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1. INTRODUCTION

Dynamic game theory brings together three features that
are key to many situations in economy, ecology, and else-
where: optimizing behavior, presence of multiple agents,
and enduring consequences of decisions. For that reason
this framework is often used to analyze various policy
problems in these areas (see e.g. [2], [8] and [12]).
In applications one often encounters however systems de-
scribed by a set of ordinary differential equations subject
to some algebraic constraints. These systems are known as
descriptor systems.
As far as the authors know, except for the work [13], a
study of differential games for descriptor systems is lacking
up to now.
In this paper we take a first step in trying to fill this
gap. We consider the problem of two players who like to
optimize their performance given by a usual quadratic cost
function depending both on the state and control variables.
The underlying system is described by a set of differential
and algebraic equations.
We assume that the information structure of the game is
of the open-loop type. That is, both players only know the
initial state and structure of the system, and the set of
admissible control actions are functions of time.
Linear quadratic control problems play an important role
in applications. Therefore the linear quadratic control
problem for descriptor systems has been considered in the
literature by various authors too. The theory on the au-
tonomous linear quadratic control problem for descriptor
systems is, e.g., well documented in [11]. Here one can
find also many references to this literature. Like most
approaches for solving the linear quadratic control problem
for descriptor systems, in this paper we solve the corre-
sponding game problem by first applying an appropriate
transformation to the pencil λE − A (see (3)). Under
some additional simplifying assumptions on the system it
is possible then to solve the game, for both a finite and

infinite planning horizon, using the theory for affine linear
quadratic differential games as documented in [4] and [5].
The outline of the paper is as follows. The next section
formalizes the problem statement and summarizes some
basic properties about descriptor systems. In section three
we present the main results for the finite planning horizon,
whereas section four contains those about the infinite
planning horizon. In section five we illustrate some of the
theory by an example. Finally section six concludes.

2. PRELIMINARIES

In this paper we assume that the dynamics of the game is
described by

Eẋ(t) = Ax(t) +B1u1(t) +B2u2(t), x(0) = x0, (1)

where E, A ∈ R(n+r)×(n+r), rank(E) = n, Bi ∈
R(n+r)×mi and ui ∈ Rmi are the controls player i can use
to manipulate the system. Each player i has a quadratic
cost functional Ji given by:
∫ tf

0

{xT (t)Q̄ix(t) + uT
i (t)R̄iui(t)}dt+ xT (tf )Q̄itf

x(tf ).

(2)
Here all matrices are constant in time, Q̄i = Q̄T

i , and R̄i

is positive definite (> 0).
The inclusion of player j’s control efforts into player i’s
cost function is dropped because, due to the open-loop
information structure, this term drops out in the analysis.
From, e.g., [1] we recall the following results for the
differential algebraic equation

Eẋ(t) = Ax(t) + f(t), x(0) = x0. (DAE)

and the associated matrix pencil

λE −A. (3)

System (DAE) and (3) are said to be regular if the
characteristic polynomial det(λE − A) is not identically
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zero. If the pencil (3) is not regular, then the system
(DAE) is under-determined in the sense that consistent
initial conditions do not uniquely determine solutions (see
[7]). If the pencil (3) is regular, then the roots of the
characteristic polynomial are the finite eigenvalues of the
pencil. If E is singular, the pencil is said to have infinite
eigenvalues which may be identified as the zero eigenvalues
of the inverse pencil E−λA. From [7] we recall the so-called
Weierstrass canonical form.

Theorem 1. If (3) is regular, then there exist nonsingular
matrices X and Y such that

Y TEX =

[
In 0
0 N

]
and Y TAX =

[
J 0
0 Ir

]
, (4)

where J is a matrix in Jordan form whose elements are the
finite eigenvalues, Ik ∈ Rk×k is the identity matrix and N
is a nilpotent matrix also in Jordan form. J and N are
unique up to permutation of Jordan blocks. 2

If (3) is regular the solutions of (DAE) take the form

x(t) = X1z1(t) +X2z2(t)

where with X = [X1 X2], Y = [Y T
1 Y T

2 ], X1, Y
T
1 ∈

R(n+r)×n, X2, Y
T
2 ∈ R(n+r)×r and

z1(t) = eJtz1(0) +

∫ t

0

eJ(t−s)Y1f(s)ds;

z1(0) = [In 0]X−1x0

z2(t) =−

k−1∑

i=0

N iY2
di

dti
f(t),

under the consistency condition:

[0 Ir]X
−1x0 = −

k−1∑

i=0

N iY2
di

dti
f(0).

Here k is the degree of nilpotency of N . That is the integer
k for which Nk = 0 and Nk−1 6= 0. The index of the pencil
(3) and of the descriptor system (DAE) is the degree k of
nilpotency of N . If E is nonsingular, we define the index
to be zero.

From the above formulae it is obvious that the solution
x(t) will not contain derivatives of the function f if and
only if k ≤ 1. In that case the solution x(t) is called impulse
free. In general, the solution x(t) involves derivatives of
order k−1 of the forcing function f if (DAE) has index k.
Next, let [V W ] be an orthogonal matrix such that image
V equals the image of ET and image W equals the null
space of E. Then E = [E1 0][V W ]T = E1V

T , where E1

is full column rank. The next lemma characterizes pencils
which have an index of at most one.

Lemma 2. The following statements are equivalent:

i) pencil (3) is regular and has at most index one.

ii) rank

([
E

V TA

])
= n+ r (= rank(E + V V TA)).

iii) rank ([E AW ]) = n+ r (= rank(E +AWWT )). 2

Since we do not want to consider derivatives of the input
function in this paper, we restrict the analysis to regular
index one systems here. The above discussion motivates
then the next assumptions.

Assumption 3. Throughout this paper the next assump-
tions are made w.r.t. system (1):

1. matrix E is singular;
2. det(λE −A) 6= 0;
3. rank([E AW ] = n+ r;
4. For every x0 ∈ Rn there exist a u1(0) and u2(0) such

that G(Ax0+B1u1(0)+B2u2(0)) = 0, or equivalently,
image GA ⊂ image G[B1 B2], where G := [0 I]Y T .

3. THE FINITE PLANNING HORIZON

In this section we consider the game (1,2) under the
assumption that tf is finite. Furthermore we assume that

XT Q̄itf
X =

[
Qitf

0
0 0

]
, i = 1, 2,where Qitf

∈ R
n×n.

With [
x1(t)
x2(t)

]
:= X−1x, with x1 ∈ R

n and x2 ∈ R
r (5)

the game (1,2) has a set of open-loop Nash equilibrium
actions (u1(.), u2(.)) if and only if (u1(.), u2(.)) are open-
loop Nash equilibrium actions for the game

[
In 0
0 0

] [
ẋ1(t)
ẋ2(t)

]
=

[
J 0
0 Ir

] [
x1(t)
x2(t)

]
+ Y TB1u1(t) +

+Y TB2u2(t),

[
x1(0)
x2(0)

]
= X−1x0, (6)

where player i has the quadratic cost functional Ji:

∫ tf

0

{[xT
1 (t) xT

2 (t)]XT Q̄iX

[
x1(t)
x2(t)

]
+ uT

i (t)R̄iui(t)}dt+

+xT
1 (tf )Qitf

x1(tf ). (7)

From (6) it follows that

x2(t) =−[0 Ir]Y
T (B1u1(t) +B2u2(t))

=−Y2(B1u1(t) +B2u2(t)). (8)

Substitution of (8) into the cost functions (7) shows that
(u1(.), u2(.)) are open-loop Nash equilibrium actions for
the game (1,2) if and only if (u1(.), u2(.)) are open-loop
Nash equilibrium actions for the game

ẋ1(t) = Jx1(t) + Y1B1u1(t) + Y1B2u2(t),

x1(0) = [In 0]X−1x0, (9)

with cost Ji for player i given by (with zT = [xT
1 uT

1 uT
2 ])

∫ tf

0

{zT (t)



In 0
0 −BT

1 Y
T
2

0 −BT
2 Y

T
2


XT Q̄iX

[
In 0 0
0 −Y2B1 −Y2B2

]

z(t) + uT
i R̄iui(t)}dt+ xT

1 (tf )Qitf
x1(tf ) =:

∫ tf

0

{zT (t)




Qi Vi Wi

V T
i R1i Ni

WT
i NT

i R2i



 z(t)}dt+ xT
1 (tf )Qitf

x1(tf ).

(10)
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In the appendix we introduced some additional notation
that will be used throughout this paper. Using this nota-
tion we obtain the next result. An outline of the proof can
be found in [6].

Theorem 4. Assume that the two Riccati differential equa-
tions

K̇i(t) = −JTKi(t) −Ki(t)J + (Ki(t)Y1Bi + Vi)R
−1
ii

(BT
i Y

T
1 Ki(t) + V T

i ) −Qi; Ki(T ) = Qitf
, (11)

have a symmetric solution Ki(.) on [0, tf ], i = 1, 2.
Then the linear quadratic differential game (1,2) has an
open-loop Nash equilibrium for every initial state if and
only if matrix

H(tf ) = [I 0 0]e−Mtf




I

Q1tf

Q2tf





is invertible.
Moreover, if for every x0 there exists an open-loop Nash
equilibrium then the solution is unique. The unique equi-
librium actions as well as the associated state trajectory
can be calculated from the linear two-point boundary value
problem

ẏ(t) = My(t), with Py(0) +Qy(tf) = [xT
1 (0) 0 0]T . (12)

Here

P =

[
In 0 0
0 0 0
0 0 0

]
and Q =




0 0 0
−Q1tf

In 0
−Q2tf

0 In


 .

Denoting [yT
0 (t), yT

1 (t), yT
2 (t)]T := y(t), with yi ∈ Rn, i =

0, 1, 2, the state and equilibrium actions are

x∗(t) = X

[
x∗1(t)
x∗2(t)

]
where x∗1(t) = y0(t),

x∗2(t) = Y2[B1 B2]G
−1

(
Zy0(t) + B̃T

[
y1(t)
y2(t)

])

and

[
u∗1(t)
u∗2(t)

]
= −G−1

(
Zy0(t) + B̃T

[
y1(t)
y2(t)

])
, t > 0,

respectively. 2

Similar as in [4, Theorem 7.2 and Proposition 7.5] one
can relate the existence of open-loop Nash equilibria for
this game also to the existence of solutions of a set of
coupled Riccati equations. Following the lines of the proofs
provided in [4] we obtain the next analogues.

Theorem 5.
A. Assume that
i. The set of (coupled) Riccati differential equations

Ṗ (t) = −ÃT
2 P (t) − P (t)Ã + P (t)BG−1B̃TP (t) − Q̃;

PT (tf ) = [QT
1tf
, QT

2tf
]

has a solution P on [0, tf ], and
ii. The two Riccati differential equations (11) have a
symmetric solution Ki(.) on [0, tf ].
Then the differential game (1,2) has a unique open-loop
Nash equilibrium for every initial state. Moreover, the
equilibrium actions are

[
u∗1(t)
u∗2(t)

]
= −G−1(Z + B̃TP (t))Φ̃(t, 0)[I 0]X−1x0, (13)

where Φ̃(t, 0) is the solution of the transition equation

˙̃Φ(t, 0) = (A−BG−1(Z + B̃TP (t)))Φ̃(t, 0); Φ̃(0, 0) = I.

The corresponding state trajectory is given by

x∗(t) = X

[
x∗1(t)
x∗2(t)

]
where x∗1(t) = Φ̃(t, 0)[I 0]X−1x0,

x∗2(t) = Y2[B1 B2]G
−1(Z + B̃TP (t))x∗1(t).

B. For all tf ∈ [0, t1) there exists for all x0 a unique open-
loop Nash equilibrium for the game (1,2) if and only if
the above Riccati differential equations i. and ii. have an
appropriate solution for all tf ∈ [0, t1).
In case the game has a unique equilibrium the actions are
given by (13). 2

4. THE INFINITE PLANNING HORIZON

In this section we assume that the cost functional player
i = 1, 2, likes to minimize is:

lim
tf→∞

Ji(x0, u1, u2, tf ), (14)

where

Ji(x0, u1, u2, tf ) =

∫ tf

0

{xT (t)Q̄ix(t) + uT
i (t)R̄iui(t)}dt,

subject to (1).
We assume that the matrix pairs (A,Bi), i = 1, 2, are
finite dynamics stabilizable. That is, if σ(H) denotes the
spectrum of matrix H ; C− = {λ ∈ C | Re(λ) < 0};
C

+
0 = {λ ∈ C | Re(λ) ≥ 0}, then rank([λE−A,Bi]) = n+

r, ∀λ ∈ C
+
0 . It can be easily shown that this assumption

is equivalent with the assumption that the matrix pairs
(J, Y1Bi), i = 1, 2, are stabilizable in (9). So, in principle,
each player is capable to stabilize the system (1) on his
own.

We assume that the players choose control functions
belonging to the set Us(x0) of square integrable functions
yielding a stable closed-loop system (see also e.g. [14]):

{
u ∈ L2(0,∞) | lim

tf→∞

Ji(tf , x0, u) ∈ R ∪ {−∞,∞},

lim
t→∞

x(x0, u, t) = 0
}
.

Here x(x0, u, t) is the solution of (1) 1 . Notice that the
assumption that the players use simultaneously stabilizing
controls introduces the cooperative meta-objective of both
players to stabilize the system (see e.g. [4] for a discussion).
For simplicity of notation we will omit from now on the
dependency of Us on x0.

In the rest of the paper the algebraic Riccati equations

JTKi +KiJ − (KiY1Bi + Vi)R
−1
ii (BT

i Y
T
i Ki + V T

i )

+Qi = 0, i = 1, 2, (15)

and the set of (coupled) algebraic Riccati equations

1 limtf→∞ Ji(tf , x0, u) = −∞(∞) if ∀r ∈ R,∃Tf ∈

R such that tf ≥ Tf implies Ji(tf , x0, u) ≤ r(≥ r).
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0 = ÃT
2 P + PÃ− PBG−1B̃TP + Q̃ (16)

or, equivalently,

0 = AT
2 P + PJ − (PB +

[
Z1

Z2

]
)G−1(B̃TP + Z) +Q

play a crucial role.

Definition 6. A solution PT =: (PT
1 , P

T
2 ), with Pi ∈ R

n,
of the set of algebraic Riccati equations (16) is called

a. stabilizing, if σ(Ã −BG−1B̃TP ) ⊂ C−;
b. left-right stabilizing 2 (LRS) if i) it is a stabilizing

solution, and ii) σ(−ÃT
2 + PBG−1B̃T ) ⊂ C

+
0 ; 2

The next relationship between certain invariant subspaces
of matrix M and solutions of the Riccati equation (16)
is well-known (see e.g. [4, Chapter 7.3]). This property
can also be used to calculate the (left-right) stabilizing
solutions of (16).

Lemma 7. Let C ⊂ R3n be an n-dimensional invariant
subspace of M , and let Ci ∈ Rn×n, i = 0, 1, 2, be three
real matrices such that

C = Im
[
CT

0 , C
T
1 , C

T
2

]T
.

If C0 is invertible, then Pi := CiC
−1
0 , i = 1, 2, solves

(16) and σ(A − BG−1(Z + B̃TP )) = σ(M |C). Moreover,
(P1, P2) is independent of the chosen basis for C. 2

The next lemma summarizes the relationship between the
LRS solution of (16) and the stable graph subspace of
matrix M . A proof of it can be found in [5] and [9].

Lemma 8.
1. The set of algebraic Riccati equations (16) has a LRS
solution (P1, P2) if and only if matrix M has an n-
dimensional stable graph subspace and M has 2n eigen-
values (counting algebraic multiplicities) in C

+
0 .

2. If (16) has a LRS solution, then it is unique. 2

Following [5] the following theorem can be proved.

Theorem 9. If the differential game (3,1) has an open-loop
Nash equilibrium for every initial state, then
1. M has at least n stable eigenvalues (counted with
algebraic multiplicities). More in particular, there exists a
p-dimensional stable M -invariant subspace S, with p ≥ n,

such that Im
[
I Ṽ T

1 Ṽ T
2

]T

⊂ S, for some Ṽi ∈ Rn×n.

2. (15) have a stabilizing solution.
Conversely, if (15) have a stabilizing solution and vT (t) =:
[xT (t), ψT

1 (t), ψT
2 (t)] is an asymptotically stable solution

of v̇(t) = Mv(t), x(0) = x0, then, with ψT (t) :=
[ψT

1 (t), ψT
2 (t)],

[
u∗1(t)
u∗2(t)

]
= −G−1

[
B̃Tψ(t) + Zx(t)

]
, (17)

provides an open-loop Nash equilibrium for the linear
quadratic differential game (3,1). 2

2 In [4] such a solution is called strongly stabilizing.

Remark 10. Similar conclusions as in [5] can be drawn
now. A general conclusion is that the number of equilibria
depends critically on the eigenstructure of matrixM . With
s denoting the number (counting algebraic multiplicities)
of stable eigenvalues of M we have.
1. If s < n, still for some initial state there may exist an
open-loop Nash equilibrium.
2. In case s ≥ 2, the situation might arise that for some
initial states there exists an infinite number of equilibria.
3. If M has a stable graph subspace, S, of dimension
s > n, for every initial state x0 there exists, generically,
an infinite number of open-loop Nash equilibria. 2

The next theorem shows that in case the set of coupled
algebraic Riccati equations (16) have a stabilizing solution,
the game always has at least one equilibrium.

Theorem 11. Assume that 1. the set of coupled algebraic
Riccati equations (16) has a set of stabilizing solutions
Pi, i = 1, 2; and
2. (15) have a stabilizing solution Ki(.), i = 1, 2.
Then the linear quadratic differential game (3,1) has an
open-loop Nash equilibrium for every initial state.
One set of equilibrium actions is (for t > 0) given by:[

u∗1(t)
u∗2(t)

]
= −G−1(Z + B̃TP )Φ̃(t, 0)[I 0]X−1x0, (18)

where Φ̃(t, 0) is the solution of the transition equation

˙̃Φ(t, 0) = (J −BG−1(Z + B̃TP ))Φ̃(t, 0); Φ̃(0, 0) = I.

The corresponding state trajectory is given by

x∗(t) = X

[
x∗1(t)
x∗2(t)

]
where x∗1(t) = Φ̃(t, 0)[I 0]X−1x0,

x∗2(t) = Y2[B1 B2]G
−1(Z + B̃TP )x∗1(t).

Furthermore, the costs by using the actions (18) for the
players are ([I 0]X−1x0)

T M̄i[I 0]X−1x0, i = 1, 2, where,

with Acl := J−BG−1(Z+B̃TP ), M̄i is the unique solution
of the Lyapunov equation

[I, (−G−1(Z + B̃TP ))T ]Mi[I, (−G−1(Z + B̃TP ))T ]T +

AT
clM̄i + M̄iAcl = 0. 2

Corollary 12. Lemma 7 and Theorem 11 imply that if M
has a stable invariant graph subspace and the two algebraic
Riccati equations (15) have a stabilizing solution, the game
will have at least one open-loop Nash equilibrium. 2

The equilibrium actions (18) can be implemented also as
a state feedback by considering the system:

ẋ1(t) = (J −BG−1(Z + B̃TP ))x1(t), x1(0) = [I 0]X−1x0.

Then,

[
u∗1(t)
u∗2(t)

]
= −G−1(Z + B̃TP )x1(t).

Notice that in case the set of algebraic Riccati equations
(16) has more than one set of stabilizing solutions, there
exists more than one open-loop Nash equilibrium. Matrix
M has then a stable subspace of dimension larger than
n. Consequently (see Remark 10, item 3) for every initial
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state there will exist, generically, an infinite number of
open-loop Nash equilibria. This point was first noted by
Kremer in [9] in case matrix A is stable.
The above reflections raise the question whether it is pos-
sible to find conditions under which the game has a unique
equilibrium for every initial state. The next Theorem 13
gives such conditions. Moreover, it shows that in case
there is a unique equilibrium the corresponding actions
are obtained by those described in Theorem 11.

Theorem 13. Consider the differential game (3,1).
This game has a unique open-loop Nash equilibrium for
every initial state if and only if
1. The set of coupled algebraic Riccati equations (16) has
a LRS solution, and
2. the two algebraic Riccati equations (15) have a stabiliz-
ing solution.
The unique equilibrium actions are given by (18). 2

5. AN EXAMPLE

Consider the next simplified macroeconomic model in
which the governments of two symmetric countries aim
at stabilizing domestic policies (see e.g. [2] and [3]).

ṡ(t) =−φ2s(t) − φ1u1(t) + φ1u2(t), x(0) = x0 (19)

q1(t) = αu1(t) + βu2(t) + γs(t) (20)

q2(t) = βu1(t) + αu2(t) − γs(t), (21)

where s is a measure of international competitiveness, ui

is the domestic real money supply (used to control the
system) and qi denotes the deviation of the real output of
country i, i = 1, 2, from its natural level. All parameters
in this model are assumed to be positive. Moreover we
assume that output in a country is more affected by its
domestic monetary policy than by the monetary policy
pursued abroad (i.e. α > β). The policy makers in each
country choose their optimal monetary policy so as to
minimize the costs of the output gap (and inflation which
might be viewed to be a fraction of the output gap), the
loss of international competitiveness due to a revaluation
of the currency and the loss incurred due to the fact
that the government uses its control instrument. Assuming
that the cost functions are additive and quadratic and
policy makers plan for an infinite horizon we get the next
objective functional for country i, i = 1, 2 :

∫
∞

0

{as2(t) + bq2i (t) + r̄u2
i }dt. (22)

Introducing x(t) := [s(t) q1(t) q2(t)] we can rewrite this
model into the descriptor form (1,2) with

E =

[
1 0 0
0 0 0
0 0 0

]
; A =

[
−φ2 0 0
γ −1 0
−γ 0 −1

]
; B1 =

[
−φ1

α
β

]
;

B2 =

[
φ1

β
α

]
; Q̄1 =

[
a 0 0
0 b 0
0 0 0

]
and Q̄2 =

[
a 0 0
0 0 0
0 0 b

]
.

Since α > β it is easily verified that Assumption 3 is
satisfied.

With Y :=

[
1 0 0
0 −1 0
0 0 −1

]
and X :=

[
1 0 0
γ 1 0
−γ 0 1

]
the matrix

pencil (E,A) can be rewritten into its Weierstrass canon-
ical form

Y TEX =

[
1 0 0
0 0 0
0 0 0

]
and Y TAX =

[
−φ2 0 0
0 1 0
0 0 1

]
.

Therefore, with XT
1 = [1, γ, −γ];

X2 =

[
0 0
1 0
0 1

]
; Y T

1 =

[
1
0
0

]
; and Y T

2 =

[
0 0
−1 0
0 −1

]
;

M1 and M2 are respectively



a+ γ2b αγb βγb

αγb r̄ + α2b αβb

βγb αβb β2b


 and



a+ γ2b −βγb −αγb
−βγb β2b αβb

−αγb αβb r̄ + α2b


 .

From this we get then, with d :=determinant(G) = (r̄ +
α2b)2−α2β2b2 (which obviously differs from zero), e := r̄+
α(α + β)b and f := r̄ + (α2 − β2)b, the next expressions
(see Appendix B)

J = −φ2; G =

[
r̄ + α2b αβb

αβb r̄ + α2b

]
; Ã = −φ2 +

2αγφ1be

d
;

B̃ =

[
−φ1 0
0 φ1

]
; Q = (a+ γ2b)

[
1
1

]
; Z = αγb

[
1
−1

]
;

B = [−φ1 φ1]; Ã
T
2 =

[
−φ2 0
0 −φ2

]
−
γφ1b

d

[
−αf βr̄
βr̄ −αf

]
.

Since (J, Y1Bi) are stabilizable and

[
Qi Vi

V T
i Rii

]
> 0, i =

1, 2, (15) has a stabilizing solution (see e.g. [10, Theorem
9.4]). Next consider, with m12 := α(α − β)γ2b2e; m22 :=
−φ1αγbf and m23 := φ1βγbr̄, matrix M =




−φ2 0 0

−(a+ γ2b) φ2 0
−(a+ γ2b) 0 φ2



 +
1

d




2φ1αγbe −φ2

1e −φ2
1e

m12 m22 m23

m12 m23 m22



 .(23)

Assuming that both φ2d− 2φ1αγbe > 0 and φ2d−φ1(α+
β)γbe > 0 one can show (see [6] for details) that (16) has
a LRS solution. So this game has a unique open-loop Nash
equilibrium under these parameter conditions. The unique
equilibrium actions are

[
u∗1(0)
u∗2(0)

]
=

[
α β
β α

]
−1 [

q1(0) − γs(0)
q2(0) + γs(0)

]
and

[
u∗1(t)
u∗2(t)

]
= −

αγb− φ1h

r̄ + α(α− β)b

[
1
−1

]
x1(t), t > 0,

where x1(t) = e
(−φ2+

2φ1(αγb−φ1h)

r̄+α(α−β)b
)t[1 0 0]x0.

The corresponding equilibrium state trajectory is

x∗(t) =

[
1

γ − k
−(γ − k)

]
x1(t), with k =

(α− β)(αγb− φ1h)

r̄ + α(α− β)b
.

The cost for both players are the same, i.e: m̄([1 0 0]x0)
2,

where m̄ is some positive number (see [6]).
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6. CONCLUDING REMARKS

In this note we considered the linear-quadratic differential
game for descriptor systems which have an index one. Both
necessary conditions and sufficient conditions were derived
for the existence of an open-loop Nash equilibrium. More-
over, conditions were presented that are both necessary
and sufficient for the existence of a unique equilibrium.
Basically, the results were obtained by reformulating the
game as an ordinary affine linear quadratic differential
game. Following the lines and combining the results docu-
mented in [4] and [5] similar conclusions can be deduced.
The above results can be generalized straightforwardly to
the N -player case. Furthermore, since Qi are assumed to
be indefinite, the obtained results can be directly used
to (re)derive properties for the zero-sum game. If players
discount their future loss, similar to [4, Chapter 3.6], it
follows from Theorem 13 that if the discount factor δ is
”large enough” the game has generically a unique open-
loop Nash equilibrium (all that changes is that matrix A
has to be replaced by A − 1

2δI everywhere). Finally we
conclude from (17) that the conclusion in [9], that if the
game has an open-loop Nash equilibrium for every initial
state either there is a unique equilibrium or an infinite
number of equilibria, applies here too.
Obviously there are still many open problems to be solved.
For instance, problems that were not dealt with here are
how to proceed in case the system is of a higher order
index. Furthermore, the approach taken here is not moti-
vated from a numerical point of view. Stated differently,
there may be other ways to obtain the equilibrium actions
advertized here which are from a numerical point of view
much more preferable (like for the linear quadratic control
problem (see [11])). Also the question emerges whether it
is possible to solve this problem without making a pre-
liminary ”state decomposition”. Furthermore, all of these
problems can be analyzed also under different information
structures.

APPENDIX: NOTATION

The next shorthand notation will be used.

A2 = diag{J, J}; B = Y1[B1, B2];

Q =

[
Q1

Q2

]
; G =

[
[0 I 0]M1

[0 0 I]M2

] [
0 0
I 0
0 I

]
=

[
R11 N1

NT
2 R22

]
;

where we assume throughout that matrix G is invertible,

B̃T := diag{BT
1 Y

T
1 , B

T
2 Y

T
1 }; B̃T

1 :=

[
BT

1 Y
T
1

0

]
;

B̃T
2 :=

[
0

BT
2 Y

T
1

]
; Z :=

[
[0 I 0]M1

[0 0 I]M2

][
I
0
0

]
=

[
V T

1

WT
2

]
;

Zi := [I 0 0]Mi

[
0 0
I 0
0 I

]
= [Vi, Wi], Q̃i := Qi − ZiG

−1Z;

Q̃ :=

[
Q̃1

Q̃2

]
; S̃i := BG−1B̃T

i ; ÃT
2 := AT

2 −

[
Z1

Z2

]
G−1B̃T

S̃ := [S̃1, S̃2], Ã := J −BG−1Z; and M :=

[
Ã −S̃

−Q̃ −ÃT
2

]
.

Notice that M also equals




J 0 0
−Q1 −JT 0
−Q2 0 −JT


 +

[
−B
Z1

Z2

]
G−1

[
Z, B̃T

1 , B̃
T
2

]
.
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