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Abstract: This paper originally proposes an optimal control system which consists of both feedforward and state-
feedback controllers using a generalized linear quadratic Gaussian and loop transfer recovery (GLQG/LTR) method. 
The control objective is focused on the regulatory performances of output vector in response to a desired stack current 
command in face of load variation. The proposed method provides another degree-of-freedom in optimal controller 
design and makes the compensated system have a prescribed degree of stability. Finally, the numerical simulations of 
a compensated fuel processing system reveal that the proposed method achieves better performance and robustness 
properties in both time-domain and frequency-domain responses than those obtained by the traditional LQ Method. 

 

1. INTRODUCTION 

A Linear Quadratic Gaussian and Loop Transfer Recovery 
(LQG/LTR) process, originally proposed by Doyle and Stein 
(1981),  provides a prominent “loop shaping” concept in a two-
step design procedure for the corresponding principal gains of 
return ratio (Stein and Athan, 1987; Maciejowski, 1989). In 
general, a control problem can be considered as a tracking issue by 
taking both reference command tracking and output vector 
regulation into consideration simultaneously. The control 
objectives are focused on the performance and stability 
specifications, such as reference command tracking, noises 
rejection, and robustness characteristics. For a multivariable 
control system, such requirements can be naturally transformed 
into the frequency-domain requirements in term of the singular 
values of sensitivity function and complementary sensitivity (co-
sensitivity) function in a closed-loop control system. The 
sensitivity function is related to the return ratio which is evaluated 
by breaking at either the input or output point of compensated 
plant. Pukrushpan et al. (2003; 2005; 2006) have used a well-
developed linear Quadratic (LQ) optimization technique to design 
an observer-based state-feedback controller for a fuel processing 
system (FPS) with a catalytic partial oxidation (CPO) reactor. 
However, the controlled CPO-based FPS is non-minimum phase 
and this effect does not take into consideration in the process of 
control system design. These motivate us to develop an optimal 
two-degree-of-freedom control system by a generalized 
LQG/LTR (GLQG/LTR) procedure for the problems of load 
tracking and output vector of a general system. 
Fuel cell system (FCS) is potentially intended for stationary and 
mobile power generations with low greenhouse emissions and 
high electrochemical efficiency. The role of a FPS is to convert 
fossil and/or renewable fuel sources into suitable fuels, especially 
hydrogen-rich synthesis gas (H2-rich syngas), for the 
electrochemical conversion in the FCS. Of all primary fossil fuels, 
natural gas is the cleanest fuel resource and the most environment-
friendly one in terms of its products of combustion. Although it is 
a non-renewable fuel resource, natural gas is naturally preferred as 

the first candidate of available fuels because of its wide 
availability (Dicks, 1996), high-efficiency H2 reforming (Ahmed 
and Krumpelt, 2001; Brown, 2001), environmental friendliness, as 
well as sufficient infrastructure for refuelling, distribution, and 
storage. Therefore, natural gas will play an important role in the 
ever-increasing energy consumption in the upcoming future. 
Among all of the fuel reforming processes, CPO is the most 
suitable one for mobile applications with rapid start-up, good 
tracking ability of load variation, and compactness. Nevertheless, 
CPO reaction suffers from lower hydrogen concentration and 
reforming efficiency than the other reforming process. 
The main contribution of this paper is to originally derive a two-
degree-of-freedom optimal control structure using the proposed 
GLQG/LTR methodology for both minimum and non-minimum 
phase systems.  Both reference command and desired output 
trajectory tracking are simultaneously taken into consideration. 
Such a design procedure is used to redesign the CPO-based 
natural-gas-fuelled FPS in the work of Pukrushpan et al. (2005). 
The numerical results of simulation demonstrate both performance 
and robustness properties of compensated system are obviously 
improved in the time-domain response and frequency-domain 
analysis as well. 

2. PROBLEM DEFINITION AND METHODOLOGY 

2.1  Problem Definition 

Let the dynamic equations of a multivariable control system 
shown in Fig. 1 be as follows 

)()()()()( twtrBtButAxtx cr Γ+++=&                  (1) 
and 

)()()( tvtCxty +=                                    (2) 

where ,)( nℜ∈tx  ,)( mℜ∈tu  ,)( rℜ∈trc  and q)( ℜ∈ty  are 
the state, input, reference command, and output vectors. 

,nn×ℜ∈A  ,mn×ℜ∈B  ,rn×ℜ∈rB ,pn×ℜ∈Γ  and nq×ℜ∈C  
are the state, input of control, input of reference command,  
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Fig. 1. Two-degree-of-freedom GLQG/LTR control structure. 

input of disturbance, and output matrices, respectively. 
System disturbance )(tw  and measurement noise )(tv  are, 
respectively, p- and q-dimensional uncorrelated Gaussian 
white noise processes with zero-mean, and their covariances 
are given by  

)()()}()({ τδτ −= ttWwtwE T                            (3) 

)()()}()({ τδτ −= ttVvtvE T                           (4) 
and 

0)}()({ =τTwtvE                                  (5) 
where }{⋅E  is an expectation function operator, )(tW  and 

)(tV  are the covariance matrices of system disturbance and 
measurement noise, respectively. The problem is to derive 
an optimal control law minimizing the following LQ 
performance index  

})]()()()()[2exp(5.0{
0∫ += ft TT dttRututQetetEJ α    (6) 

where e(t) is a tracking error between output response and 
desired output vector, Q  is a qq ×  positive semi-definite 
weighting matrix, R  is an mm×  positive definite control 
weighting matrix, and α  is a nonnegative constant which 
can provide a prescribed degree of stability in the proposed 
regulation problem.  

2.2 Methodology Formulation 

According to separation principle, a Kalman filter is first applied 
to provide an optimal estimated state vector and shape the 
principal gains of return ratio at the output of controlled plant. 
Secondly both feedforward and state-feedback controllers subject 
to the LQ performance index is designed in the LTR process. 

A. Kalman Filter Design for Target Loop Transfer Function 

The first step is to design a Kalman filter to provide an 
optimal estimate )(ˆ tx  of )(tx , which minimizes the mean of 
estimated error ).(ˆ)( txtx − For a minimum-phase plant 

), , ,( mmm CBA the Kalman filter can be derived by the 
following state estimation equation 

[ ])(ˆ)()()(ˆ)(ˆ txCtyKtuBtxAtx mfmm −++=&            (7) 

where mfK  is the gain matrix of a Kalman filter calculated by  
1−= VCPK T

mmfmf                                 (8) 

and where mfP  is the covariance of )(ˆ)( txtx −  defined as 

[ ] [ ]{ })(ˆ)()(ˆ)( txtxtxtxEP T
mf −−=                      (9) 

mfP  can be obtained by the following Filter Algebraic 

Riccati Equation (FARE) 
01 =−ΓΓ++ −

mfm
T
mmf

TT
mmfmfm PCVCPWAPPA      (10) 

It is well known that the right-hand plane (RHP) zeros of a 
non-minimum phase plant may be collected into a stable all-
pass filter. The similar factorization is used to describe the 
RHP zeros in terms of structured uncertainty. Suppose the 
original plant is non-minimum phase, i.e. there is at least one 
zero in the RHP. Given a non-minimum phase system 

) , ,( CBA  with l  RHP zeros, all the zeros can be factored in 
the form of multiplicative input uncertainty described as 

)](1)[()( ssGsG m ∆+=                              (11) 
where )/(2)( zszs +−=∆  is a structured uncertainty, and 

∑= izz  is the sum of all the RHP zeros. By this way the 
non-minimum phase system can be expressed as a 
minimum-phase plant ) , ,( mmm CBA  with RPH zeroes in the 
form of multiplicative uncertainty. Suppose that  fK  and 

mfK  are the gain matrices of Kalman filter design for (A, B, 

C) and (Am, Bm, Cm), respectively. It has been well- proofed 
that mff KK =  ([16,17]. Thus the gain matrix of Kalman filter 

for a general plant is given by 
1−= VCPK T

ff                                  (12) 

where fP  can be obtained by the following Filter Algebraic 

Riccati Equation (FARE) 
01 =−ΓΓ++ −

f
T

f
TT

ff CPVCPWAPAP            (13) 
Since the disturbances would couple into the system through the 
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inputs rather than directly on the states, Γ  is chosen as the input 
matrix B , i.e., B=Γ . The gain matrix of Kalman filter for a 
general system can be determined by manipulating the 
covariance matrices W  and V . 
B. Loop Transfer Recovery at Plant Output 
An optimal control law for both feedforward and state-
feedback controllers as shown in Fig. 1, can be derived as 
follows. Firstly, the corresponding Hamilton function is 
defined as  

( )RuuxQCCxxQCyQyytH TTTT
dd

T
d ++−= ˆˆˆ2)2exp(5.0 α     

( )cr
T rBBuxAP +++ ˆ                                          (14) 

An optimal control law can be derived by satisfying the 
following Euler-Lagrange equations. The optimal control 
can be obtained  

PBRtu T1)2exp( −−−= α               (15)                                                                                               
Assume that .ˆ gxPP C += After some manipulations, one 
has 

0)2exp()2exp( 1 =+−−++ − QCCtPBBRPtPAAPP T
C

T
CC

T
CC αα&

(16)  
 and  

crc
T

C
T rBPtgBBRPtgAg )2exp()2exp( 1 αα +−−+ −&  

0)2exp( =− d
TQyCtα                                               (17) 

According to a sub-optimal control law, the optimal control 
law with feedforward and state-feedback controllers can be 
obtained   

)()(ˆ)( 1 tgBRtxKtu T
c

−−−=            (18)                                                                                      
where cK  is a optimal control gain matrix and is derived as  

c
T

c PBRK 1−=          (19)                                                                                                         
and where cP  is a positive definite symmetric matrix, which 
is defined by the following Controller Algebraic Riccati  
equation (CARE) 

0)()( 1 =+−+++ − QCCPBBRPPIAIAP T
c

T
cc

T
c αα  (20)  

Therefore, the closed-loop dynamic equation of 
compensated system can be arranged as 
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and 
[ ][ ] [ ][ ]Tcd

T tvtwtrtyItxtxCty )()()()(000)(ˆ)(0)( += (22) 
Since the transfer function of an observer-based state 
feedback controller is  

ffcc KCKBKAsIKsK 1)()( −++−−=               (23) 

the resulting return ratio evaluated at the input of 
compensated plant is  

ffcc KCKBKAsIBKAsICsKsG 11 )()()()( −− ++−−−=  (24) 

and the associated sensitivity function and complementary 

sensitivity function for the compensated plant are 
1)]()([)( −+= sKsGIsSGK                      (25) 

and 
)()()()( sKsGsSsTGK =                           (26) 

In a traditional LQG/LTR approach, the weighting matrices Q  
and R  are tuneable parameters that can be manipulated to get 
better performance and robustness properties. In general, we can 
synthesize these optimal controllers by setting IQ = and 

IR ρ= .  It is well proven that )(),()(lim
0

sGsKsG t=
→

ρ
ρ

 in the 

LTR procedure. We manipulate these variables to recover the 
principal gains of return ratio )()( sKsG  at the output of 
compensated plant to the ones of target loop transfer function 

)(sGt  as close as possible. 

3. NUMERICAL SIMULATION 

The linearized model of the CPO-based FPS in the work of 
Pukrushpan et al. (2005) can be reformulated in the form of 
state-space realization. 

                   )()()( trBtButAxx cr++=&                         (27) 
and  

)(tCxy =                                   (28) 
with  
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[ ]TrB 024.0328.0000000504.000265.0 −−=     (31) 
and  

⎥
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−

=
088.0994.000000000
0000100000

C  (32) 

where the state, control input, reference command input, and 
output vectors of dynamic equations are defined as  

[ ]TppppTpppprtx AN
H
ANWPO

H
WPOCPO

CH
MIX

air
MIXDESHEXBLO

224)( =                 
(33) 

[ ]Tuutu VALBLO)( =                         (34) 

                      [ ]Tstrc ITtr 2H
ANCPO,)( γ=                       (35) 

and  

[ ]TTty 2H
ANCPO)( γ=                         (36) 

The desired steady-state output vector is selected that the 
operating temperature in the CPO reactor is TCPO=972°K and the 
mole fraction of hydrogen in the anode is 088.02H

AN =γ . The 

control objective is to regulate both TCPO and 2H
ANγ  in face of the 
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variation of stack current IST. For mobile fuel cell system 
applications, an optimal control law in the form of feedforward 
and state-feedback controllers is designed to meet the 
requirements that a desired stack current IST is commanded to 
make vehicles in a preferred maneuvering direction rapidly, and 
both temperature of CPO reactor and molar fraction of hydrogen 
are simultaneously regulated at the desired working conditions. 

3.1 Kalman Filter Design for Target Loop Transfer Function 

The principal gains of return ratio BAsIC 1)( −−  for the 
nominal plant are shown in Fig. 2, where )(⋅σ  and )(⋅σ  are 
maximum and minimum principal gain functions. The 
controlled plant being a type-0 system, it is necessary to 
augment the model by inserting integral action before each 
input to eliminate steady-state errors. From a practical 
consideration, the poles of augmented model are placed at 

01.0− , and then the model of augmented plant  is written as 

⎥
⎦

⎤
⎢
⎣

⎡
−

Γ
=

× mmm

m

0100 I.
IA

Aa                              (37) 

[ ]Ta BB mm0 ×=                                   (38) 
[ ]mm0 ×= CCa                                    (39) 

and  
[ ]Ta Immm0 ×⋅Γ=Γ                               (40) 

With Γ, W, and V being specified as mentioned above, we 
can adjust ρ1 to design the Kalman filter and meet the 
frequency requirements. As ρ1=0.2, the Kalman filter gain 
matrix is obtained as 

T

9226.10454.11675.00585.01863.01813.03752.00369.03953.00360.08298.01409.0
0560.19532.10977.05571.00295.36891.23173.00605.04072.00207.01399.09741.4

⎥
⎦

⎤
⎢
⎣

⎡
−

−−−−
=fK

 

                                                                                           (41) 
The principal gains of target loop transfer function Gt(s), 
sensitivity function Sf(s), and co-sensitivity function Tf(s) at 
the plant output are shown in Figs. 3-4. As comparing with 
Fig. 4, integration action is clearly obvious in each channel 
and the minimum principal gains have been increased by 
almost exactly 20 dB at lower frequencies shown in Fig. 3. 

3.2 Optimal Control Law Design in LTR Process 
The parameters Q, R, and α are manipulated to shape the 
principal gains of return ratio, sensitivity function, and co-
sensitivity function to have better recoverable quality in the 
LTR process. After some iterations, the parameters are 
manipulated as Q=I, R=10-4×I, and α=0.03. The gain matrix 
of state-feedback controller is obtained as 

⎥
⎦

⎤
⎢
⎣

⎡
−−−−−−−

−−−
=

8164.101081.134922.306871.416272.94117.108152.788720.913702.157289.75491.604848.51
6491.34626.31590.424546.264594.203214.91125.602167.3077868.334315.39057.353053.85

 cK

                                                                                           (42) 
The principal gains of target loop transfer function G(s)K(s), 
sensitivity function SGK(s), and co-sensitivity function TGK(s) 
at the plant input are shown in Figs. 5 and 6, respectively. 
For the comparison purpose, the results obtained by 
Pukrushpan’s LQ method are also depicted in Figs. 5-6. Fig. 
5 shows with the proposed method the separation between 
maximum and minimum principal gains are obviously 
lessened at lower frequencies and the condition number 

)(/)( GKGK σσ  is decreased at all interested frequencies. 

This result unveil that the proposed method is much robust 
in face of plant’s uncertainty. The principal gains of co-
sensitivity function at higher frequencies are also declined 
about 10dB as shown in Fig. 6. These contributions make 
the compensated system have better rejection ability in the 
presence of high-frequency measurement noise. 

It should be noted that there is a tradeoff between the 
recoverable quality of LTR and the performance of time-
domain response. Furthermore, the time-domain simulations 
of compensated fuel processing system in response to an 
additional 50A command of stack current at the instant of 
600 second for both proposed LQG/LTR and Pukrushpan’s 
LQ methods are simultaneously shown in Figs. 7-11. Figs. 8 
and 9 obviously reveal the better regulation ability of both 
CPO reactor temperature and hydrogen molar fraction by the 
proposed method. The penalty is both blower and fuel value 
inputs have relatively peak amplitudes in transient response 
as shown in Figs. 10-11. However, it is still satisfactory to 
meet the input limitation of 0-100. In addition, the root mean 
square of both blower and fuel value inputs are also listed in 
Table 1. The proposed method does not increase the power 
consumption of inputs at all. To evaluate the robustness of 
compensated system, the covariance responses of output 
vectors in the face of system disturbance covariance W=1 
and measurement noise covariance V=1 are listed in Table 2. 
The proposed GLQG/LTR method significantly lessens the 
deviation of operating condition from normality and 
increases the robustness and performance properties of 
compensated system in the present of white noises.  

4. CONCULSIONS 
From the previous derivation and simulation, the proposed 
GLQG/LTR is an effective and efficient method from a 
frequency specification standpoint. The control system design of 
integrated feedforward and state-feedback control structure using 
the proposed method can obviously improve time– and 
frequency-domain responses. The proposed GLQG/LTR method 
for a two-degree-of-freedom controller can not only have better 
tracking ability of output vector in response to reference 
command but offer better robustness of noise rejection. 

REFERENCES 

Ahmed, S. and M. Krumpelt (2001). Hydrogen from 
Hydrocarbon Fuels for Fuel Cells. International Journal 
Hydrogen Energy, Vol. 26, No. 4, pp. 291-301. 

Brown, L.F. (2001). A Comparative Study of Fuels for On-
board Hydrogen Production for Fuel-Cell-Powered 
Automobiles. International Journal Hydrogen Energy, 
Vol. 26, No. 4, pp. 381-397. 

Dicks, A.L. (1996). Hydrogen Generation from Natural Gas 
for the Fuel Cell Systems of Tomorrow. Journal of 
Power Sources, Vol. 61, No. 1-2, pp. 113-124. 

Doyle, J. C. and G. Stein (1981). Multivariable Feedback 
Design: Concepts for a Classical / Modern Synthesis,” 
IEEE Transaction on Automatic Control, Vol. AC-26, 
No. 1, pp. 4-16. 

Maciejowski, J. M. (1989). Multivariable Feedback Design, 
Addition-Wesley Publishing Co., Chap. 5, pp. 222-264. 

Pukrushpan, J. T., A. G. Stefanopoulou, S. Varigonda, L. M. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8428



 
 

     

 

Pedersen, S. Ghosh, and H. Peng (2003). Control of 
Natural Gas Catalytic Partial Oxidation for Hydrogen 
Generation in Fuel Cell Applications”, Proceeding of the 
American Control Conference, Vol. 3, pp. 2030-2036. 

Pukrushpan, J. T., A. G. Stefanopoulou, S. Varigonda,  L. M. 
Pedersen, S. Ghosh, and H. Peng (2005) Control of 
Natural Gas Catalytic Partial Oxidation for Hydrogen 
Generation in Fuel Cell Applications. IEEE Transactions 
on Control System Technology, Vol. 13, No. 1, pp. 3-14. 

Pukrushpan, J., A. Stefanopoulou, S. Varigonda, J. Eborn, 
and C. Haugsteretter (2006) Control-Oriented Model of 
Fuel Processor for Hydrogen Generation in Fuel Cell 
Applications. Control Engineering Practice, Vol. 14, No. 
3, pp. 277-293. 

Stein G. and M. Athan (1987) The LQG/LTR Procedure for 
Multivariable Feedback Control Design. IEEE 
Transaction on Automatic Control, Vol. AC-32, No. 2, 
pp. 105-114. 

 

)(Gσ

)(Gσ

Fig. 2. Principal gains of return ratio C(sI-A)-1B. 

)( tGσ

)( tGσ
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Fig. 5. Principal gains of return ratio G(s)K(s). 
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Fig. 8. Temperature response of CPO reactor. 

 
Fig. 9. Hydrogen molar fraction response of anode. 
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Fig. 10. Blower control input for commanded stack current. 
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Fig. 11. Fuel value input response for commanded stack current. 

 

Tabel  1. Root mean square of input vector 
Items GLQG/LTR 

method 
Pukrushpan’s 
LQ method 

)rms( BLOu  55.7545 56.5822 

)rms( VALu  40.9715 41.5668 

Tabel  2. Covariances of output responses with white noises 
Items GLQG/LTR 

method 
Pukrushpan’s 
LQ method 

)(
CPOCPO

T
TT eeE 43.4260 115.2935 

)( 2H
AN

2H
AN

TeeE γγ
 1.8042 5.3066 
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