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Abstract: The paper deals with model predictive control (MPC) of nonlinear hybrid systems
with discrete inputs. It is often required to take into account the hybrid and/or nonlinear nature
of real systems, therefore, a hybrid fuzzy model is used for MPC in the paper. Two approaches
that are suitable for MPC of nonlinear hybrid systems with discrete inputs are compared on a
batch reactor example: a branch & bound and a genetic algorithm. We have established that
both algorithms are suitable for controlling such systems. The main advantages of the genetic
algorithm are boundedness of computational time in one step and whole computation-efficiency,
whereas the main drawbacks are its inherent sub-optimality and the need for suitably tuned
parameters. On the other hand, the branch & bound approach does not require parameter
tuning and using a suitable cost function provides optimal results in considerably less time than
an explicit enumeration method.

1. INTRODUCTION

Model predictive control (MPC) consists of optimizing
of the process behavior to obtain optimal future control
actions. In the MPC framework the use of non-linear
models with continuous and/or discrete variables has been
considered in order to obtain better representations of the
process nonlinearities.

Firstly, simplified solutions of non-linear fuzzy predictive
control methods were developed, such as the fuzzy pre-
dictive controller based on the Takagi-Sugeno (T-S) fuzzy
model linearization proposed by Roubos et al. [1998].
Espinosa and Vandewalle [1998] propose a fuzzy predic-
tive control algorithm based on the approximation of the
free and forced responses of the fuzzy model. Hadjili and
Wertz [1999] and Nounou and Passino [1999] describe
similar predictive controllers, where the fuzzy predictor
is linearly approximated by using constant satisfaction
degrees for the future horizons and an analytical solution
of a linear MPC is applied. More robust solutions of the
fuzzy predictive control strategy have been proposed by
Babuska [1998]. However, these solutions require a longer
computation time. Mahfouf et al. [2002] consider a T-S
fuzzy model with different fuzzy partitions of the input
space.

Recently, in order to appropriately control processes that
contain discrete and/or continuous variables (hybrid sys-
tems), hybrid predictive control techniques were devel-
oped. Slupphaug et al. [1997] and Slupphaug and Foss
[1997] describe a predictive controller with continuous and
integer input variables solved by nonlinear mixed integer
programming. Bemporad and Morari [1999] present a pre-
dictive control scheme for hybrid systems solved by using

Mixed Integer Quadratic Programming (MIQP). Borrelli
et al. [2003] propose a finite-time optimal control solution
for piecewise affine systems with a quadratic performance
criterion. Baotic et al. [2003] present a linear criterion for
the proposed algorithm that results in a reduced com-
putation time. Thomas et al. [2004] propose a hybrid
predictive controller partitioning in the state-space do-
main. Beccuti et al. [2003] present a hybrid predictive
approach based on a temporal decomposition scheme. On
the other hand, Potočnik et al. [2005] propose a hybrid
predictive control algorithm with discrete inputs based
on a reachability analysis, where the computation time
is reduced by building and pruning an evolution tree. In a
recent work, Núñez et al. [2006] present a hybrid predictive
control strategy based on a fuzzy model. A self-adaptive
supervisory predictive functional control for applications
in a semi-batch reactor in which the optimal operation
is to follow the reference trajectory without significant
overshoot is presented in Škrjanc [2007].

Both fuzzy and hybrid predictive controllers correspond to
non-linear predictive control strategies that are required
to solve an NP-hard problem given by the non-linear opti-
mization problem associated with the predictive objective
function and the non-linear predictive model (fuzzy and/or
hybrid model). To solve these kinds of NP-hard problems,
evolutionary algorithms have been proposed (see Sarimveis
and Bafas [2003], Shin and Park [1998], Woolley et al.
[1998], Kennedy and Eberhart [2001]).

In this study, the design of Hybrid Fuzzy Predictive Con-
trol is described and applied to a batch reactor described
in Karer et al. [2007]. In Section 2 we present the con-
trol algorithm, which includes a prediction based on a
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hybrid fuzzy model of the process. Two approaches for
solving such an NP-hard problem are described: Branch
and Bound (BB) and the Genetic Algorithm (GA). In
Section 3 the batch reactor process and its corresponding
hybrid fuzzy modelling are described. In Section 4 the
results of the experiments are presented. Finally, Section 5
concludes with an analysis, comments and further research
directions.

2. MODEL PREDICTIVE CONTROL OF SYSTEMS
WITH DISCRETE INPUTS

Model predictive control is an approach where a model
of the system is used to predict the future evolution of
the system (Camacho and Bordons [1998], Maciejowski
[2002]). The most appropriate input vector is established
and applied for every time-step. Its determination is an
optimization problem that is solved within a finite horizon
H, i.e., for a pre-specified number of time-steps ahead. For
each time-step k a sequence of optimal input vectors (1) is
acquired, which minimizes the selected cost function while
considering the eventual constraints of the inputs, outputs
and system states. However, only the first vector of the
optimal sequence is actually applied during the current
time-step. In the next time-step, a new optimal sequence
is determined, etc.

Uk+H−1
k = {u(k), u(k + 1), ..., u(k + H − 1)} (1)

The Hybrid Predictive Control (HPC) strategy is a gen-
eralization of Model Predictive Control (MPC), where
the prediction model includes both discrete-integer and
continuous variables. In this study we propose a hybrid
fuzzy prediction model.

In general, a hybrid predictive control design minimizes
the following generic objective function. This particular
case corresponds to the most common objective function
used for predictive control purposes.

min
{u(k),u(k+1),...,u(k+Nu−1)}

J = J1 + λJ2 (2)

J1 =

Ny∑

j=N1

(ŷ (k + j) − r (k + j))
2
, J2 =

Nu∑

j=N1

∆u (k + j − 1)
2

(3)

Here, J is the objective function, ŷ (k + j) corresponding
to the j-step ahead prediction for the controlled variable,
r (k + j) is the reference, ∆u (k + j − 1) is the increment
of the control action and λ is the weighting factor. N1, Ny

and Nu are the prediction horizons and the control hori-
zon, respectively. Uk+Nu−1

k = {u (k) , ..., u (k + Nu − 1)}
represents the control action sequence, which corresponds
to the optimization variables.

For the hybrid fuzzy predictive control design proposed,
the prediction model is given by a non-linear function as
a T-S fuzzy hybrid model and the manipulated variable
and/or state variable are integer/discrete. This non-linear
optimization problem corresponds to NP-hard and there-
fore, we propose two approaches: a branch and bound (BB)
method and a genetic algorithm (GA).

2.1 The Branch and Bound Approach

The control algorithm used in this paper is thoroughly
described in Karer et al. [2007] and Potočnik et al. [2005].
Since it is limited to systems with discrete inputs only, the
possible evolution of the system over time-steps h up to
a maximum prediction horizon H can be illustrated by a
tree of evolution. The nodes of the tree represent reachable
states, and branches connect two nodes if a transition
exists between the corresponding states.

For an insight into the computational complexity issues
and the approaches and properties used for dealing with
them, see Karer et al. [2007].

2.2 Optimization based on a Genetic Algorithm

The GA method is suitable for NP-hard optimization
problems with discrete or integer variables, and therefore
the binary codification is not necessary. In other words
the genes of the individuals (feasible solutions) are given
directly by the integer optimization variables. In addition,
gradient computations are not necessary, as in conven-
tional non-linear optimization solvers, which allows us to
save a significant amount of computation time.

The optimization based on a GA (Man et al. [1998]) can
be described by the following steps:

(1) Initialize a random population of individuals corre-
sponding to the feasible solutions.

(2) Evaluate the objective function for each individual of
the current population.

(3) Select random parents from the current population.
(4) Apply genetic operators like crossover and/or muta-

tion to the parents, for a new generation.
(5) Evaluate the objective function for all the individuals

of the generation.
(6) Choose the best individuals according to the best

values of the objective function.
(7) Replace the weakest individuals of the previous gen-

eration with the best ones of the new generation
obtained in Step 6.

(8) If either the value of the objective function reaches a
certain tolerance or the maximum number of genera-
tions is reached, then the algorithm stops. Otherwise,
go to Step 2.

In general, genetic algorithms efficiently cope with non-
linear mixed/integer optimization problems. Another ad-
vantage is that the objective function gradient does not
need to be calculated, which relaxes the computational
effort.

A potential solution of the genetic algorithm is called
individual. The individual can be represented by a set
of parameters related to the genes of a chromosome and
can be described in binary or integer form. The individual
represents a possible control action sequence Uk+Nu−1

k =
{u (k) , ..., u (k + Nu − 1)}, where each element is called a
gene, and the individual length corresponds to the control
horizon Nu.

Using genetic evolution, the fittest chromosome is selected
to ensure the best offspring. The best parent genes are
selected, mixed and recombined for the production of the
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offspring in the next generation. For the recombination
of the genetic population, two fundamental operators are
used: crossover and mutation. For the crossover mecha-
nism, the portions of two chromosomes are exchanged with
a certain probability in order to produce the offspring. The
mutation operator alters each portion randomly with a
certain probability (see Man et al. [1998]).

In summary, the proposed genetic algorithm solution pro-
vides a solution near to the optimum. The GA-method
tuning parameters are the number of individuals, the num-
ber of generations, the crossover probability, the mutation
probability and the stopping criteria.

3. THE BATCH REACTOR

The control approaches were tested on a simulation exam-
ple of a real batch reactor that is situated in a pharmaceu-
tical company and is used in the production of medicines.
The goal is to control the temperature of the ingredients
stirred in the reactor core so that they synthesize into the
final product. In order to achieve this, the temperature
has to follow the reference trajectory given in the recipe
as accurately as possible.

TC TH

Tin

kM Φ (1 – kM) Φ

Φ m, c, T

S, λ

mw , cw

Tw

kM Φ
kHkC

T0

Fig. 1. Scheme of the batch reactor

A scheme of the batch reactor is shown in Fig. 1. The
reactor’s core (temperature T ) is heated or cooled through
the reactor’s water jacket (temperature Tw). The heating
medium in the water jacket is a mixture of fresh input
water, which enters the reactor through on/off valves, and
reflux water. The water is pumped into the water jacket
with a constant flow φ. The dynamics of the system depend
on the physical properties of the batch reactor, i.e., the
mass m and the specific heat capacity c of the ingredients
in the reactor’s core and in the reactor’s water jacket
(here, the index w denotes the water jacket). λ is the
thermal conductivity, S is the contact area and T0 is the
temperature of the surroundings.

The temperature of the fresh input water Tin depends on
two inputs: the position of the on/off valves kH and kC .
However, there are two possible operating modes of the
on/off valves. In case kC = 1 and kH = 0, the input water
is cool (Tin = TC = 120C), whereas if kC = 0 and kH = 1,
the input water is hot (Tin = TH = 75 0C).

The ratio of fresh input water to reflux water is controlled
by the third input, i.e., by the position of the mixing valve
kM . There are six possible ratios that can be set by the
mixing valve. The share of fresh input water can be either
0, 0.01, 0.02, 0.05, 0.1 or 1.

We are therefore dealing with a multivariable system with
three discrete inputs (kM , kH and kC) and two measurable
outputs (T and Tw). Due to the nature of the system,
the time constant of the temperature in the water jacket
is obviously much shorter than the time constant of the
temperature in the reactor’s core. Therefore, the batch
reactor is considered as a stiff system.

The modelling procedure is explained in detail in Karer
et al. [2007].

The sub-model for the temperature in the reactor’s core
T is shown in (4). The identified system parameters are
given below.

T̂ (k + 1) = ΘT
c [Tw(k) T (k)]

T
(4)

ΘT
c = [0.0033 0.9967] (5)

The sub-model for the temperature in the reactor water
jacket Tw has two operating modes, which define the
discrete part of the sub-model q = 1 is the case when the
fresh input water is hot, i.e., kC(k) = 0 and kH(k) = 1;
q = 2 is the case when the fresh input water is cool, i.e.,
kC(k) = 1 and kH(k) = 0.

q(k) = q(kC(k), kH(k)) =

{
1 if kC(k) = 0 ∧ kH(k) = 1
2 if kC(k) = 1 ∧ kH(k) = 0

}

(6)

The system is fuzzyfied with regard to the temperature
in the reactor’s water jacket Tw(k). Simple triangular
functions are used, which ensures that the normalized
degrees of fulfillment βj(Tw) are equal to the membership
values µj(Tw) across the whole operating range. In this
case there are five membership functions, with maximums
at 12, 20, 40, 60 and 700C, so that the whole operating
range is covered.

The output of the model of the temperature in the reac-
tor’s water jacket is written in compact form in (7) and
(8).

T̂w(k + 1) = β(k) ΘT
w(k) [Tw(k) T (k) kM (k) 1]

T
(7)

Θw(k) =

{
Θw1 if q(k) = 1
Θw2 if q(k) = 2

}

(8)

Θw1 =






0.9453 0.9431 0.9429 0.9396 0.7910
0.0376 0.0458 0.0395 0.0339 0.0225
19.6748 16.7605 10.5969 3.9536 1.6856
0.3021 0.2160 0.5273 1.2701 12.0404




 (9)

Θw2 =






0.9803 0.9740 0.9322 0.9076 0.8945
0.0025 0.0153 0.0466 0.0466 0.0111
−0.0704 −0.6956 −7.8013 −12.2555 −18.7457
0.2707 0.2033 0.5650 1.9179 5.6129






(10)
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4. RESULTS

For the hybrid predictive control optimization problem of
the batch reactor we propose the cost function given by
(11) (see also Karer et al. [2007]).

J = w1

N∑

h=1

(T (k + h) − Tref (k + h))
2

+w2

N∑

h=1

KC(k + h)KH(k + h − 1)

+w3

N∑

h=1

|KM (k + h) − KM (k + h − 1)|KH(k + h − 1)

w1 = 1/15, w2 = 15, w3 = 0.03
(11)

In this study the prediction horizon considered is N = 4.
The sampling time of the prediction model equals Ts =
10 s. Note that the inputs are allowed to change only every
15 time steps (see Karer et al. [2007]). This means that the
time of the allowed input changes, which is denoted here
as the control sampling time Tcs, equals 150 s. The set of
possible input variables u(k + j − 1), j = 1...N , is defined
in (12).

M =

{[
0
0
1

]

,

[
0.01
0
1

]

,

[
0.02
0
1

]

,

[
0.05
0
1

]

,

[
0.1
0
1

]

,

[
1
0
1

]

,

[
1
1
0

]}

(12)

• The first row denotes the mixed valve input kM ∈
{0, 0.01, 0.02, 0.05, 1}.

• The second row is the cool-water on/off valve input
kC ∈ {0, 1}.

• The third row denotes the hot-water on/off valve
input kH ∈ {0, 1}.

4.1 The Branch and Bound Approach – Results

The results of the experiment using the HFPC-BB ap-
proach are shown in Fig. 2 and Fig. 3.
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Fig. 2. Results of HFPC based on BB: Core temperature
T (solid line) and reference temperature Tref (dotted
line)
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Fig. 3. Results of HFPC based on BB: Other system states

4.2 Optimization based on a Genetic Algorithm – Results

In this case the individuals for the HPC based on a GA
are defined as feasible future control action sequences:

individualj = {u (k) , ..., u (k + Nu − 1)}

An individual consists on Nu genes and each gene repre-
sents one control action.

For simplicity, we consider the following notation for
representing the seven possible control actions for the
batch reactor:

0 =

[
0
0
1

]

, 1 =

[
0.01
0
1

]

, 2 =

[
0.02
0
1

]

, 3 =

[
0.05
0
1

]

,

4 =

[
0.1
0
1

]

, 5 =

[
1
0
1

]

, 6 =

[
1
1
0

]

.

(13)

Now, the possible control action u(k + j − 1) ∈
{0, 1, 2, 3, 4, 5, 6}, which represents the possible values or
the states of the input variables.

The procedure for the HFPC-GA consists of:

(1) Initialize a random population of individuals, i.e.,
create random integer feasible solutions of manipu-
lated variables for the hybrid fuzzy predictive control
problem. As an example, the size of the population
could be seven individuals per generation. Then, as
the control horizon is 4, there are 74 possible individu-
als. However, for the GA per generation, the following
population is considered:

Populationi =











individual1
individual2
individual3
individual4
individual5
individual6
individual7











=











0 1 6 3
2 1 0 0
5 4 2 3
3 6 3 4
4 1 3 1
2 5 4 3
0 3 0 1











(2) Evaluate the fitness function for all the initial indi-
viduals of the population using equation (11). Note
that the prediction ŷ (k + j) is calculated recursively
by using the future control action. In general

ŷ (k + j) = f (ŷ (k + j − 1) , ......., u (k + j − 1) , ....)
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where f is a non-linear function defined by a hybrid
fuzzy model.

(3) Select random parents from the population (different
vectors of the future control actions). For example,
Individual 1 and Individual 5 are chosen as the
parents:

individual 1

︷ ︸︸ ︷

[ 0 1 ]
︸ ︷︷ ︸

1A

[ 6 3 ]
︸ ︷︷ ︸

1B

individual 5

︷ ︸︸ ︷

[ 4 1 ]
︸ ︷︷ ︸

5A

[ 3 1 ]
︸ ︷︷ ︸

5B

(4) Apply crossover and mutation to the parents in order
to generate an offspring.

After the crossover step
︷ ︸︸ ︷

[ 0 1 ]
︸ ︷︷ ︸

1A

[ 3 1 ]
︸ ︷︷ ︸

5B

︷ ︸︸ ︷

[ 4 1 ]
︸ ︷︷ ︸

5A

[ 6 3 ]
︸ ︷︷ ︸

1B

After the mutation step

New Individual 1

︷ ︸︸ ︷

[ 0 1 2 1 ]

New Individual 2

︷ ︸︸ ︷

[ 0 1 6 3 ]
↑ ↑

(5) Evaluate the fitness given by the objective function
(x) of all the individuals of the offspring population.

(6) Select the best individuals according to the objective
function.

(7) Replace the weakest individuals from the previous
generation with the strongest individuals of the new
generation selected in step 6.

(8) If the objective function value reaches the defined tol-
erance or the maximum generation number is reached
(stopping criteria), then stop. Otherwise, go to step
2.

The genetic algorithm approach in HFPC-GA provides a
sub-optimal discrete control law close to the optimal one.
The tuning parameters of the GA method are the number
of individuals, the number of generations, the crossover
probability, the mutation probability and the stopping
criteria.

Considering a reasonable trade off between accuracy and
computational effort, 10 generations with 30 individuals
are selected.

The computation time of HFPC-GA is linearly dependent
on the generation number, and its slope slightly increases
with the number of individuals. Thus, the computation
time is smaller than the simulation time (30000s). This
means that all the proposed HFPC-GA control strategies
are suitable for real-time control in the sense of the time
consumed. With 10 generations and 30 individuals, the
computation time was approximately 144 s (a 0.48% of the
total simulation time) as well as the time at each iteration
being smaller than the sampling time.

The results of the experiment are shown in Fig. 4 and Fig.
5. These results are very similar to the ones obtained with
HFPC-BB (see Figs. 2 and 3).

Fig. 6 shows the time per iteration for both HFPC-BB
and HFPC-GA.With the GA the iteration time remains
constant and with BB the time per iteration varies with
set-point changes. This feature of HFPC-GA makes it
possible to ensure a real-time implementation as HFPC-
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Fig. 4. Results HFPC based on GA: Core temperature T
(solid line) and reference temperature Tref (dotted
line)
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Fig. 5. Results HFPC based on GA: Other system states

GA provides solutions within a bounded time per iteration,
which is designed to be less than the sampling time.

20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

N° Iteration

C
o
m

p
u
ta

ti
o
n
 T

im
e
 [
s
]

 

 

BB

GA

Fig. 6. Time per iteration

Table 1 shows the computation time per algorithm itera-
tion and the objective function values using branch and
bound (HFPC-BB), the genetic algorithm (HFPC-GA)
and, in addition, explicit enumeration (HFPC-EE).

5. CONCLUSION

We obtained equal mean values of the objective function
for BB and EE, and also a similar value was provided by
the GA. Thus, the three proposed optimization algorithms
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Table 1. Comparison between BB, GA, and EE

Mean time s Std time s Mean J Std J

BB 220.4 5.3 3500003 0

GA (30,10) 144.45 0.84 3569002 30867

EE 3495 10 3500003 0

allow us to solve the HFPC strategy and to control the
temperature of a batch reactor minimizing both the tra-
jectory error and the control energy. However, in terms of
computation time, there are significant differences between
them. The EE and BB provide the global optimum at each
iteration; however, the long computation time required
does not allow us to ensure a real-time implementation
in the case od EE.

Regarding the HFPC-BB and HFPC-GA strategies, the
mean computation time was 220 s and 144 s, respectively.
Therefore, a computation time saving of 35% approxi-
mately is obtained when using the GA in comparison
with the BB. Although HFPC-GA returns a sub-optimal
solution at each iteration, the overall behavior of the con-
trolled plant is practically identical to the HFPC-BB (and
HFPC-EE), which provides optimal results. On the other
hand, the BB approach does not require any parameter
tuning. However, the GA ensures a steady and bounded
computation time at each iteration, which is critical in
real-time applications.

In this study, the HFPC-GA is presented as a heuristic,
systematic and efficient algorithm that allows us to solve
NP-hard problems as the HFPC strategy. Future work
will focus on extending the proposed HFPC-GA to solve
predictive control with both discrete and continuous ma-
nipulated variables.
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