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Abstract: This paper reports results of a joint study between ESA and the University of Leicester on
worst-case analysis of NDI control laws for an industrial standard Reusable Launch Vehicle. Multiple
performance objectives over a particular phase of the atmospheric re-entry are considered simultaneously
in the analysis, yielding valuable information about the trade-offs involved in satisfying different
clearance criteria. Two different multiobjective optimisation algorithms are employed to identify the
pareto front of the multiple performance objectives. In the initial analysis, a fast, elitist, evolutionary
multiobjective optimisation algorithm known as nondominated sorting genetic algorithm(NSGA-II)
is employed. A hybrid multi objective optimisation algorithm which adaptively switches between
three different strategies such as NSGA-II, differential evolution and the metropolis algorithm, is also
developed and applied to the clearance problem. The results of our analysis show that the proposed
optimisation-based approach has the potential to significantly improve both the reliability and efficiency
of the flight clearance process for future re-entry vehicles.

1. INTRODUCTION

Atmospheric re-entry is a critical phase of the Reusable Launch
Vehicle (RLV) mission. During re-entry flight, the space vehicle
follows a predefined trajectory toward the designated landing
point, traveling from the emptiness of space to the dense at-
mosphere of earth. As the Mach number decreases, the vehicle
is exposed to rapid changes in aerodynamic flight parameters,
whose values are known to control law designers only within
large uncertainty ranges. Thus, the re-entry guidance and con-
trol laws need to be highly robust in tracking the pre-defined
trajectory. In order to guarantee the safety of the mission, the
worst-case deviations from the prescribed trajectory have to be
calculated for the expected levels of variation and uncertainty
in flight parameters such as aerothermodynamic parameters,
mass, inertia, actuator and sensor uncertainties. As the safety
of the RLV is dependent on the control laws, it must be shown
that robust trajectory tracking is achieved for all normal and
various failure conditions, and in the presence of all possible
parameter variations.

The RLV clearance task is thus to quantify the worst per-
turbation from the nominal vehicle trajectory which could be
generated by simultaneous variations in multiple uncertain pa-
rameters, many of which are not necessarily linear or time
invariant. This is, in fact, an example of the type of robust-
ness analysis problems which have been intensively studied in
aircraft control in recent years, Fielding et al. (2002); Bates
and Hagstrom (2007); Menon et al. (2006, 2007), and for
which many powerful tools are now available. The classical
approach to worst-case analysis usually employs analytical
measures of (linear) robustness such as gain/phase margins or
nonlinear continuation/bifurcation analysis against single pa-
rameter variations. More modern approaches based on robust
control theory convert the given closed loop system to a linear
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fractional transformation (LFT)-based model and subsequently
employ techniques such as µ-analysis and ν-gap metric analy-
sis to assess the robustness of multi-loop flight control laws to
multiple sources of uncertainty (chapters 17 and 18, Fielding
et al. (2002)). Nonlinear extensions of these approaches using
Integral Quadratic Constraints (IQC’s) Biannic et al. (2006) and
Sum-Of-Squares (SOS) programming, Krishnaswamy et al.
(2005) have also recently been developed. A common feature
of all of the above methods is that they make certain demands
on the closed-loop simulation model under investigation, e.g.
the generation of LFT-based models for µ-analysis. In con-
trast, the statistical techniques that are widely used in industry,
such as Monte Carlo simulation, can be applied to any type
of simulation model with a minimum of effort on the part of
the designer. Monte Carlo simulation can, however, only pro-
vide statistical estimates of true worst-case behaviour, and this
approach can become extremely computationally expensive if
high confidence levels are required for the analysis results.

In this paper, we describe an alternative (or complementary)
approach, based on the use of hybrid multiobjective optimi-
sation algorithms, which delivers extremely reliable analysis
results, while minimising both computational overheads and
additional modelling requirements. Importantly, the proposed
optimisation-based analysis approach is applicable to linear or
nonlinear simulation models with linear, nonlinear or parame-
ter/time varying uncertain parameters. Clearly, given that the
parameter space for this type of problem will in general be
highly nonlinear and non-convex, Fielding et al. (2002), global
optimisation methods will be required to avoid getting trapped
in locally optimal solutions. Previous work by the authors has
explored the applicability of various evolutionary, Menon et al.
(2006) and deterministic, Menon et al. (2006(b), global opti-
misation algorithms to the flight clearance problem, Bates and
Hagstrom (2007), and has also demonstrated the usefulness of
hybridising global optimisation algorithms with local gradient-
based methods such as SQP for enhancing the rate of con-
vergence to the global solution. In the specific context of the
re-entry vehicle clearance problem, novel optimisation-based
approaches to the flight clearance problem were described in
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Table 1. Uncertain Parameters in RLV Model

Parameter Bound Description

∆mass [-2313.3, 2313.3] variation in RLV dry mass from nominal one (11566.55 kg)

∆Ixx [-1627, +1627] variation in Moment of inertia about Y (8135.0 4kgm2)

∆Iyy [-15185, +15185] variation in Moment of inertia about Y (75926.0 kgm2)

∆Izz [-15863, +15863] variation in Moment of inertia about Z (79315.0 kgm2)

∆Ixz [-628.8, +628.8] variation in Product of inertia XZ (3144.0 kgm2

∆xcog [-0.4912, +0.4912] variation in X center of gravity from nominal one (4.9213 m)

∆ycog [-0.01, +0.01] variation in Y center of gravity from nominal one (0.0 m)

∆zcog [-0.1009, +0.1009] variation in X centre of gravity from nominal one (1.0094976 m)

Menon et al. (2007). In all of the above studies, however, only
worst-case analysis problems involving a single performance
objective were considered.

In actual RLV mission scenarios, it is often necessary to have
an estimate of the worst-case performance of the control laws
with respect to multiple performance objectives or clearance
criteria, in order that the designers can understand the perfor-
mance trade-offs that exist between different clearance criteria.
In such situations, the flight clearance problem can clearly be
considered from the perspective of multiobjective optimisation.
The re-entry vehicle flight envelope is described along a desig-
nated nominal flight path, which is defined in terms of desired
trajectories for several different states of the vehicle. The safety
of the control law is checked by considering separate phases of
the re-entry, using some pre-defined stability and performance
criteria.

In this paper, we consider simultaneously multiple conflicting
performance criteria and estimate the worst-case performance
of the NDI re-entry control laws designed for the RLV mis-
sion. The focus is thus to identify the set of uncertain para-
meters corresponding to the Pareto-optimal front, which results
in worst-case performance of the control law. Multiobjective
optimisation algorithms are employed to identify the nondom-
inated solution set of uncertain parameters that generates the
worst-case performance. In the initial analysis, a fast, elitist,
evolutionary multiobjective optimisation algorithm known as
nondominated sorting genetic algorithm(NSGA-II), Deb et al.
(2002), is employed. Motivated by the previous improved re-
sults from the hybridisation of optimisation techniques reported
in Menon et al. (2006); Bates and Hagstrom (2007), a hy-
brid algorithm which adaptively switches between three differ-
ent strategies such as NSGA-II, differential evolution and the
metropolis algorithm is also developed and applied to the clear-
ance problem. While the use of evolutionary multiobjective
optimisation techniques in the context of worst-case analysis
of control laws is, to our knowledge, completely novel, we note
that these techniques have previously been successfully applied
to different design problems in RLV mission design, such as
computing the optimal re-entry trajectory, Gang et al. (2005);
Arora (2002).

2. RLV MODEL AND FLIGHT CONTROL LAW

The high-fidelity simulation model of a generic RLV consid-
ered in this study is based on the HL-20 aerodynamic database
and X38-type geometric and aerodynamic surface configura-
tions, and has a dry mass of 19,100-lb. This simulation model
has been developed by DEIMOS Space for the European Space
Agency (ESA) to act as a research platform for the investiga-
tion of re-entry and auto land guidance, navigation and con-
trol systems, Fernandez et al. (2006). The model consists of a
reference trajectory generator, a nonlinear dynamic inversion
(NDI)-based flight control system, nonlinear actuator models,
the RLV dynamics, sensors such as gyros and accelerometers,
and detailed environment models. The RLV simulation model
is implemented in the Matlab Simulink environment.

The reference trajectory is defined in terms of Angle of Attack
(AoA or α), Angle of Side Slip (AoSS or β ), and bank angle
φ . The NDI controller provides the elevator, aileron, rudder and
brake control inputs according to the specified dynamics for the
vehicle. The controller also includes actuator allocation func-
tions depending on the commanded moments, altitude and ve-
locity of the RLV. More details of the model and its associated
flight control system are available in Fernandez et al. (2006).
The parameters in the model, and associated uncertainty values,
are accessible through a database consisting of a collection of
XML files.

The complete re-entry trajectory for the vehicle takes 1680
seconds of simulation time and is divided into different flight
phases based on dynamic pressure and atmospheric layer. The
present analysis focuses on a lower atmosphere flight phase
starting at 1588 seconds and ending at 1675 seconds that covers
the 32 to 20 km altitude range. The reference trajectory in this
segment includes a reduction of AoA from 30 degrees to nearly
20 degrees, while keeping a zero AoSS and with a defined bank
angle variation.

The uncertainties considered in the present analysis are the
parameters representing the vehicle’s mass, inertias, centre-
of-gravity and aerodynamic coefficients (longitudinal and lat-
eral). The individual description and allowed ranges of the
configuration and inertia uncertain parameters considered for
the present analysis are given in Table 1. The longitudinal
aerodynamic uncertainties considered are coefficient of Lift
(∆CL

), coefficient of Drag (∆CD
), coefficient of pitching moment

(∆Cm) and coefficient of Lift to Drag ratio (∆L/D). These are all

considered as non-dimensional. For example, in the model the
total coefficient of Drag is modelled as CDnom ∗ (1 + ∆CD

). The
lateral aerodynamic uncertainties considered are uncertainties
in rolling moment coefficient (∆Cl

), yawing moment coefficient
(∆Cn ) and sideforce coefficent (∆Cy ). Based on current industrial

practice, all longitudinal and lateral aerodynamic uncertainties
are normalised to unity in this study and vary with respect
to Mach - these parameters are thus time varying parameters
Fernandez et al. (2006).

2.1 Multiobjective worst-case analysis

In the industrial flight clearance process, it is of significant
interest to control law designers to identify the set of uncertain
parameters that will provide worst-case performance as mea-
sured by different, often contradictory, clearance objectives. An
example of such a clearance problem is addressed in this paper
within the proposed multiobjective optimisation framework.
The aim is to identify the pareto-optimal front for the maximum
deviations of angle of sideslip (β ) and angle of attack (α) over
the SIM PH5ALY2 phase of the RLV mission trajectory. The
multi-objective clearance criterion is thus defined as follows:

max J1, J2 where (1)

J1 = ‖αre f −α∆‖∞, (2)

J2 = ‖βre f −β∆‖∞ (3)

subject to: ∆ ≤ ∆ ≤ ∆ (4)
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where αre f and βre f are the reference AoA and AoSS trajectory.

α∆ and β∆ represent the AoA and AoSS trajectories of the
RLV subject to the multiple parameter uncertainty perturbation
vector ∆. The upper and lower bounds of the uncertain para-

meter vector are given by ∆ and ∆. Equation (4) provides the
constraints on the values of the uncertain parameters, as given
in Table (1).

3. MULTIOBJECTIVE OPTIMISATION

A general formulation of the multiobjective optimisation prob-
lem can be described as follows. Consider

F(x) = {F1(x),F2(x), ...,Fk(x)}, x ∈ S (5)

where Fi(x)(i = 1,2, ...,k) is a scalar objective function which
maps decision variable x into the objective space, Fi : R

n 7→ R.
The n-dimensional variable x is constrained to lie in the feasible
region S. The feasibility region S is constrained by m inequality
and p equality constraints, i.e.

S = {x : g j(x) ≥ 0, hl(x) = 0, j = 1,2, ...,m, l = 1,2, ..., p}
(6)

In multiobjective optimisation problems, the desired objectives
can often be conflicting, i.e. it is not necessarily possible to
satisfy all the objectives simultaneously. In such cases, Pareto
optimal solutions, which are a set of non-inferior solutions,
are computed. Consider two candidate solution vectors x =
(x1,x2, ...,xn) and y = (y1,y2, ...,yn). The pareto concept may
be explained as follows: The vector x dominates vector y if and
only if, xi ≤ yi ∀i = 1,2, ...,n and xi ≤ yi for at least one i. Hence,
when comparing the two candidates x and y there are three
possibilities: x dominates y, x is dominated by y or x and y are
nondominated. This is the Pareto Dominance property which is
used to define the Pareto Optimal points. The solution vector
x is Pareto optimal if and only if there does not exist another
solution y such that fi(y) dominates fi(x) for every i = 1,2, ...,k.
The resulting solution is one in which one objective can not
be further improved without the degradation of at least one
another objective. The resulting set of solutions thus represents
the globally optimal solutions to the tradeoff problem defined
by the given conflicting objectives. The set of all Pareto optimal
solutions is called the Pareto optimal set and is denoted as PO∗.

The set PF∗ = {[ f1(x), f2(x), ..., fk(x)]
T |x ∈ PO∗}, is called the

Pareto front.

The objectives of the multiobjective optimisation are: (i) to
reduce the distance between the nondominated front and the
Pareto optimal front, (ii) to achieve preferably a good (in gen-
eral uniform) distribution of the solutions and (iii) to have a
maximum spread of the obtained nondominated front, implying
the coverage of a wide range of values for each objective by the
nondominated solutions. There are thus two key issues in solv-
ing multiobjective problems. Firstly, accomplishing the fitness
assignment and selection, respectively, such that the search is
guided toward the Pareto-optimal set. This can be achieved by,
for example, selection by switching objectives (Vector Evalu-
ated Genetic Algorithm reported in Schaffer (1985)), aggrega-
tion selection along with parameter variation (weighting-based
genetic algorithm reported in Hajela and Lin (1992)), pareto-
based selection (multiobjective genetic algorithm reported in
Fonseca and Fleming (1998a,b) or by using the nondominated
sorting genetic algorithm (NSGA-II) reported in Deb et al.
(2002)). The subsequent issue is to maintain a diverse popu-
lation to prevent the premature convergence and achieve a well
distributed nondominated set. Maintaining diversity among the
candidate solutions is addressed by different methods such as
fitness sharing, restricted mutation, isolation by distance, reini-
tialization and crowding. Following a review of the applicabil-
ity of the many different algorithms which may be found in the
literature, we chose the NSGA-II multiobjective optimisation
method as the starting point for our study and subsequently

Table 2. Nondominated sorting genetic algorithm

(1) Generate a random initial population P0 of size N, evaluate the objectives
(2) Rank and sort the P0 based on non-domination level
(3) For initial iteration, create the offspring population Q0 of size N, using

binary tournament selection, crossover and mutation operators.
(4) While the Termination criteria is not satisfied (e.g. Maximum iteration

fixed at say 25)
(a) Generate the combined population Rgen including the population

Pgen and offspring Qgen; [Rgen = Pgen ∪Qgen]
(b) Sort the combined population Rgen into a set of nondominated

fronts F = (F1,F2, ...)
(c) Pgen+1 = {0} and j = 1
(d) Do

(i) Calculate the crowding distance in F j

(ii) Associate the jth nondominated front F j to the new gener-
ation population Pgen+1; [Pgen+1 = Pgen+1 ∪F j]

(iii) Increment the counter j = j +1
(iv) Check subsequent front F j for including in the population
(v) Sort the F j in ascending order and choose the first N −

|Pgen+1| elements from the front. [Pgen+1 = Pgen+1 ∪F j(1 :
(N −|Pgen+1|)]

(e) While the new generation population is filled with N candidates;
[|Pgen+1|+ |Fi| ≤ N]

(f) Generate offspring Qgen+1 of size N, using binary tournament
selection, crossover and mutation operators.

(g) Increment the generation counter gen = gen+1
(5) end of While

developed a more advanced hybrid algorithm for application
to our multiobjective flight clearance problem.

4. NONDOMINATED SORTING GENETIC ALGORITHM

The nondominated sorting genetic algorithm (NSGA-II) pro-
posed by Deb et al. (2002) differs from simple GA’s mainly
in the way the selection operator is used. Fast nondominated
sorting, crowded distance calculation and the crowded compar-
ison operator are the basic building blocks of the NSGA-II. The
algorithm starts with a randomly generated initial population
P0. The initial population is the set of candidate solution vectors
consisting of various randomly generated uncertain parameters
within the defined bounds. The multiple objectives of the can-
didate solutions in the population P0 are evaluated. The initial
population is sorted according to non-domination into different
fronts F1,F2, ... The first front F1 includes all the candidate
solutions that are completely nondominant in the current popu-
lation. The second front F2 is dominated by individuals in F1
and so on and so forth. Every candidate solution in the front is
assigned a rank, according to which front they belong to. The
F1 members have rank 1 and F2 with rank 2 and so on. An
important point to note here is that the assumption followed in
NSGA is that the problem involves the minimisation of multiple
objectives, and hence the maximisation problems obtained in
worst-case analysis must be suitably transformed into minimi-
sation problems before the optimisation algorithm is applied.
Initially, the offspring population Q0 is created using the binary
tournament selection, crossover and mutation. Also, note that
elitism is ensured by mixing the offspring population Q0 with
the current generation population P0. Subsequently further non-
domination level sorting and crowding distance computation is
done; the selection of the subsequent population is performed
and the algorithm is iterated until the termination criteria is sat-
isfied. At present a termination criteria of a fixed computational
budget is used. More details on the algorithm are available in
Deb et al. (2002) and the references therein. The pseudo code
for the NSGA-II algorithm is given in Table (2). The nondomi-
anted sorting, crowding distance assignment and selection are
discussed in more detail in the following subsections.
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4.1 Nondominated sorting

A candidate solution vector p can be associated with a dom-
ination count np and a domination set Sp. np is the number of
solutions in the population dominating the candidate solution p.
Sp consists of the set of solutions that p dominates. The sorting
procedure begins by assigning np zero to all the candidates in
the population. Initially Sp is empty. For each individual q in the
population, if p dominates q then the candidate q is included in
Sp (Sp = Sp ∪ q). Otherwise, np is incremented by one. While
np = 0, no individual dominates candidate p and the candidate
p belongs to the first front F1, having rank 1 (F1 = F1 ∪ p).
This procedure is carried out for all the candidate solutions in
the population. For any member q having np = 0, a separate
list Q is generated. This belongs to the second nondominated
front. The procedure is continued with each member in Q and
the subsequent front is identified and so on.

4.2 Crowding distance assignment

The population is sorted according to each objective function
value in ascending order of magnitude. Then, for each objec-
tive function the boundary solutions are assigned an infinite
distance value. All other intermediate solutions are assigned the
distance value equal to the normalised absolute difference in the
objective function values of the two adjacent solutions in the
sorted set. The overall crowding distance is calculated as the
sum of individual distance values corresponding to each objec-
tive function value, which are normalised prior to calculation.
The basic idea behind the crowding distance calculation is to
calculate the euclidian distance between each individual in the
sorted front F based on their n objectives in the m dimensional
space. The individuals on the boundary are always selected
since they have been assigned an infinite distance value.

4.3 Crowded comparison operator for selection

Once the candidate solutions are sorted based on non-domination
and the crowding distance assigned, selection is carried out by
employing the crowded-comparison operator (≺n). This opera-
tor ensures a uniformly spread-out pareto-optimal front. Every
candidate solution in the population has: (i) nondomination
rank (prank) calculated in the nondominated sorting step, i.e the
candidate solution in front F j will have the rank as prank = j.
(ii)the crowding distance (pdistance). For two candidate solu-
tions with differing nondomination ranks, the candidate having
lower rank is selected. When the ranks of two candidates are
equal, i.e of the same front, the solution located in a lesser
crowded region (larger crowding distance value) is selected.

5. HYBRID MULTIOBJECTIVE OPTIMISATION

An adaptive hybrid search algorithm for multiobjective optimi-
sation problems was recently proposed in Vrugt and Robinson
(2007). While this algorithm achieved both improved perfor-
mance and reduced computational overheads on a number of
challenging academic test problems, it has so far not been ap-
plied to any serious realistic applications. In this paper, we ap-
ply the adaptive hybrid approach of Vrugt and Robinson (2007)
using three algorithms: NSGA-II, differential evolution(DE)
and metropolis search(AM). Like NSGA-II, this algorithm also
begins with N randomly generated individuals in an initial
population P0. The multiple objectives of individuals in the
population P0 are evaluated. Once the objectives are evaluated
each candidate in the population is assigned a rank using the
nondominated sorting algorithm.

Initially, the offspring population Q0 is created by k different

algorithms{Q1
0,Q

2
0, ...,Q

k
0}, i.e. NSGA-II (Deb et al. (2002)),

Table 3. Hybrid multiobjective optimisation

(1) Generate a random initial population P0 of size N, evaluate the objectives
(2) Rank and sort the P0 based on non-domination level
(3) Select k different optimisation algorithms from the pool of optimisers
(4) Create the offspring population Q0, k different algorithms contribute

equally to generate the offspring population size N
(5) While the Termination criteria is not satisfied (e.g. Maximum iteration

fixed at say 25)
(a) Generate the combined population Rgen including the population

Pgen and offspring Qgen; [Rgen = Pgen ∪Qgen]
(b) Sort the combined population Rgen into a set of nondominated

fronts F = (F1,F2, ...)
(c) Pgen+1 = {0} and j = 1
(d) Do

(i) Calculate the crowding distance in F j

(ii) Associate the jth nondominated front F j to the new gener-
ation population Pgen+1; [Pgen+1 = Pgen+1 ∪F j]

(iii) Increment the counter j = j +1
(iv) Check subsequent front F j for including in the population
(v) sort the F j in ascending order and choose the first N −

|Pgen+1| elements from the front. [Pgen+1 = Pgen+1 ∪F j(1 :
(N −|Pgen+1|)]

(e) While the new generation population is filled with N candidates;
|Pgen+1|+ |Fi| ≤ N

(f) Estimate the contribution to Pgen+1 by each of the k optimisation
algorithms

(g) Calculate the number of offspring to be generated by k different al-
gorithms Nk

gen+1 by adaptive weighting scheme that depend on the

contribution of the individual algorithms to the present generation
population

(h) Rescale the weights in case the number of offspring corresponding
to any algorithm is below the atleast threshold value, say fixed at 2
[This ensures the existence of the algorithms]

(i) Generate offspring Qgen+1 of size N by producing Nk
gen+1 offspring

points with each k optimisation algorithms
(j) Increment the generation counter gen = gen+1

(6) end of While

DE (Stron and Price (1997)), and MH (Haario et al. (2001))

in the present case, each contributing equally N
k

members.

Initially, k different algorithms generate equal numbers of off-
springs such that the total population size is N. Subsequently as
the algorithm is iterated, the k different algorithms create a pre-

specified number of offspring points, N = {N1
gen, ...,N

k
gen}, that

are determined by the adaptive procedures and gen representing
the particular iteration or generation.

The philosophy behind the adaptation strategy is to weight
more those individual algorithms that contribute more to the
selected new population of the next generation. The update of

N = {N1
gen, ...,N

k
gen} according to

Ni
gen = N ∗ (Pi

gen/Ni
gen−1)/

k

∑
i=1

(Pi
gen/Ni

gen−1)

Pi
gen is the number of offspring points the ith individual algo-

rithm contributed to the new population. Ni
gen−1 is the number

of offsprings the ith individual algorithm contributed in the
population of the previous generation. This provides an adap-
tive weighting between the individual algorithms. A minimum
threshold between the algorithms is provided and is fixed at
2. This avoid the possibility of an algorithm becoming totally
inactive during the adaptation and thereby becoming eliminated
from contributing to future generations.

A combined population of size 2N is generated by mixing the
offspring population with the initial population R0 = P0 ∩Q0.
The mixing of the population is aimed to ensure the elitism. The
R0 is ranked using the nondominated sorting method. Hence,
the nondominated solutions in the previous population will
also be included in the new nondomianted front along with
those contributed by the new offspring population. A crowding

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2535



0 2 4
0

0.05

0.1

0.15

0.2

0 2 4
0.05

0.1

0.15

0.2

0.25

0 2 4
0.12

0.14

0.16

0.18

0.2

0.22

0 2 4
0.12

0.14

0.16

0.18

0.2

0.22

2.4 2.6 2.8 3 3.2
0.1

0.12

0.14

0.16

0.18

0.2

1 2 3

0.16

0.18

0.2

0.22

 

 

NSGA−II

Hybrid

450

Initial 150 300

600 750

J1J1J1

J1J1J1

J 2

J 2

J 2

J 2

J 2

J 2

Fig. 1. Multiobjective result of RLV

distance is also assigned with the nondominated members. The
new population is selected by considering the ranking and
crowding distance as in NSGA-II. The new population P1 is
subsequently used to create the offsprings. The pseudo code
of the hybrid multiobjective optimisation algorithm is given in
Table 3.

6. WORST-CASE ANALYSIS RESULTS

First, the NSGA-II algorithm as given in Table 2 is applied
to evaluate the pareto front for the multiobjective worst-case
performance problem defined in equations (1 -4) in Section II.
The NSGA-II algorithm begins with an initial population size
of 30. The initial population of 30 candidate solution vectors,
is randomly generated over the bounded search space. The
multiple objectives J1 and J2 corresponding to each candidate
solution uncertain parameter vector are evaluated by simulat-
ing the RLV simulation model discussed in Section II. The
NSGA-II algorithm, which consists of non-dominating sort,
crowding distance calculation and genetic operators such as
binary tournament selection, crossover and mutation operators,
is iterated until the termination criteria is satisfied. A predefined
computational budget, fixed at 25 generations, is employed
as the termination criteria. The points marked ′+′ in figure 1
represents the pareto front obtained by the NSGA-II algorithm.
The first subfigure of figure (1) shows the objective function
values for the initial population. The subplots in figure 1 show
the evolution of the pareto front after every 150 simulations.

To investigate the potential for improvement in the performance
of the NSGA-II algorithm, we also applied the hybrid multiob-
jective optimisation algorithm as given in Table 3 to identify
the pareto front for the worst-case performance problem. To
ensure a fair comparison, the hybrid multiobjective optimisa-
tion is supplied with the same initial population as in the case
of the NSGA-II trial. The evaluation of the objective function
and the termination criterion used for the hybrid multiobjec-
tive optimisation are identical to that of NSGA-II. However,
for this algorithm, the intermediate candidate solution vectors
(offspring population) are generated using different algorithms
adaptively to enhance the convergence to the pareto front. The
adaptation of the different algorithms over the generations is

as shown in Figure 2. For example, at the 10th generation, the
number of intermediate candidate solutions (offspring popula-
tion) generated by NSGA-II, DE, and AM algorithms are 13, 8
and 9 respectively. Note that, at the beginning, the populations
generated by the different algorithms are equal, fixed at 10.
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Fig. 3. Multiobjective result of RLV

During the initial part of the optimisation, the NSGA-II algo-
rithm exhibits the highest reproductive success, owing to the
proficiency of classical genetic operators in quickly identifying
the global front as shown in figure 2. In the middle stages of
the optimisation the other two algorithms have more success,

the DE in particular. After the 17th generation the utility of the
NSGA-II and DE algorithms are reduced. As is clear from Fig-
ures 1 and 3, the adaptive combination of different algorithms
is highly effective in increasing the diversity of solutions along
the pareto front once the NSGA-II algorithm has successfully
identified the front over the initial stages of the optimisation.

The evolution of the pareto optimal front is as shown by the
points marked in ‘o’ in Figure 1 at intervals of 150 simulations.
It can be seen from Figure 1 that at the end of 150 simulations,
the performance of both the algorithms is nearly the same,
however the spread of the solution is much greater in the case
of the hybrid algorithm. After 600 and 750 simulations it can
be clearly seen that the hybrid multiobjective optimisation is
outperforming the NSGA-II algorithm alone, even when the
NSGA-II algorithm is allowed to run to double the compu-
tational budget. In Figure 3, the final results obtained by the
NSGA-II are compared with those obtained using the hybrid
algorithm, and the improved efficiency and performance of the
hybrid algorithm are clearly revealed. The results marked as
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Case A comprise the solution providing maximum deviation
of α(t) and β (t) simultaneously, obtained from the hybrid
multiobjective optimisation. Cases B and C in Figure 3 show
the solutions providing individual maxima of α(t) and β (t),
also obtained from hybrid multiobjective optimisation. These
results clearly demonstrates the potential of the proposed mul-
tiobjective optimisation analysis approach to reveal the inher-
ent trade-offs the apply in complex flight clearance problems.
Time-domain simulation results demonstrating the simultane-
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Fig. 4. Simulation results - Case A

ous maximum deviation of α(t) and β (t) from their specified
trajectories are shown in Figure 4. Similarly, Figure 5 shows
the simulation results corresponding to the cases B and C.
The maximum deviations from the reference trajectory in each
case are marked in the figures. Note that in case C, which is
the maximum deviation of β (t), the α(t) deviation from the
reference trajectory is minimal. However in case B, which cor-
responds to the maximum deviation in α(t), the associated β (t)
deviations are also large, implying significant cross-coupling in
that direction.
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7. CONCLUSIONS

Results of a joint study between ESA and the University of
Leicester on worst-case analysis of NDI control laws for an

industrial standard Reusable Launch Vehicle were presented.
Multiple conflicting performance objectives over a particular
phase of the atmospheric re-entry were considered simulta-
neously in the analysis, yielding valuable information about
the trade-offs involved in satisfying trajectory tracking require-
ments on different states of the vehicle. Two different multi-
objective optimisation algorithms were employed to identify
the pareto front corresponding to the worst-case. In the ini-
tial analysis, a fast, elitist, evolutionary multiobjective opti-
misation algorithm known as nondominated sorting genetic
algorithm(NSGA-II) was employed. A hybrid adaptive algo-
rithm consisting of three different strategies such as NSGA-II,
differential evolution and the metropolis algorithm was also de-
veloped and applied to the clearance problem. The results of our
study show that the hybrid multiobjective optimisation-based
approach in particular has the potential to significantly improve
both the reliability and efficiency of the flight clearance process
for future re-entry vehicles.
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