
to eventually meet degraded control specifications. We
employ a switching control paradigm in which a high-
level logic is used to switch between different controllers.
Starting from an appropriate model of the system, we have
shown how the notion of safe diagnosability is a necessary
step in order to achieve fault tolerant supervision of DES.
We have introduced the new notions of “safe controllabil-
ity” and “active fault tolerant system,” as a means to char-
acterize the conditions that must be satisfied when solving
the FTC problem using the active approach. Tests for
these properties were presented. Finally, we have proposed
a procedure to design an automaton called “diagnosing-

controller” which is able, if the system satisfies the prop-
erties introduced, to solve the fault tolerant supervision
problem.

REFERENCES

M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki.
Diagnosis and fault-tolerant control. Springer-Verlag,
2003.

R. Boel and J. van Schuppen. Decentralized failure
diagnosis for discrete-event systems with constrained
communication between diagnosers. Proceedings of the
6th International Workshop on Discrete Event Systems,
2002.

C.G. Cassandras and S. Lafortune. Introduction to Dis-
crete Event Systems - Second Edition. Springer, 2007.

H. Cho and S. I. Marcus. On supremal languages of classes
of sublanguages that arise in supervisor synthesis prob-
lems with partial observation. Math Control, Signals
Systems, 2(1):47 – 69, 1989.

E. Dumitrescu, A. Girault, H. Marchand, and E. Rutten.
Optimal discrete controller synthesis for modeling fault-
tolerant distributed systems. Proceedings of the 1st
IFAC Workshop on Dependable Control of Discrete
Systems, 2007.

N. Ben Hadj-Alouane, S. Lafortune, and F. Lin. Central-
ized and distributed algorithms for on-line synthesis of
maximal control policies under partial observation. Dis-
crete Event Dynamic Systems: Theory and Applications,
6(4):379 – 427, 1996.

C. Hadjicostis. Probabilistic fault detection in finite-
state machines based on state occupancy measurements.
IEEE Transactions on Automatic Control, 50(12):2078
– 2083, 2005.

K. Inan. Nondeterministic supervison under partial obser-
vation. 11th International Conference on Analysis and
Optimization of Systems: Discrete Event Systems, 1994.

M. V. Iordache and P. J. Antsaklis. Resilience to failure
and reconfigurations in the supervision based on place
invariants. Proceedings of the 2004 American Control
Conference, 2004.

S. Jiang and R. Kumar. Diagnosis of repeated failures
for discrete event systems with linear-time temporal
logic specifications. IEEE Transactions on Automation
Science and Engineering, 3(1):47 – 59, 2006.

A. Paoli and S. Lafortune. Safe diagnosability for fault tol-
erant supervision of discrete event systems. Automatica,
41(8):1335 – 1347, 2005.

M. Sampath, R. Sangupta, and S. Lafortune. Diagnos-
ability of discrete event systems. IEEE Transactions on
Automatic Control, 40(9):1555 – 1575, 1995.

Q. Wen, R. Kumar, J. Huang, and H. Liu. Weakly fault-
tolerant supervisory control of discrete event systems.
Proceedings of the 2007 American Control Conference,
2007a.

Q. Wen, R. Kumar, J. Huang, and H. Liu. Fault-tolerant
supervisory control of discrete event systems: formalisa-
tion and existence results. Proceedings of the 1st IFAC
Workshop on Dependable Control of Discrete Systems,
2007b.

T.-S. Yoo and S. Lafortune. Solvability of centralized
supervisory control under partial observation. Discrete
Event Dynamic Systems: Theory and Applications, 16
(4):527 – 553, 2006.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6547

