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Abstract: This paper proposes a continuous-time model predictive control design for distur-
bance rejection and set-point following of periodic signals. By assuming input disturbance in
the form of sinusoid, the periodic frequency is embedded into the design model. Hence, from
internal model principle, the steady-state error of the model predictive control system is ensured
to be zero for both disturbance rejection and set-point following. Furthermore, with the design
framework of model predictive control, hard constraints on the derivative and amplitude of the
control signals are imposed as part of the performance specification. Simulation studies have
been used to show the efficacy of the design with or without hard constraints.
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1. INTRODUCTION

Control system applications in mechanical systems, man-
ufacturing systems and aerospace systems often require
setpoint following of a periodic trajectory. The reference
periodic signals have given frequencies and amplitudes,
however, with unknown phase information. Another type
of control system applications is the rejection of periodic
disturbances, where typically the frequency information of
the disturbance is given either through experimental data
analysis or understanding of the system. In both situa-
tions, design of a control system that has the capability to
produce zero steady state error is paramount.

It is well known through the internal model control prin-
ciple that in order to reject a periodic disturbance or
following a periodic reference signal with zero steady-state
error, the generator for the disturbance or the reference is
included in the stable closed-loop control system (Francis
and Wonham,1976). In a standard state estimate feedback
control, this is achieved either by incorporating the peri-
odic disturbance model into the design or by estimating
the sinusoidal disturbance through an observer (see for
example, Goodwin et al. 2000). In this paper, the design
framework of periodic control system is extended to model
predictive control system where the input disturbance is
assumed to be periodic, and as a consequence, the peri-
odic disturbance model is naturally incorporated into an
augmented design model.

The majority of the development of model predictive
control in the past a few decades is based on discrete
models (see for example, Mayne et al. 2000, Rawlings,

2000). Continuous-time model predictive control design
using state space models emerged in the recently years
(Gawthrop and Ronco, 2002, Wang 2001). There are a
few reasons that lead to the design in the continuous-time
domain. One of the key advantages is that the continuous-
time design is based a continuous-time model and its
implementation is less sensitive to the choice of sampling
interval. Intermittent predictive control is also investigated
recently (Gawthrop and Wang, 2006).

The central idea of the design is to use a set of Laguerre
exponential functions to describe the control trajectory,
similar in spirit to the approaches used by Wang (2001)
and Gawthrop and Ronco(2002). However, because the
focus is on periodic signals, in the proposed design, a set
of continuous-time Laguerre functions, which are orthonor-
mal, are used to describe the filtered control signal where
the filter is the inverse of the disturbance model. By doing
so, the optimal control trajectory of the predictive control
is captured by the coefficients of the Laguerre polynomi-
als and the set of known Laguerre exponential functions.
The predictive control problem is converted to a real-
time optimization problem that finds the optimal Laguerre
coefficients subject to constraints. Because the predictive
control system is designed using receding horizon control
principle, the operational constraints, such as the limits
on the derivative and amplitude of the control signal, are
systematically imposed in the design. The results in this
paper show that when the constraints become activated,
the predictive control system produces optimal results. In
comparison, with saturation scheme, the control perfor-
mance degrades significantly.
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The remainder of the paper is organised as follows. In
Section 2, the continuous-time model predictive control
algorithm is proposed; in Section 3, extensive simulation
studies of set-point following and disturbance rejection of
periodic signals, with or without constraints, are presented
and discussed.

2. FORMULATION OF THE MODEL

Suppose that the plant to be controlled is an m input-q
output multivariable system having a state space model:

ẋm(t) = Amxm(t) + Bmu(t) + Ωmµ(t)

y(t) = Cmxm(t) (1)

where xm(t) is the state vector of dimension n1, while
µ(t) represents input disturbance. In the past, by assuming
that the input disturbance µ(t) was a source of integrated
white noise, the predictive controller naturally embedded
an integrator in its structure (See Clarke et al.(1987a)
for the discrete case, and Wang (2001) for the continuous
time case). Along similar lines, in the following, we derive
predictive control systems that have the capability to
reject sinusoidal input disturbance and double integrated
input disturbance. As a consequence, the predictive control
systems will also follow the same type of input signals with
zero steady -state errors.

2.1 Periodic Input Disturbance

Assume that the input disturbance µ(t) is a sinusoidal
signal with unknown amplitude and phase, however with
known frequency ω0. The input disturbance µ(t) can be
described by

dµ(t)2

dt2
+ ω2

0µ(t) = ǫ(t) (2)

where ǫ(t) is a band-limited continuous time white noise.
It is known that the feedback control system completely
compensates the effect of the sinusoidal disturbance if
the controller contains the module 1

s2+ω2

0

(Goodwin et al.

2000). The question here is how to embed this module
in the continuous time predictive control while using the
orthonormal basis functions (Wang,2001) to capture the
control trajectory. Define the auxiliary control signal us(t)
as the function that satisfies the following differential
equation

d2u(t)

dt2
+ ω2

0u(t) = us(t) (3)

and the auxiliary state variable z(t) as

d2xm(t)

dt2
+ ω2

0xm(t) = z(t) (4)

By using the auxiliary variables, the state space equation
(1) is transformed into

dz(t)

dt
= Amz(t) + Bmus(t) + ǫ(t) (5)

Note that

d2y(t)

dt2
= Cm

d2xm

dt2

= Cm

d2xm(t)

dt2
+ ω2

0Cmxm(t) − ω2
0Cmxm(t)

= Cmz(t) − ω2
0y(t) (6)

We put together an augmented state space model as









dz(t)

dt
d2y(t)

dt2
dy(t)

dt









=
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Cm 03 −w2
0Iq
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z(t)
dy(t)
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y(t)






+

[
Bm

06

07

]

us(t) +

[
Ωm

06

07

]

ǫ(t) (7)

where 0k, k = 1, 2, 3, 4, 5, 6, 7 are the zero matrices with
appropriate dimensions.

The key task in the design of continuous time model pre-
dictive control is to model the auxiliary control signal us(t)
using a set of orthonormal basis functions. From Equation
(2) it is seen that us(t) is the inversely filtered control
signal by the sinusoidal dynamics. When the closed-loop
system is stable, us(t) satisfies the property that

lim
Tp→∞

∫ Tp

0

us(t)
2dt < ∞ (8)

although the control signal u(t) itself does not obey this
rule (for example, see the simulation examples). Therefore,
it is appropriate to model us(t), instead of u(t) with a set
of orthonormal basis functions. Once the optimal control
us(t) is found, the control signal u(t) can be constructed
through Equation (3).

The special case of the sinusoidal input signal when ω0 = 0
leads to the case of double integrated input disturbance.
This is evident from Equation (2). Therefore, the design
model remains the same with ω0 = 0, when the input
disturbance becomes a double integrated disturbance.

3. PREDICTION AND OPTIMIZATION

Suppose in a general description of dynamic systems, we
have m control signals. For a given prediction horizon Tp

and 0 ≤ τ ≤ Tp, let the derivative of the control signal be
expressed as

us(τ) = [us(τ)1 us(τ)2 . . . us(τ)m]T

and the input matrix be partitioned as

B = [B1 B2 . . . Bm]

where us(.)
i is the ith filtered control signal and Bi is

the ith column of the B matrix. Then the ith control
signal us(τ)i (i = 1, 2 . . . ,m) is described by using a set of
Laguerre functions as

ui
s(τ) = L(τ)T ηi

where L(t)T = [ l1(t) l2(t) . . . lN (t) ]

and ηi =
[
ξi
1 ξi

2 . . . ξi
N

]T
. More specifically, the set of

Laguerre functions are defined explicitly by the differ-
ential equation as below, with initial condition L(0) =√

2p [1 1 . . . 1]T
︸ ︷︷ ︸

N

.

L̇(t) = ApL(t) (9)

where
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Ap =







−p 0 . . . 0
−2p −p . . . 0

...
−2p . . . −2p −p







Here the parameter p is called scaling factor and N the
number of terms used in the description of systems. The
set of Laguerre functions will be different if the scaling
factor p is chosen to be different. p and N can be selected
for each individual input signal in the design.

With this formulation, we compute the prediction of state
variables. The model used in the prediction is based on
(7), where the control signal to the model is the filtered
control. We assume that at the current time, ti, the state
variable x(ti) is available. If the state variable x(ti) is not
available, then an observer is needed to access the state
information through the measurement of input and output
signals, which will be discussed later. Then at the future
time τ , τ > 0, the predicted state variable x(τ | ti) is
described by the following equation

x(τ | ti) = eAτx(ti) +

∫ τ

0

eA(τ−γ)Bus(γ)dγ (10)

By substituting the description of the control us(γ) using
the Laguerre functions, the predicted future state at time
τ is parameterised by η as

x(τ | ti) = eAτx(ti)

+

∫ τ

0

eA(τ−γ)
[

B1L(γ)T B2L(γ)T ... BmL(γ)T
]
dγη

= eAτx(ti) +
[
Iint(τ)1 Iint(τ)2 . . . Iint(τ)m

]







η1

η2

...
ηm






(11)

where Iint(τ)i is the analytical solution of the ith integral
equation Wang [2001] given by the algebraic equation

AIint(τ)i − Iint(τ)iAT
p = −BiL(τ)T + eAτBiL(0)T (12)

where L(τ)T , L(0)T and Ap are the Laguerre function
vector, initial vector and its state matrix; Bi is the ith
column of the input matrix B. Since the state matrix of
the Laguerre functions Ap is a lower triangular matrix,
Equation (12) is solved in a closed-form through a set of
linear equations (See Wang 2001).

Let C denote the matrix with the dimension (2×q)×(n1+
2 × q) defined by

C = [ on1 I2q ]
where on1 is a zero matrix with the dimension (2× q)×n1

and I2q is the identity matrix with dimension 2q × 2q. By
using the matrix C, the prediction of plant output and its
derivative prediction can be represented by

[
ẏ(τ | ti)
y(τ | ti)

]

= Cx(τ | ti) = CeAτx(ti) + φ(τ)T η (13)

φ(τ) = (C
[
Iint(τ)1 Iint(τ)2 . . . Iint(τ)r

]
)T

Note that the predicted plant output and its derivative are
expressed in terms of the coefficient vector η.

Suppose that at time ti, the future setpoint signals and
their derivatives are given as

r(ti) = [ r1(ti) r2(ti) . . . rq(ti ]
T

ṙ(ti) = [ ṙ1(ti) ṙ2(ti) . . . ṙq(ti) ]
T

We assume that r(ti) and ṙ(ti) remain constant within
one optimization window. Namely r(ti + τ) = r(ti) and
ṙ(ti + τ) = ṙ(ti) for 0 ≤ τ ≤ Tp. The desired trajectories
include periodic signals, ramp signal and step signals. We
emphasis that setpoint tracking of these signals requires
desired derivative information in addition to the informa-
tion about the signals themselves. Because of the receding
horizon control principle used in the design of predictive
control, the setpoint information can be readily varied
from one optimization window to another.

In order to achieve perfect setpoint following of the peri-
odic signals, the design objective of model predictive con-
trol is to find the control law that will drive the predicted
plant output y(τ | ti) and the predicted derivative of the
plant output as close as possible, in a least squares sense,
to the future setpoint r(ti) and the future derivative ṙ(ti).
To this end, we define the error signal

e(τ | ti) =

[
ṙ(ti) − ẏ(τ | ti)
r(ti) − y(τ | ti)

]

The cost function to reflect on the design objective is
chosen to be

J =

∫ Tp

0

e(τ | ti)
T Qe(τ | ti)dτ +

∫ Tp

0

us(τ)T Rus(τ)dτ

(14)
where Q and R are symmetric matrices with Q > 0 and
R ≥ 0. By taking advantage of the orthonormal property
of the Laguerre functions, the cost function J is then
equivalently given by

J =

∫ Tp

0

e(τ | ti)
T Qe(τ | ti)dτ + ηT R̄η (15)

where R̄ = diag{Ri} and Ri = λiINi×Ni
(a unit matrix

with dimension Ni).

Note that

e(τ | ti) =

[
ṙ(ti)
r(ti)

]

− CeAτx(ti) − φ(τ)T η

By defining

w(τ | ti) =

[
ṙ(ti)
r(ti)

]

− CeAτx(ti) (16)

then the quadratic cost function (15) can be written in the
following standard form:

J = ηT {
∫ Tp

0

φ(τ)Qφ(τ)T dτ + R̄}η

−2ηT

∫ Tp

0

φ(τ)Qw(τ | ti)dτ

+

∫ Tp

0

w(τ | ti)
T Qw(τ | ti)dτ (17)

which can be written explicitly in terms of setpoint signal
r(ti), its derivative ṙ(ti) and the state variable x(ti):

J = ηT Πη − 2ηT {Ψ1

[
ṙ(ti)
r(ti)

]

− Ψ2x(ti)}

+

∫ Tp

0

w(τ | ti)
T Qw(τ | ti)dτ (18)

where

Π =

∫ Tp

0

φ(τ)Qφ(τ)T dτ + R̄
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Ψ1 =

∫ Tp

0

φ(τ)Qdτ ; Ψ2 =

∫ Tp

0

φ(τ)QCeAτdτ

The minimum of (18), without hard constraints on the
variables, is then given by the simple least squares solution:

η = Π−1{Ψ1

[
ṙ(ti)
r(ti)

]

− Ψ2x(ti)} (19)

With the optimal parameter vector, η, the optimal control
us(τ), 0 ≤ τ ≤ Tp, can be reconstructed using the Laguerre
functions as

us(τ) =
[
u1

s(τ) u2
s(τ) . . . um

s

]T

=








L(τ)T oL . . . oL

oL L(τ)T . . . oL

...
oL oL . . . L(τ)T














η1

η2

...
ηm







(20)

where oL is a zero vector with dimension 1 × N .

By applying the principle of receding horizon control (i.e.
the control action will use only the information us(τ) at
τ = 0), the optimal control us(t) for the unconstrained
problem at time ti is

us(ti) =








L(0)T oL . . . oL

oL L(0)T . . . oL

...
oL oL . . . L(0)T








Π−1{Ψ1

[
ṙ(ti)
r(ti)

]

−Ψ2x(ti)}

(21)
The predictive controller gain matrix K, from (21) which
is associated with state variable x(ti), is calculated using

K =








L(0)T oL . . . oL

oL L(0)T . . . oL

...
oL oL . . . L(0)T








Π−1{Ψ1

[
ṙ(ti)
r(ti)

]

− Ψ2}

(22)
Hence, the closed-loop system matrix is

Acl = A − BK (23)

from which we can assess the closed-loop performance of
the predictive control system when constraints are not
imposed.

Note that the information about the optimal us(t) at time
ti needs to be converted to the actual control signal u(t)
at ti for control implementation. In order to achieve this
conversion, the following differential equation that relates
us(t) to u(t) is presented.





d2u(t)

dt2
du(t)

dt




 =

[

om −w2
0Im

Im om

] [
du(t)

dt
u(t)

]

+

[
Im

om

]

us(t) (24)

where om is a zero matrix with dimension m × m and
Im is an identity matrix with dimension m × m. With
approximation to the differential equation (24), assuming
that the sampling interval is ∆t, we obtain the optimal
control at ti:

[
u̇(ti)
u(ti)

]

=

[

om −w2
0Im

Im om

] [
u̇(ti−1)
u(ti−1)

]

∆t

+

[
Im

om

]

us(ti)∆t +

[
u̇(ti−1)
u(ti−1)

]

(25)

where the backward difference approximation, df(t)
dt

≈
f(t)−f(t−∆t)

∆t
, is used. The actual control u(ti) is computed

using the optimal signal us(ti) and the previous states
of the control, u̇(ti−1) and u(ti−1). Note that (25) is
expressed in a so-called ’velocity form’, meaning that the
steady state information of the control and its derivative
is not required in the implementation and the control is
computed iteratively.

The main strength of model predictive control lies in its
ability to incorporate hard constraints in the design with
on-line optimisation. The hard constraints on the deriva-
tive of the control and the control itself are formulated
as follows. For notational simplicity, we consider a single
input signal u(t) and consider putting constraints on the
first sample of the optimal signals (i.e. τ = 0 ). From (25),
we express u̇(ti) and u(ti) as functions of the parameter
vector η (us(ti) = L(0)T η):

u̇(ti) =

c1

︷ ︸︸ ︷

−w2
0u(ti−1)∆t + u̇(ti−1)+L(0)T η∆t (26)

u(ti) = u̇(ti)∆t + u(ti−1)

=

c2

︷ ︸︸ ︷

−w2
0u(ti−1)∆t2 + u̇(ti−1)∆t + u(ti−1)

+L(0)T η∆t2 (27)

Note that the elements c1 and c2 under the ︷︸︸︷. are
independent of the parameter vector η.

Assuming that the hard constraints on u̇(t) are u̇min ≤
u̇(t) ≤ u̇max, the constraints on the derivative of the
control are expressed as

L(0)T ∆tη ≤ u̇max − c1 (28)

−L(0)T ∆tη ≤−u̇min + c1 (29)

Similarly, assuming that umin ≤ u(t) ≤ umax then

L(0)T ∆t2η ≤ umax − c2 (30)

−L(0)T ∆t2η ≤−umin + c2 (31)

Collecting (28)-(31), as an illustration, we arrive at a set of
linear inequalities that reflect the hard constraints imposed
in the design:







L(0)T ∆t

−L(0)T ∆t

L(0)T ∆t2

−L(0)T ∆t2







η ≤






u̇max − c1

−u̇min + c1

umax − c2

−umin + c2




 (32)

Now the predictive control problem with hard constraints
imposed in the design becomes the problem to find the
optimal solution of the quadratic cost function (18) subject
to the linear inequality constraints (32). This is a standard
constrained quadratic minimization problem, and the opti-
mal solution can be found using a quadratic programming
algorithm.

4. SIMULATION RESULTS

The system used in the simulation study is a power
electronic device with the state-space model given as
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ẋm(t) = Apxm(t) + Bpu(t)

y(t) = Cpxm(t) (33)

where

Ap =

[

0 −2.6667 × 103

80 −66.6667

]

; Bp =

[

2 × 105

−25

]

Cp = [ 0 1 ]

This system is severely underdamped, which has a pair
of complex eigenvalues as λ1 = −33.3333 + i460.6758,
λ2 = −33.3333 − i460.6758.

4.1 Set-point following with constraints

Assume that the set-point signal is a ramp signal ω0 = 0 to
start, followed by a sinusoidal input signal with frequency
ω0 = 2.8, and we assume that the signals have a smooth
transition from one to the other. The design objective is
that the output follows the reference signal as close as
possible subject to the constraints on the amplitude of the
control:

−0.015 ≤ u(t) ≤ 0.015

For a comparison, we simulate three cases, without con-
straints, predictive control with embedded constraints and
state feedback control with saturation.

We include these two frequencies in the design of model
predictive control to obtain two sets of control parameter
matrices for the quadratic cost function (18). The observer
is also designed using the two frequencies. The control law
automatically switches when the set-point signal changes
its frequency.
The parameters for the continuous-time predictive control
are chosen as p = 63, N = 3, Tp = 0.4762, Q = I and
R = 0.000. p is chosen around the twice of the real part of
the open-loop poles.

The control law for the ramp signal is determined by
minimizing the cost function (18). For ω0 = 0,

Π =

[
5.7985 −5.1993 4.6071
−5.1993 4.6799 −4.1606
4.6071 −4.1606 3.7155

]

Ψ1 =

[
0.4567 1.4159
−0.4089 −1.2275
0.3618 1.0525

]

Ψ2 =

[
0.0002 0.0000 0.4567 1.4159
−0.0002 −0.0000 −0.4089 −1.2275
0.0001 0.0000 0.3618 1.0525

]

For ω0 = 2.8

Π =

[
4.1445 −3.7968 3.4261
−3.7968 3.4985 −3.1728
3.4261 −3.1728 2.8957

]

Ψ1 =

[
0.3227 0.7467
−0.2950 −0.6362
0.2655 0.5339

]

Ψ2 =

[
0.0001 0.0000 0.3227 0.7467
−0.0001 −0.0000 −0.2950 −0.6362
0.0001 0.0000 0.2655 0.5339

]

As we can see, the predictive control laws are different
for different ω0. The observers are designed using pole-
placement method, where the desired closed-loop poles are

selected as −189.0000 − 189.5000 − 190.0000 − 190.5000,
roughly located at −3 × p. The closed-loop system is
simulated using a sampling interval of 0.00005sec. With-
out constraints, the closed-loop output response closely
follows the set-point signal. In fact the absolute maximum
tracking error occurred at the transition point between the
two setpoint signals, and is 0.049. When the constraints

0 0.5 1 1.5 2 2.5 3
−2

0

2
r

y

0 0.5 1 1.5 2 2.5 3
−0.02

0

0.02

Time (sec)

u

(a) Tracking of the reference with constraints

0 0.5 1 1.5 2 2.5 3
−4

−2

0

2
r

y

0 0.5 1 1.5 2 2.5 3
−0.02

0

0.02

Time (sec)

u

(b) Tracking of the reference with saturation

Fig. 1. Comparison of predictive control with constraints
and with saturation

are imposed in the design, the predictive control finds
the optimal control signal subject to the constraints (see
Figure 1a). For comparison purpose, we simulated the case
when a saturation of the control amplitude is used, instead
of using the predictive control scheme. Figure 1b shows the
simulation results. It is seen that the tracking performance
degrades when the control signal amplitude is constrained
at 0.015, and control system is not able to recover after
the saturation is introduced.

4.2 Disturbance Rejection with Constraints

We consider rejection of input disturbance. This time,
we introduce the disturbance as two sinusoidal signals
with ω0 = 60 and ω0 = 6. The disturbance signal is

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10896



added to the control signal, and a white noise with 0.1
standard deviation is added to the output to simulate the
existing measurement noise. The design parameters for the
predictive control system are identical to the ones used
in the set-point following case, except that the frequency
parameters are different. The constraints on the control
amplitude is specified as −1.1 ≤ u(t) ≤ 1.1. Figure 2 shows
the simulation results with constraints.

0 0.5 1 1.5 2 2.5 3
−100

0

100

200
y

0 0.5 1 1.5 2 2.5 3
−1

0

1

Time (sec)

d

(a) Output and Disturbance

0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

Time (sec)

u

(b) Control signal

Fig. 2. Predictive control with constraints. Input distur-
bance rejection case in the presence of measurement
noise

5. CONCLUSIONS

This paper proposed an approach to disturbance rejection
and setpoint following of periodic signals in the framework
of predictive control with constraints. The predictive con-
trol system is designed with embedded periodic component
in the augmented model and a set of continuous-time
Laguerre functions is used to describe the inversely filtered
control signal. A consequence, the control system tracks
(or rejects) sinusoidal signals with zero steady state errors.
Simulation results show that the predictive control system
produce optimal results with constraints.
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